Motion

Application Specific Function Block Manual

Version 13.0.1

Giddings & Lewis
Controls, Measurement and Sensing

NOTE

Progress is an on-going commitment at Giddings & Lewis. We continually strive to offer the most
advanced productsin the industry; therefore, information in this document is subject to change without
notice. Theillustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liablefor any technical or editoria omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely
understood. It isthe responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921-7100.

DISCLAIMER: All programsin thisrelease (application demos, application specific function
blocks (ASFB's), etc.), are provided "AS IS, WHERE IS", WITHOUT ANY WARRANTIES,
EXPRESS OR IMPLIED. There may be technical or editorial omissionsin the programs and
their specifications. These programsare provided solely for user application development and
user assumes al responsibility for their use. Programs and their content are subject to change
without notice.

Release 2002

© 1993-2002 Giddings & Lewis, Controls, Measurement, and Sensing, A Company of Thyssen Krupp
Technologies

IBM is aregistered trademark of International Business Machines Corporation.

Windows 95, 98, NT, Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation.

Pentium and PentiumPro are trademarks of Intel Corporation.

ARCNET is aregistered trademark of Datapoint.

PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDO Merge, PiCMicroTerm and PiC Progrmming Pendant are
trademarks of Giddings & Lewis.

Table of Contents: Motion ASFB Manual

CHAPTER 1-Application Specific Function Block Guidelines................

FNSEAITALTION ...t e aaaaaaaees
R BV IS OIS ...ttt ettt e e e e e et nenensmsmsnsnsmsmsmnnsmsmnnnnsnsnnnnnnnnnnnnnnnnnnnnnn

INBEVWOTK L .. e e sms s smsm e snssmsmmmesmsmnnnnn
N B OTK 2 ettt e e e et n e smsm s mnssssmnmemmnmnnnen

ASFB Input/Output DESCIIPLIONS......cicieieeceeeseeeeeesee et see et ee e sne e
INEEWOIK 4 ..ottt bt b et re et e e e s neenne e e

Using ASFBs

CHAPTER 1-Motion ASFBs

ADDCKSUM ...
BYTEZHEX ...
CHKCKSUM ..o
DWORZHEX ...
HEXZBY TE ... oot

M _DSMCOM ...ttt ettt re s ebe e s aee s b e e saeesbeesressnneesreeas
RS232 CONNECLIONS......ccuvveeeriectie e ctee e etee e etee e eree e e e esre s ebae e ebaeesnreeesnnes
RSA22/RSA85 CONNECLIONS.......oveiiiiireiecieieeeeeeeirree e seirre e e e eesbaee e s saraeeeeeans

M _DW2BOO..... .ottt stee st ste e sre e sbe e sate s beesasesnbeesaeesaeesneeenneas

M _ERROR...... oottt ettt e sre e sare e eae e saneenes

TOC-1

M _INCPTR ..ttt bbb 2-73
1Y LTSS 2-75
M _LHOMEottt nae s 2-76
M LINCIR et ettt 2-79
M_PRTCAM ottt sttt et nreenas 2-83
M_PRTREL ...t 2-85
M PRTSLP. .ttt e 2-87
M _RATREL ...t sttt st ens 2-89
M U RATSLP et bbb 2-90
M_RDTUNE-......coiiiiiesertee ettt nae e 2-92
M RGSTAT ettt sttt sttt et e e e nteseeaaesreanis 2-93
M_RSETA9 ...ttt 2-95
M U RSET ST ettt 2-96
Y S I S 2-97
M U RSET 73 e bttt bbb 2-98
IM_SACKC ettt neens 2-99
M_SCRVLC ..ottt sttt na e tenae e ens 2-101
M_SRCMON ..ttt sttt b b e ens 2-107
M_SRCPRC ...ttt bbbttt 2-109
Y S (O o 5 S 2-111
IM_SRCWT ettt bbbttt b e e ens 2-113
IM_SRCWTL .ttt ettt st nb e 2-115
ERR OUIPUL. ...ttt s 2-116
SERR OULPUL ...ttt sttt 2-119
BSER OULPUL ...ttt 2-120

M _STATUS ..ttt ettt saesresneens 2-121
M OWTTUNE ...t s 2-123
S CLOSL...ce ettt bttt nre s 2-125
S CLOSO ...ttt st r ettt nenreas 2-127
S CLSIOL... ettt bbbttt e e renre s 2-129
S CLSL09.... ittt bttt nre s 2-131
S ERRORC ..ottt sttt sttt besnennennens 2-133
S FHOME ..ot bbbttt b nre s 2-135
S O € e 2-138
ST I o [RS 2-140
WORDZHEX ...ttt sttt sae e nae s 2-143
APPENDIX A-M_DSMCOM CoOmMmMandsSccoovviiiiiiiiiiiiiiiiiiiieeeeee e A-1
EXCEPLION RESPONSES ..ottt sttt A-1
HOSt COMMANd SEL......cceeieeieceeseceee e A-2
Common Product Line COmMmaNdS...........ccceveererieereereeseeseeesseeseeseens A-3
General COMMANGS........ccviierieie e e A-4
Position LOOp COMMEANGS.........ccouererieiienieeieseesieeseesseesseessesseesseessesnnens A-5
Velocity Loop COMMANGS.........ccueeerieeieieeieeee e eie e e see e A-6
Torgue Current Conditioning Commandsccooceeeereenenieseeneeseenne A-7

TOC-2

MOLOTr COMMABNTS ...ttt e e e e e e e e e e e e e e e e e eereeeeeeas A-8

Motor Commands (ContinUEd)ccceeeereeienieseere e A-9
Motor Commands (ContinUEd)cccoreeiirieniereee e A-10
Digital /O ComMMANGS........c.cereieerieeiesierieseeseeseeseesseeseesee e eeesseenseens A-11
Analog 1/O ComMMANGS........cccoceeieiieecee e ee e A-12
Analog I/0 Commands (ContinUed)c.ccueeerereneenenereee e A-13
Serial POrt ComMmMAaNGS.........coeiiririiiiie e A-14
Operating Mode CommaNdS...........cccceeeererieeieeneeeseesee e e A-15
Operating Mode Commands (Continued)..........ccoeeereenenenneeneneeneenn. A-16
Alternative Operating Mode Commands..........ccccceereerereeresieeseeseeseens A-17
Alternative Operating Mode Commands (Continued)............ccccccerveenee. A-18
Runtime Command and Control Commands...........ccceeeeverrinneeneniinnnnns A-19
Runtime Status COmMMANGS.........ccviereeirieerese e A-20
Runtime Status Commands (Continued)cccevveeereeneereseeseesiesens A-21
Runtime Data ComMMaNGS.........coeeruirieneeie et A-22
Runtime Data Commands (Continued)..........ccccoveverieenvereseereeee e A-23
Runtime Data Collection Commands...........ccoerererierienenene s A-24
Runtime Data Collection Commands (Continued)ccoevverreeiennnne A-25
APPENDIX B-Press Transfer ASFBS ... B-1
M_PREFZ2MYV .ttt B-6
M _PREIMY e s naes B-16
M_PREERR ...ttt st B-17
M PROFL ..ttt e B-19
M _PREDWL ...ttt sttt e e enes B-21
M SETV AT bbbttt bbb B-22
IM_SC ACKC . ettt bbbttt b e B-24
Y@ =1 Y 20N B-25
M_SC DEC ... ettt bbb B-26
I X ettt e e e e e e e Index-1

TOC-3

NOTES

TOC-4

cHAPTER 1 Application Specific Function Block
Guidelines

The following guidelines are recommended ways of working with Application
Specific Function Blocks (i.e. ASFBs) from Giddings & Lewis.

The Applications CD includes the ASFB package as follows:
» .LIB file(s) containing the ASFB(s)
» source.LDO(s) from which the ASFB(s) was made
* example LDO(s) with the ASFB(s) incorporated into the ladder
which you can then use to begin programming from or merge with
an existing application ladder
When you install the Applications CD, the ASFB paths default to:
C:\Program Files\Giddings & Lewis\Applications vxx.x."\ASFB
and
C:\Program Files\Giddings & Lewis\Applications vxx.x.r\Examples

where vxx.x is the PiCPro for Windows version number that these ASFBs and examples were built
under. The .r isthe revision number of the Application software itself.

The .LIB files and source .LDO files are put in the ASFB subdirectory. The exam-
ple.LDO files are put in the Examples subdirectory.

Revisions

The first four networks of each ASFB source ladder provide the following infor-
mation:

Network 1

The first network just informs you that the ASFB is provided to assist your
application development.

1-1

Network 2

The second network is used to keep arevision history of the ASFB. Revisions can
be made by Giddings & Lewis personnel or by you.

The network identifies the ASFB, lists the requirements for using this ASFB, the
name of the library the ASFB is stored in, and the revision history.

The revision history includes the date, ASFB version (see below), the version of
PiCPro used while making the ASFB, and comments about what the revision
involved.

When an ASFB isrevised, the number of thefirst input (EN_ _ or

RQ_) to the function block is changed in the software declarationstable. The
range of numbers available for Giddings & Lewispersonnel is00to 49. Therange
of numbers available for you is 50 to 99. See chart below.

Revison | Giddings& Lewis User
revisions revisions
1st ENOO EN50
2nd ENO1 EN51
50th EN49 EN99

Network 3

The third network describes what you should do if you want to make arevision to
the ASFB.

ASFB Input/Output Descriptions

Network 4

The fourth network describes the ASFB and defines all the inputs and outputs to
the function block.

1-2

Using ASFBs

When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.

« Create anew application LDO starting with the example LDO for the
ASFB package. The advantage isthat the software declarations table for
the ASFB has been entered for you.

« If you already have an application LDO, copy and paste the example LDO
into yours. The software declaration tables for both LDOs will also merge.

1-3

NOTES

1-4

CHAPTER 2 Motion ASFBs

The motion support function blocks are contained in the libraries as shown. They
are used to aid in the application of servo and digitizing axes. Included with these
library files are other example LDO files as listed. The motion support function
blocks are described in alphabetical order.

The SERCOS motion function blocks are also shown. They are used to aid in the
application of SERCOS servo and digitizing axes. Their names start with S .
They are written to replace the corresponding M__motion function block, when the
axes use SERCOS control rather than analog control.

Function
Library Block Description
M_C2M
M_C2M Trandates Third-party DFX Output to ASCI| file conversion
program.
M_COMMON
BYTE2HEX Placesthe datatype byte into hexadecimal notation.
DWOR2HEX Places the data type double word into hexadecimal notation.
HEX2BYTE Placesthe hexadecimal notation into a byte.
HEX2DWOR Places the hexadecimal notation into a double word.
HEX2WORD Places the hexadecimal notation into a word.
M_DW2BOO Places the data type double word into 32 booleans
WORD2HEX Places the data type from word into hexadecimal notation.
M_DATA
M_DATCAP Captures axisinformation on an interrupt basis.
M_DATCPT Captures axis information on an interrupt basisto printable
text file
M_ERROR Returns E-stop, C-stop, and programming errors for a servo
axis or E-stop errorsfor adigitizing axis.
M_INCPTR Increment buffer pointersfor M_DATCPT (not used in your
LDO).
M_PRTCAM Creates atext file for the CAM input of RATIOCAM.
M_PRTREL Creates atext file for the REAL input of RATIO_RL.
M_PRTSLP Createsatext file for the SLOPE input of RATIOSLP.
M_RATREL Calculates ending ratio and slope for usein ratio real profile.
M_RATSLP Calculates ending ratio and slope for usein ratio slope pro-
file.
M_RDTUNE Readstuning parameters for a closed loop axis.
M_RGSTAT Returns registration information for a closed loop or digitiz-

ing axis.

2-1

M_STATUS Returns status information (for example, position and fol-
lowing error) for a closed loop, time, or digitizing axis.
M_WTTUNE Changes tuning parameters on a closed loop axis
M_DEVNET
M_DNJOGC Jogs aCenturion DeviceNet drive axis
M_DNPOSC Movesa Centurion DeviceNet drive to aposition
(either absolute or incremental)
M_DNSTAT Obtains the DeviceNet module status
M_DRVCOM
ADDCKSUM Support routine for M_DSMCOM. (Not used in your LDO.)
CHKCKSUM Support routine for M_DSMCOM. (Not used in your LDO.)
M_DSCOM Allows interfacing between the PiC and one or more
Centurion DS100/200 servo drives.
M_INIT
M_CHK1 Checksto see which servo axes (1 to 8) have been
initialized.
M_CHK101 Checks to see which servo axes 101 to 108 (17 to 24) have
been initialized.
M_CHK109 Checksto see which servo axes 109 to 116 (25 to 32) have
been initialized.
M_CHK49 Checksto see which digitizing axes (49 to 56) have been ini-
tialized.
M_CHK57 Checksto see which digitizing axes (57 to 64) have been ini-
tialized.
M_CHK65 Checksto see which digitizing axes (65 to 72) have been ini-
tialized.
M_CHK73 Checks to see which digitizing axes (73 to 80) have been
initialized.
M_CHK9 Checks to see which servo axes (9 to 16) have been
initialized.
M_CLOS1 Closes the loop on servo axes 1 to 8.
M_CLOS9 Closes the loop on servo axes 9 to 16.
M_CLS101 Closes the loop on servo axes 101 to 108 (17 to 24).
M_CLS109 Closes the loop on servo axes 109 to 116 (25 to 32).
M_RSET49 Resets E-stop errors on digitizing axes 49 to 56.
M_RSET57 Resets E-stop errors on digitizing axes 57 to 64.
M_RSET65 Resets E-stop errors on digitizing axes 65 to 72.
M_RSET73 Resets E-stop errors on digitizing axes 73 to 80.

2-2

M_MOVE

M_JOG Jogs a closed loop axis.

M_LINCIR Performs linear, circular, and simultaneous endpoint arrival
moves on closed loop axes.

M_SACC Calculates the ACC and JERK values to be used with the
ACC _JERK function.

M_SCRVLC Providestheinterface from the application .LDO to the
RATIO_RL function in order to perform linear coordinated,
circular, or third axis departure (simultaneous endpoint
arrival) moves with S-curve acceleration and decel eration.

M_PROFL

M_CNST_V Constant velocity segment.

M_PRFIMV One slave move for master.

M_PRF2MV Two slave moves for master

M_PRFDWL Slave dwell in profile.

M_PRFERR Check for profile errors.

M_PROFL Make profile for 1 move

M_SC ACC Acceleration segment.

M_SC DEC Deceleration segment

M_SETVAJ Set velocity, acceleration, and jerk values.

M_REF

M_CRSFIN Implements coarse, medium and fine resolvers.

M_FHOME Performs a home cycle on a closed loop axis using the fast
input as the reference switch.

M_LHOME Performs ahome cycle on a closed loop axis using a discrete
input as the reference switch.

M_SERCOS

M_SRCMON Monitors up to five SERCOS IDNs.

M_SRCPRC Executes a SERCOS procedure command function.

M_SRCRDL Readsalist of SERCOS IDNSs.

M_SRCWT Writes and reads up to five SERCOS IDNs.

M_SRCWTL Writesalist of SERCOS IDNs.

2-3

S ASFB

S CLOSL
S CLOS9

S ERRORC

S FHOME

slocC

S LHOME

Closes the loop on SERCOS servo axes 1 to 8 (to replace
M_CLOS1)

Closes the loop on SERCOS servo axes 9 to 16 (to replace
M_CLOS9)

Returns e-stop, c-stop, and programming errors for a SER-
COS servo axis or e-stop errors for a SERCOS digitizing
axis, SERCOS ring and slave errors are also returned (to
replace M_ERROR for SERCOS axis).

Performs a home cycle on a SERCOS servo axis using the
fast input as the reference switch (to replace M_FHOME for
SERCOS axis)

Allows control of the discrete 1/0 for a SERCOS servo axis
with a Centurion drive.

Performs a home cycle on a SERCOS servo axisusing adis-
crete input as the reference switch (to replace M_LHOME
for SERCOS axis)

2-4

Example LDOs

The following example LDOs are included:

M_CAMREL

M_CAMSLP

M_CAPTUR

M_COORD

M_DSM_EX

M_EXAMPL

M_PRF_EX

M_TUNE

MMC_DND

An example .LDO that usesthe M_RATREL function
block to convert aRATIOCAM profileto aRATIO_RL
profile.

An example .LDO that usesthe M_RATSLP function block
to convert aRATIOCAM profile to a RATIOSLP profile.
The M_PRTSLP function block is then used to print the
RATIOSLP profile.

An example .LDO that shows how to use the M_DATCAP
function block.

An example .LDO that uses the M_LINCIR function block
to perform linear and circular coordinated moves on a pair
of axes.

An example .LDO that usesthe M_DSMCOM function
block to communicate with Centurion drives through a
serial communications board in rack 0, slot 10, channel 2.
An example .LDO that shows how to use the M_CHK1,
M_CHK49, M_CLOS1, M_CRSFIN, M_ERROR,
M_FHOME, M_JOG, M_LHOME, M_RGSTAT,
M_RSET49, and M_STATUS function blocks.

An example .LDO that shows how to usethe M_PRF2MV
function block to configure aslave profile for aRATIO_RL
move.

An example .LDO that shows how to use the M_RDTUNE
and M_WTTUNE function blocks.

An example .LDO that controls a Centurion DeviceNet
drive axis. The axisis homed, jogged or moved to a position
(either an absolute position or arelative distance).

2-5

ADDCKSUM
Add checksum to string USER/M DRVCOM

Inputs:EN (BOOL) - enables execution
STRG(STRING) - input string
Outputs: OK (BOOL) - execution complete

NAME
ADDCKSUM
EN oK
STRG

ADDCKSUM(EN :=<<BOOL>>, OK => <<BOOL>>);

This function block appends the one-byte checksum to the end of an input
string.Thisis asupport routine and is not used in your LDO.

BYTE2HEX
Converts a byte to a hex value USER/M_COMMON
@T'E‘QMEX_ Inputs: EN (BOOL) - enables execution
1N okl BYTE (BYTE) - vaueto convert
1BYTE STRG(STRING) - converted value
1STRG Outputs: OK (BOOL) - execution complete

<<INSTANCE NAME>>:BY TE2HEX(EN := <<BOOL>>, BYTE :=
<<BYTE>>, STRG := <<STRING>>, OK => <<BOOL>>);

Thisfunction block places the hexadecimal notation of the value at BY TE into
the string at STRG.

Example: If 27 isentered at the BY TE input, 1B will be reported at STRG.

2-6

CHKCKSUM

Check checksum in string

USER/M_DRVCOM

Inputs:EN (BOOL) - enables execution
STRG(STRING) - input string to check
Outputs: OK (BOOL) - execution complete
OUT (BOOL) - checksum OK output

NAME
CHKCKSUM
EN oK
STRG OUT

CHKCKSUM(EN := <<BOOL>>, STRG := <<STRING>>, OK => <<BOOL>>,

OUT => <<BOOL>>);

Thisfunction block checks the checksum in an input string. Thisis a support rou-

tine and is not used in your LDO.

DWOR2HEX

Converts a double word to a hex value

USER/M_COMMON

WO%MEX_ Inputs:EN (BOOL) - enables execution

1N okl DWOR (DWOR) - value to convert

1DWOR | STRG (STRING) - converted value

1STRG Outputs: OK (BOOL) - execution complete

<<INSTANCE NAME>>:DWOR2HEX(EN := <<BOOL>>, DWOR :=
<<DWOR>>, STRG := <<STRING>>, OK => <<BOOL>>);

Thisfunction block places the hexadecimal notation of the value at DWOR into

the string at STRG.

Example: If 845,621 is entered at the DWOR input, CE735 will be reported at

STRG.

2-7

HEX2BYTE
Converts a hex value to a byte USER/M COMMON

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert
Outputs: OK (BOOL) - execution complete
BYTE (BYTE) - converted value

NAME
HEXZBYTE
EN oK
STRG BYTE

<<INSTANCE NAME>>:HEX2BY TE(EN := <<BOOL>>, STRG :=
<<STRING>>, OK =><<BOOL>>, BYTE => <<BYTE>);

Thisfunction block places the hexadecimal notation of the string at STRG into the
output at BY TE.

Example: If 1B is entered at the STRG input, 27 will be reported at the BY TE
output.

2-8

HEX2DWOR
Converts a hex value to a double word USER/M COMMON

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert
Outputs: OK (BOOL) - execution complete
DWOR (DWOR) - converted value

NAME
HEXZDWOR
EN oK
STRG DWOR

<<INSTANCE NAME>>:HEX2DWOR(EN := <<BOOL>>, STRG :=
<<STRING>>, OK =><<BOOL>>, DWOR => <<DWOR>);

This function block places the hexadecimal notation at STRG into the output at

DWOR.
Example: If CE735 isentered at the STRG input, 845,621 will be reported at the
DWOR output.

HEX2WORD

Converts a hex value to a word USER/M_COMMON

NAME
HEX2WORD

EN oK
STRG WORD

Inputs:. EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert
Outputs: OK (BOOL) - execution complete
WORD (WORD) - converted value

<<INSTANCE NAME>>:HEX2WORD(EN := <<BOOL>>, STRG :=
<<STRING>>, OK => <<BOOL>>, WORD => <<WORD>);

This function block places the hexidecimal notation at STRG into the output at
WORD.

Example: If 26,854 is entered at the STRG input, 68E6 will be reported at the
WORD output.

2-9

M _C2M

Translate Third-party DFX Output USER/M_C2M

E] Inputs: EN (BOOL) - enables execution

{en ponele FNAM (STRING[32]) - filename string (name of program to be
executed).

{1FNAM FAIL

lstRT AcTvL STRT (BOOL)) - pulsed to start program execution

leont rERRL CONT (BOOL) - energized to repeat program execution contin-
uously

4SINGL PERR{ . .

EXEC MERR SINGL (BOOL) - energized to enter single step mode

EXEC (BOOL) - pulsed to execute next instruction in single step

{ABRT MO3 |
mode

15ETP SOAT= AgRT (BOOL) - pulsed to abort program execution

11
SETP (STRUCT) - defines the operation of this application of

10 M_C2M.

VLN | (STRUCT) - user Input structure

10VRD O (STRUCT) - user Output structure

VLIN (STRING[64]) - string that shows the current program
line being executed.

OVRD (USINT) - Path feedrate override

Outputs: DONE (BOOL) - initialization completed without
error or was aborted by an ABRT request

FAIL (BOOL) - indicates that an error occurred while trying to
execute the program

ACTV (BOOL) - indicates that program execution isin progress
FERR (INT) - indicatesfile read error

PERR (INT) - indicates program error

MERR (INT) - indicates motion error

MO3 (BOOL) - M03 indicator for use by user’s application.

SDAT (DINT) - value programmed with Sinstruction for use by
user application

2-10

<<INSTANCE NAME>>:M_C2M (EN := <<BOOL>>, FNAM :=

<<STRING[32]>>, STRT := <<BOOL>>, CONT:=<<BOOL>>, SNGL :=

<<BOOL>>, EXEC := <<BOOL>>, ABRT := <<BOOL>> SETP :=
<<STRUCT>>, | := <<STRUCT>>, O := <<STRUCT>>, VLIN :=
<<STRING[64]>>, OVRD := <<USINT>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ACTV =><<BOOL>>, FERR => <<INT>>, PERR => <<INT>>,
MERR => <<INT>>, M03 => <<BOOL >>, SDAT => <<DINT>>);

Thisfunction block (also know as the Cad2Motion ASFB) translatesan M and G
code format ASCII fileinto servo motion. Many applications require description
of their motion path using CAD software. Third party packages (such as
Gcode2000) will convert the CAD package DXF output to M and G codetext files.
M_C2M will translate the M and G code file to servo motion.

Example applicationsinclude glue laying and textile cutting. M_C2M is not
intended for application to metal cutting machinetools such aslathes and millsand
therefore does not support features required by CNC applications such as cutter
radius compensation, tool offsets and constant surface speed. Inputs and Outputs
are further described in the following tables and paragraphs.

INPUTS
Input
EN
FNAM

STRT
CONT
SNGL

EXEC
ABORT

SETUP

Description

Must be energized at all times.

Filename string — Name of program file to be executed. Typically
“RAMDISK:<filename.txt>$00. The string must be terminated by
$00

Pulse to start program execution

Energize to repeat program execution continuously

Energize to enter single step mode. After using single step mode
deenergizing SNGL will cause execution to continue. When enter-
ing single step mode all pre-processed motion (up to three moves)
will execute before execution is stalled. When in single step mode
the VLIN will show the instruction that will be executed when
EXEC is pulsed.

Pulse to execute next instruction when in single step mode

Pulse to abort program execution. When program execution is
aborted all user outputs (O.01 to O©.09) will be deenergized, M03
will turn off, SDAT will be cleared to zero, and all axes motion will
be aborted.

See the table below for a description of the Setup data structure.
User Input structure |11 to 1.19 corresponding to Wait for Input On
M501 to M509 and Wait for Input Off M601 to M609, respectively.
User Output structure O.01 to O.09 corresponding to Turn On Out-
put M101 to M109 and Turn Off Output M201 to M 209, respec-
tively.

2-11

VLIN

OVRD

String which will show the current program line being executed.
Note that due to preprocessing VLIN can be up to three lines ahead
of actual applicaton motion.

Path feedrate override. Specify from O to 255 percent of pro-
grammed (or Rapid) feedrate.

SETUP DATA STRUCTURE - The setup data structure defines the operation of
thisapplication of M_C2M. Values should be specified asinitial valuesin Soft-
war e Declar ations and not changed while running.

Name

Setup
X_ACTIVE
X_DG2R
.Y_ACTIVE
.Y_DG2R
Z_ACTIVE
Z_DG2R
1_DG2R

J DG2R
K_DG2R
F DG2R
.S DG2R
RAPID

.BNDW

.PATH

ACCEL
JERK
.MAXF

END_STRUCT

Type
STRUCT
BOOL
INT
BOOL
INT
BOOL
INT
BOOL

INT
BOOL
INT
INT

DINT

DINT

USINT

LREAL

LREAL
DINT

Description
Setup Data Structure

X,Y andZ _ACTIVE are set to oneto indi-
cate axisis active in this application.

X,Y and Z_DGZ2R are set to indicate the
number of digitsto the right of theimplied
decimal point. See Implied Decimal Point
Data section below.

Indicate the number of digitsto the right of
the implied decimal point. See Implied
Decimal Point Data section below.

The feedrate used for GOO Rapid moves

The Circular Endpoint on circle band-
width. See PiCPro Function Block Help
for M_SCRVLC for further information.

Typically setto 1. Setto 2,3 or 4 for appli-
cations running up to four simultaneous
M_C2M instances. See Interpolation
Paths section below for more information.

2-12

INPUT DATA STRUCTURE - Theinput datastructure™ 1" allowsintegration of
user inputswith the execution of the program.

Name Type Description

I STRUCT Input Data Structure

A1 BOOL Input 1, M501 Wait for Input On, M601
Wait for Input Off

12 BOOL Input 2, M502 Wait for Input On, M602
Wait for Input Off

A3 BOOL Input 3, M503 Wait for Input On, M603
Wait for Input Off

14 BOOL Input 4, M504 Wait for Input On, M604
Wait for Input Off

A5 BOOL Input 5, M505 Wait for Input On , M605
Wait for Input Off

16 BOOL Input 6, M506 Wait for Input On, M606
Wait for Input Off

A7 BOOL Input 7, M507 Wait for Input On, M607
Wait for Input Off

18 BOOL Input 8, M508 Wait for Input On, M608
Wait for Input Off

19 BOOL Input 9, M509 Wait for Input On, M609

Wait for Input Off
END_STRUCT

2-13

OUPUT DATA STRUCTURE - Theinput data structure™ O" allowsintegration
of user outputswith the execution of the program.

Name Type Description

@) STRUCT Output Data Structure

.01 BOOL Output 1, M101 Turn On Output,
M201 Turn Off Output

.02 BOOL Output 2, M102 Turn On Output,
M202 Turn Off Output

.03 BOOL Output 3, M103 Turn On Output,
M203 Turn Off Output

.04 BOOL Output 4, M104 Turn On Output,
M204 Turn Off Output

.05 BOOL Output 5, M105 Turn On Output,
M205 Turn Off Output

.06 BOOL Output 6, M106 Turn On Output,
M206 Turn Off Output

.07 BOOL Output 7, M107 Turn On Output,
M207 Turn Off Output

.08 BOOL Output 8, M108 Turn On Output,
M208 Turn Off Output

.09 BOOL Output 9, M109 Turn On Output,

M209 Turn Off Output
END_STRUCT

2-14

OUTPUTS
Outputs
DONE

FAIL

ACTV
FERR
PERR
MERR

MO3
SDAT

Description

Indicates that the program execution has completed successfully or
was aborted by and ABRT request.

Indicates that an error occurred while trying to execute the program.
Thetype of error isindicated by FERR, PERR and MERR as
described below. When FAIL occurs all user outputs will be reset,
all axes motion aborted and the program file will be closed.

Active indicates that program execution isin progress

File read error - Using PiCPro for Windows Help, refer to 1/0 Func-
tion Block Error Codes under Error Codes for a description of these
errors.

Program Error - Seethe Program Error table below for adescription
of these error codes.

Motion Error - See PiCPro Function Block Help for M_SCRVLC
and refer to the ERR output for a description of error codes.

MO3 indicator for use by user's application.

Value programmed with Sinstruction for use by user's application.

2-15

PERR Program Errors- Thistable provides a description of errorsthat will be
reported if an improperly formatted program isencountered.

Error Number Description

7001 CRLF line terminator not found

7002 Unrecognizable Field Code (i.e. not N,X,Y...M)

7003 Unrecognizable G Code

7004 Unrecognizable Mxx Code

7005 Bad datafor N Code

7006 Missing CRLF line terminator (line wider than 128 charac-
ters

7007 Missing LF line terminator

7008 Missing CRLF line terminator

7009 End of File missing CRLF line terminator

7010 End of File missing CRLF line terminator

7011 No space between Code Fields (e.g. GO1F100 vs. GO1 F100)

IMPLIED DECIMAL POINT DATA - Implied decimal point data accommo-
datesthe fact that position and feedrate information used with PiCPro for Win-
dows motion control programming isstored in 32-bit doubleinteger variables.
TheM and G code program will need to specify position and feedrate informa-
tion with a decimal point. In the Setup data structureinput tothe M_C2M
ASFB thedigits-to-right (i.e. X_DG2R) specified for each program code is used
to scale data appropriately to the needs of the PiCPro for Windows motion con-
trol instructions. Thetable below showsthe effect of setting the DG2R precision
to various values.

Digitsto-Right Datain Program Line Data Delivered to Motion Function

3 X123 123000
3 X1 100

3 X12 1200

3 X1 1000

3 X1.0002 1000

4 X123 123000
4 X.1 1000

4 X12 12000
4 X1 1000

4 X1.0002 1002

Scaling from programmed units to machine servo feedback units is defined when pro-
gramming the application specific servo setup data using PiICPro for Windows.

2-16

Path Positioning Using M_C2M

When GO0 - Rapid is active the axes specified in the line will be move to the end-
point (G90 absolute) or the incremental distance (G91 incremental) specified by

the X, Y and Z data words at the rate specified by SETUPRAPID. Unpro-
grammed axes will not move.. .

GO0 Rapid Mode

GO0 - The axes specified in the line will be move to the endpoint (G90 absolute) or the
incremental distance (G91 incremental) specified by the X, Y and Z datawords at the rate
specified by SETUPRAPID. Unprogrammed axes will not move.

GO0 Rapid M ode Example

%/ Start of Program/

N21000 G90 GO0 X10.0 Y5.0 /Position X to 10.0and Y to 5.0 at rapid rate /
N1010 X15 Y0 G09 /Position X to 10 and Y to O at rapid rate, decel to zero/
N1020 G91 Y1 /MoveY incrementally 1 at rapid rate/

N1030 GO9 Y1 /MoveY incrementally 1 at rapid rate, decel tozero/

GO1 Linear Interpolation

GO1 - The axes specified in the line will be move to the endpoint (G90 absolute) or the
incremental distance (G91 incremental) specified by the X, Y and Z data words at the
rate specified by F using linear interpolation. Unprogrammed axes will not move.

2-17

GO02 Circular Clockwise and GO3 Counter Clockwise Circular Interpolation

Plane
G17, XY

G18, XZ

G19,YZ

Mode
G02, GO3

G02, GO3

G02, GO3

Description

Use circular interpolation to move to X
and Y endpoints (incremental or absolute
based on G90/G91), | and J centerpoints
(alwaysincrementa from start of circle) at
F modal path feedrate. If Z isprogrammed
in the same line the Z axis will be moved
in athird axis departure move and arrive at
its programmed position simultaneously
with X and Y.

Use circular interpolation to move to X
and Z endpoints (incremental or absolute
based on G90/G91), | and K centerpoints
(alwaysincrementa from start of circle) at
F modal path feedrate. If Y isprogrammed
in the same linethe Y axiswill be moved
in athird axis departure move and arrive at
its programmed position simultaneously
with X and Z.

Use circular interpolation to moveto Y
and Z endpoints (incremental or absolute
based on G90/G91), Jand K centerpoints
(alwaysincrementa from start of circle) at
F modal path feedrate. If X isprogrammed
in the same line the X axis will be moved
in athird axis departure move and arrive at
its programmed position simultaneously
with'Y and Z.

2-18

GO02 Clockwise and G0O3 Counter Clockwise Circular Interpolation Examples
%/ Start of Program/

G90 /Select Absolute Positioning Mode

F800 /Specify path feedrate of 800/

G01 X8.000 Y0.000

GO01 X16.472 Y0.000

GO03 X17.472 Y 1.000 10.000 J1.000 / Circular Counter Clockwise/
GO1 X17.472 Y 11.707

G03 X9.472 Y 19.707 1-8.000 JO.000

GO01 X1.000 Y19.707

G03 X0.000 Y 18.707 10.000 J-1.000

G01 X0.000 Y8.000

G03 X8.000 Y 0.000 18.000 J0.000

G09

Coordinating User Outputswith Motion

To turn outputs on and off in step with servo axis positioning program M10x and M20x
instructions in the same line as the desired motion.

%/ Start of Program/

N1000 M 101 / Immediately Turn on Output 1 /

N1010 G04 F1.5 /Wait for 1.5 seconds

N1020 M102 / Immediately Turn off Output 1/

N1030 M101 G91 G01 F100.0 X1.00 / Output 1 turns on when this move beging/
N1040 M102 X 2.0/ Output 2 turns on when this move begins/

N1050 X 3.0 G09

N1060 M 103/ Output 3 turns on when the move in N1050 completes/

2-19

Coordinating Motion with User Inputs

The M50x Wait for Input On and M60x Wait for Input Off instructions are used to coordi-
nate program execution with the state of user application inputs.

%/ Start of Program/

N1000 M501 / Program execution stalls until user input 1 ison/

N1010 M502 G91 G01 F100.0 X1.00 / When user input 2 is on start move of 1/
N1010 M503 G04 F1.5/ When user input 3 is on begin delay of 1.5 seconds/

Effects of Motion Que and Program Execution

To provide continuous path motion a queuing system is used to buffer one move which will
blend with the currently active move with no deceleration of the servo axes. This queuing
system requires that program lines be read and executed while motion started by previous

linesis completed. Thiswill lead to the program line display, VLIN, showing the line cur-
rently being parsed and queued and this line may be many lines after the line which started
the current motion.

Instruction Action

N1000 G90 GO1 X100 Starts move of X to 100

N1010 G90 G01 X200 Queues move of X to 200

N1030 G90 G01 X300 Waits until queue move in N1000 completes which will
make room on the queue

Any lines between N1000 and N1030 would execute immediately. Including G09 decel to
zero changes the execution as described below.

Instruction Action

N1000 G90 G01 X100 G09 Starts move of X to 100, and wait till in position
N1010 G90 G01 X200 G09 Start move of X to 200 and wait till in position
N1030 G90 G01 X300 G09 Start move of X to 300 and wait till in position
Using the GO09 stalls execution until the move in the line completes

2-20

Adding user outputs to the same examples also shows the effect of the queue

Instruction

N1000 G90 G01 X100 M101
M102

N1010 G90 G01 X200 M103

M104

N1030 G90 GO1 X300

Line Execution

Action

Starts move of X to 100, turn on output 1

Output 2 turns on while move to 100 is occurring
Queues move of X to 200, output 3 will turn on when this
move becomes active

Output 4 turns on while move to 100 in N1000 is occur-
ing. Output 4 will turn on before output 3

Waits until queue move in N1000 completes which will
make room on the queue.

Programs are executed aline at atime. In aline containing multiple instructions
the order of execution is based on the type of instruction, not the order of its occur-
rence within the line. Line execution is performed in the following order:

1 - If theline contains any Wait for Input On or Off instructions execution will wait
until all of the conditions have been satisfied.

2 - If the line contains a GO4 dwell instruction execution will delay until the time

specified by F passes.

3 - If theline contains a GOO to GO3 motion instruction execution will wait until
the servo queue is ready to accept the next move.

Lines Containing Incomplete Motion Instructions

Incomplete motion instructions are ignored and not executed. An example of a
line containing an incompl ete motion instruction would be "G03 G17 X1Y2 13"
In this case the J dataword specifying the Y axis centerpoint ismissing resulting in
the motion instruction being ignored.

2-21

Simultaneous Multiple Paths

M_C2M will support up to four completely independent motion programs on four
separate interpolators. To do this the users application must have four separate
instances of M_C2M. The SETUPPATH should be set to 1,2,3 and 4 for instance
1 to 4, respectively. The table below describes the servo axis numbering in the
applications servo setup data that must be used for each path.

Setup.Path X Y Z
1 1 2 3
2 4 5 6
3 7 8 9
4 10 11 12

Program File Structure

Program lines can contain up to 126 characters and must be terminated with a car-
riage return ($0D) and line feed ($0A). Fields within the line must be combina-
tions of |ettersfollowed by values, i.e. X-123.456, no space can occur between the
letter and the value. One or more spaces must occur between fields, i.e. X123
Y245isvalid, X1Y2isinvalid.

Thelast line of the program must contain a carriage return ($0D) and line feed
($0A).

2-22

Using M_C2M with Third Party Cad-to-Motion Tools

M_C2M, the Cad2Motion ASFB can be used to trandlate the output of athird-
party DXF to Ascii file conversion program like Gcode2000 to machine and
motion control. For more information log onto http://members.aol.com/_ht_a/gco-

demcode/index.htm.

i 2dwrenchaxt IS |=[ESYY i Plot Distance 24.341 Cut 23. =101x]
File Edit Misc Search Comm Setup Help Window Draw Grid Pan Print

e | B & B 5| By B <1 | ot P2 25| w | 4 | #|Eola| x froo
Using 2dTorch ini Pos [3:1] ¢| JiewScale [e & [Tae Jsoe
use_x2.000 ﬂ ;I —I hl 4. 616 :;::233
to_increase_its size_hy two d k ID - | AR AR

use_Zdtorch.ini_to_display_correctly
%

G0

X0.750 ¥0.000

Mo3

X0.750 ¥-1.250

GO3 X2.270 ¥-1.250 11.510 J0.688
X2.270 ¥0.250

G0Z ¥2.520 ¥0.190 12.395 J0.250
X2.330 ¥-2.190 1.640 J1.110

GO03 ¥2.080 ¥.2.440 12.360 J-Z 160
X2.080 ¥8.440

GO0Z X1.174 ¥8.440 11.627 J8.440
X1.174 ¥ 2.440

GO3 X0.924 ¥.2.190 10.924 J-Z.440
G0Z ¥0.534 ¥0.190 11.284 J-1.090
X0.774 ¥0.250 10.624 J0.310

[1]

M30

.

2-23

M_C2M Instruction Summary

Code Type Use Description
% Start of Program All characters before the % are ignored
/ Start/End Comment | After first / is encountered all code is
ignored until another / encountered or the
end of the program
N Line Number For reference only, ignored
X X Command X axis endpoint (G90) or incremental dis-
tance (G91)
Y Y Command Y axisendpoint (G90) or incremental dis-
tance (G91)
Z Z Command Z axis endpoint (G90) or incremental dis-
tance (G91)
X Center Point Incremental distance from starting posi-
tion to X Center point
J Y Center Point Incremental distance from starting posi-
tionto Y Center point
K Z Center Point Incremental distance from starting posi-
tion to Z Center point
F Moda |Rate Path velocity for GO1, G02, GO3, timefor
G04. Reset to 0 by abort or M30 end of
program when not continuous
S Modal |Rate Rate value for use by application pro-
gram, reset to 0 by abort or end of pro-
gram when not continuous
GO0 Rapid Move all axes at default Rapid rate to
position/increment,
GO0 is default
G01 Linear Move all axeslinearly at programmed
Modal rate to position/increment
0
G02 Circular Clockwise Move all axeslinearly at programmed
Group rate to position/increment
GO03 Circular Counter- Move all axeslinearly at programmed
clockwise rate to position/increment
G04 Dwell Wait length of time specified by F

2-24

G09 Decel-to-zero Wait until all axes arein position with no
move queued

Gl7 XY Plane XY Plane Select, G17 is default, Z depar-
ture

G18 Modal | XZ Plane XZ Plane Select, Y departure

G19 Group YZ Plane Y Z Plane Select, X departure

G90 Absolute Select Absolute positioning mode, G90is

Go1 Incremental Select Incremental positioning mode

Group

MO3 Start Cut Set M0O3 indicator for use by user appli-
cation

MO5 Modal | Stop Cut Reset MO3 indicator for use by user
application

M30 End Program Stop executing program, reset all modal
data flags to default

M10x Turn On Output Turn on user output 1 to 9, all outputs
cleared by abort or end of program when
not continuous

M20x Modal Turn Off Output Turn off user output 1 to 9,
0
M10x and M20x instructions pro-

grammed in the same line as motion
(G00..G03) will cause the specified out-
put to turn on/off when the queued move
becomes active

M50x Wait for Input On Wait until specified input (x=1t09) is

M 60x Wait for Input Off Wait until specified input (x =1t09) is
off

M50x and m60x instructions pro-
grammed in the same line as motion
(G00..G03) will cause the queuing of the
specified move to be delayed until the
wait for on/off states are satisfied

2-25

M_C2M Instruction Descriptions

Code Type Use Description
% Start of Program All descriptions before the % are ignored
All information in all program linesisignored until a"%", Start of Program, is encoun-

tered. Thisallows adetailed description of the program at its beginning. All subsequent
"00" characters are ignored and have no effect.

Code Type Use Description

/ Start/End Comment After first / is encountered all codeis
ignored until another / encountered or the
end of the program

All information after the first "/" slash character is encountered isignored until a second

"[" character or the end of the program fileisfound. The second "/" may be programmed

in the same program line or later in the program. A single line can contain multiple sec-

tions which surrounded by slashes and ignored. In the line "N1000 /M 101/ M201 G90 /

M501/" the M101 and M501 commands would both be ignored.

Code Type Use Description
N Line Number For reference only, ignored

The N dataword is used by the programmer as a reference point to determine which line
is being processed. It isnot used in any way and isignored.

2-26

Code Type Use Description

X X Command X axis endpoint (G90) or incremental dis-
tance (G91)

Y Y Command Y axis endpoint (G90) or incremental dis-
tance (G91)

Z Z Command Z axis endpoint (G90) or incremental dis-
tance (G91)

Including X,Y or Z endpoints/distances indicates that the specified axes should be moved
according to the modal move mode (GO0 to GO3) and modal plane select (G17 to G19).
Examples of valid X,Y,Z data format include: "X1", "X0", "X-1.23", "X.001".

For more detail see the Instruction Execution section bel ow.

Code Type Use Description

I X Command Incremental distancefrom starting position
to X Center point

J Y Command Incremental distancefrom starting position
to Y Center point

K Z Command Incremental distancefrom starting position

to Z Center point

When circular clockwise (G02) or circular counterclockwise (GO3) modal movetypeis
active the circle centerpoints must be specified by | and Jwhen the modal XY plane (G17)
isactive, or Jand K when the modal XZ plane (G18) isactive, or | and K when the modal
XZ plane (G19) is selected. Circle centerpoints must aways be programmed as incre-
mental distances from the circle starting position to the circle centerpoint, independent of
whether the G90 absolute or G91 incremental positioning mode is active.

2-27

Code Type Use Description

F Modal Rate Path velocity for GO1, G02, GO3, time for
GO04. Reset to 0 by abort or M30 end of
program when not continuous

The F data word specifies the path feedrate for GO1 linear and G02/G03 circular moves.

It ismodal and does not need to be specified again until anew valueisrequired. It will be

reset to zero if afault or abort occurs or if an M30 end of program occurs and continuous

program repeat mode is not selected.

The F data word specifies the delay in seconds when specified with a GO4 dwell instruc-
tion. To select aone-half second delay "G04 FO.5" would be programmed.

Code Type Use Description

S Modal Rate Rate value for use by application program,
reset to O by abort or end of program

The value specified by Sis presented to the user application by the output SDAT of the

M_C2M ASFB. Typically itisused for rate control. It ismodal and its value will not

change until another occurrence of S. It will be cleared to O if an error occurs, after M30

end of program when not in continuous mode or when program execution is aborted.

Code Type Use Description
GO0 Rapid Move al axes at default Rapid rate to posi-
Modal tion/increment,
Group GO0 is default
G01 Linear Moveall axeslinearly at programmed rate
to position/increment
G02 Circular Clockwise Moveall axeslinearly at programmed rate
to position/increment
GO03 Circular Moveall axeslinearly at programmed rate

Counterclockwise to position/increment
G00, G01, G02 and GO3 are the modal path positioning group. GOO is the default mode.
Once selected the position type does not need to be specified again until you wish to
changeit. It will be reset to GOO if an error occurs, after M30 end of program when not in
continuous mode or when program execution is aborted.

2-28

Code Type Use Description

G04 Dwell Wait length of time specified by F

The F data word specifies the delay in seconds when specified with a GO4 dwell instruc-
tion. To select aone-half second delay “G04 F0.5” would be programmed.

The time delay begins immediately unless a Wait for Input (M50x/M60x) is programmed
in the same line, in which case the delay begins after the Wait condition is satisfied.

Code Type Use Description
G09 Decel-to-zero Wait until all axes are in position with no
move queued

Stalls execution until all axes are within the in position bandwidth specified by servo
setup and no moves are queued. If programmed in aline with motion the GO9 begins after
the motion has been queued.

Code Type Use Description

G17 Moda XY Plane XY Plane Select, G17 is default, Z depar-
Group ture

G18 XZ Plane XZ Plane Select, Y departure

G19 YZ Plane Y Z Plane Select, X departure

G17, G18 and G19 are the modal plane select group. G17 isthe default mode. Once
selected the plane does not need to be selected again until you wish to changeit. It will be
reset to G17 if an error occurs, after M30 end of program when not in continuous mode or
when program execution is aborted. The plane specified is the plane which axes can be
moved using GO02 circular clockwise and GO3 circular counterclockwise moves.

2-29

Code Type Use Description

G90 Modal Absolute Select Absolute positioning mode, G0 is
Group default
Go1 Incremental Select Incremental positioning mode

G90 and G91 select absolute or incremental position mode. GO0 is the default mode.
Once selected the positioning mode does not need to be specified again until you wish to
changeit. It will be reset to GO0 if an error occurs, after M30 end of program when not in
continuous mode or when program execution is aborted.

Code Type Use Description
MO3 Start Cut Set MO3 indicator for use by user applica-
Modal tion
MO05 Stop Cut Reset MO3 indicator for use by user appli-
cation

MO03 and M 05 are the modal start/stop indicators. M05 is the default mode. Once selected
the start/stop mode does not need to be specified again until you wish to changeit. It will
be reset to MO5 if an error occurs, after M30 end of program when not in continuous
mode or when program execution is aborted. Programming an M03 in a line without
motion will cause the M03 output of the M_C2M ASFB to energize immediately. Pro-
gramming an M0O3 in aline with motion will cause the M03 output of the M_C2M ASFB
to energize when the move becomes active. Programming an M05 in aline without
motion will cause the MO3 indicator to de-energize immediately.

Code Type Use Description

M30 End Program Stop executing program, reset all modal
data flags to default

M30 indicates the end of the program. When aline contains M30 all instructionsin the
line will execute, the equivalent of a GO9 decel to zero will execute and then the file will
be closed. If the CONT, continuous mode input to M_C2M is energized the program file
will be opened and executed again. If CONT is not energized then all modal datawill be
reset, all User Outputs will be de-energized (O.O1 to O.09), the program file will be
closed and the DONE output of M_C2M will be energized indicating the program has fin-
ished executing. All lines following aline with M30 are ignored.

2-30

Code Type Use Description

M10x Turn On Output Turn on user output 1to 9, all outputs
Modal cleared by abort or end of program when
not continuous
M20x Turn Off Output Turn off user output 1 t0 9. M10x and

M20x instructions programmed in the
same line as motion (G00..G03) will cause
the specified output to turn on/off when
the queued move becomes active

M10x and M20x are the modal user output control group. M20x, outputs off, is the default
state. Once selected the output state is maintained and does not need to be specified again
until you wish to changeit. It will be reset to M20x, outputs off, after M30 end of program
when not in continuous mode or when program execution is aborted. If an M10x, Turn
On, or an M20x, Turn Off, is specified in aline without motion it will take effect immedi-
ately. If specified in alinewith motion, it will take effect when the move becomes active.
Multiple M10x's and M20x's may be programmed in asingle line. Outputs 1 to 9 are pre-
sented to the user application viathe O input of M_C2M.

Code Type Use Description
M50x Wait for Input On Wait until specified input (x =1to9) ison
M60x Wait for Input Off Wait until specified input (x = 1to 9) isoff

M50x and m60x instructions programmed
in the same line as motion (G0O..GO3) will
cause the queuing of the specified moveto
be delayed until the wait for on/off states
are satisfied
M50x, Wait of Input On, and M60x, Wait for Input Off, are non-modal and effect only the
line they are programmed in. If the line contains M50x and M60x instructions, the rest of
the line will not be executed until all of the M50x and M60x wait for inputs are satisfied.

2-31

M_CHK1

Check for Servo Axis Initialized USER/M _INIT
M 'E'ﬁ“,ﬁ%] Inputs: ENO1 (BOOL) - enables execution

o1 okl Outputs: OK (BOOL) - execution complete

M1l A1l (BOOL) - set if axis number 1 has been

w1l initialized

AT A2l (BOOL) - set if axis number 2 has been
il initialized

17—

A3l (BOOL) - set if axis number 3 has been
A= initialized
ML= a4l (BOOL) - set if axis number 4 has been
ATT— initialized
A8II— A5l (BOOL) - set if axis number 5 has been

initialized
A6l (BOOL) - set if axis number 6 has been
initialized
A7! (BOOL) - set if axis number 7 has been
initialized
A8l (BOOL) - set if axis number 8 has been
initialized

<<INSTANCE NAME>>:M_CHKZ1(ENO1 := <<BOOL>>, OK => <<BOOL>>,
All => <<BOOL>>, A2l => <<BOOL>>, A3l => <<BOOL>>, A4l =>
<<BOOL>>, A5l => <<BOOL>>, A6l => <<BOOL>>, A7l => <<BOOL>>,
A8l => <<BOOL>>);

This function block checks to see which servo axes numbered from 1 to 8 have
been initialized by the user's servo setup function

The OK output of the STRTSERV function should be wired directly to the enable
(ENO1) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other motion
functions,

2-32

M_CHK101

Check for Servo Axis Initialized USER/M_INIT
— MWE Inputs: ENO1 (BOOL) - enables execution

{me1 okl Outputs: OK (BOOL) - execution complete

Aot AL101 (BOOL) - set if axis number 101 has been
initialized (servo axis 17).

A102 |-
A3 A102 (BOOL) - set if axis number 102 has been
i initialized (servo axis 18).
104 |—
A103 (BOOL) - set if axis number 103 has been
MBS initialized (servo axis 19).
A106 |-

A104 (BOOL) - set if axis number 104 has been
A107— initialized (servo axis 20).
A1881— A105 (BOOL) - set if axis number 105 has been
initialized (servo axis 21).
A106 (BOOL) - set if axis number 106 has been
initialized (servo axis 22).
A107 (BOOL) - set if axis number 107 has been
initialized (servo axis 23).

A108 (BOOL) - set if axis number 108 has been
initialized (servo axis 24).

<<INSTANCE NAME>>:M_CHK101(ENO1 := <<BOOL>>, OK =>
<<BOOL>>, A101 => <<BOOL>>, A102 => <<BOOL>>, A103 =>
<<BOOL>>, A104 => <<BOOL>>, A105 => <<BOOL>>, A106 =>
<<BOOL>>, A107 => <<BOOL>>, A108 => <<BOOL >>);

This function block checks to see which servo axes numbered from 101 to 108
(servo axes 17 to 24) have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENO1) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other motion
functions,

2-33

M_CHK109
Check for Servo Axis Initialized USER/M _INIT

— MWE S Inputs: ENO1 (BOOL) - enables execution
mog okl Outputs: OK (BOOL) - execution complete

A9l AL109 (BOOL) - set if axis number 109 has been
initialized (servo axis 25).

A110 |-
A1 A110 (BOOL) - set if axis number 110 has been
A1 initialized (servo axis 26).
112}

A111 (BOOL) - set if axis number 111 has been
A3 initialized (servo axis 27).
A114 |-

A112 (BOOL) - set if axis number 112 has been
A5 initialized (servo axis 28).

AT161— A113 (BOOL) - set if axis number 113 has been

initialized (servo axis 29).

A114 (BOOL) - set if axis number 114 has been

initialized (servo axis 30).

A115 (BOOL) - set if axis number 115 has been

initialized (servo axis 31).

A116 (BOOL) - set if axis number 116 has been

initialized (servo axis 32).

<<INSTANCE NAME>>:M_CHK109(ENO1 := <<BOOL>>, OK =>
<<BOOL>> A109 => <<BOOL>>, A110 => <<BOOL>>, A111 =>

<<BOOL>>, A112 => <<BOOL>>, A113 => <<BOOL>>, A114 =>
<<BOOL>>, A115 => <<BOOL>>, A116 => <<BOOL >>);

This function block checks to see which servo axes numbered from 109 to 116
(servo axes 25 to 32) have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENO1) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other motion
functions,

2-34

M_CHK49

Check for Digitizing Axis Initialized

USER/M_INIT

- ENO1

— NAME —
M_CHK49

oK
A49I1
A501
AS1I
A521
A53I
A541
A551
A561

Inputs: ENO1 (BOOL) - enables execution
Outputs: OK (BOOL) - execution complete

A49l (BOOL) - set if axis number 49 has been
initialized

AS50l (BOOL) - set if axis number 50 has been
initialized

A51l (BOOL) - set if axis number 51 has been
initialized

A52l (BOOL) - set if axis number 52 has been
initialized

AS53l (BOOL) - set if axis number 53 has been
initialized

A54l (BOOL) - set if axis number 54 has been
initialized

AB55] (BOOL) - set if axis number 55 has been
initialized

A56l (BOOL) - set if axis number 56 has been
initialized

<<INSTANCE NAME>>:M_CHKA49(ENO1 := <<BOOL>>, OK => <<BOOL>>

A49] => <<BOOL>>, A50l => <<BOOL>>, A51l => <<BOOL>>, A52| =>
<<BOOL>>, A53| => <<BOOL>>, A54| => <<BOOL>>, A55| =>
<<BOOL>>, A56] => <<BOOL>>);

Thisfunction block checks to see which digitizing axes numbered from 49 to 56
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENO1) input of this function.

The outputs of this function will remain set even after the function is no longer

enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other functions.

2-35

M_CHK57

Check for Digitizing Axis Initialized USER/M_INIT
M 'E'ﬁ“,ggf Inputs. ENOO (BOOL) - enables execution

mog okl Outputs: OK (BOOL) - execution complete
A571 1= AS71 (BOOL) - set if axis number 57 has been

sl initialized
A59T A58l (BOOL) - set if axis number 58 has been
. initialized

AS9l (BOOL) - set if axis number 59 has been
AL initialized
S NG (BOOL) - set if axis number 60 has been
AB3I— initialized

AB4l— A1l (BOOL) - set if axis number 61 has been

initialized

A62l (BOOL) - set if axis number 62 has been

initialized

A63l (BOOL) - set if axis number 63 has been

initialized

A64l (BOOL) - set if axis number 64 has been

initialized

<<INSTANCE NAME>>:M_CHK57(ENOO := <<BOOL>>, OK =><<BOOL>>

A57] => <<BOOL>>, A58l => <<BOOL>>, A59| => <<BOOL>>, A60l =>

<<BOOL>>, A61l => <<BOOL>>, A62| => <<BOOL>>, AG3| =>
<<BOOL>>, A64l => <<BOOL>>);

This function block checks to see which digitizing axes numbered from 57 to 64
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENOO) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other functions.

2-36

M_CHK65

Check for Digitizing Axis Initialized

USER/M_INIT

- ENGO

— NA
M_CHKE5

ME —

oK
ABS5I
ABGI
AB71
ABBI
ABII
A701
AT11
AT721

Inputs: ENOO (BOOL) - enables execution
Outputs: OK (BOOL) - execution complete
A65] (BOOL) - set if axis number 65 has been
initialized

A66l (BOOL) - set if axis number 66 has been
initialized

A671 (BOOL) - set if axis number 67 has been
initialized

AB8l (BOOL) - set if axis number 68 has been
initialized

AB9I (BOOL) - set if axis number 69 has been
initialized

A70l (BOOL) - set if axis number 70 has been
initialized

A71l (BOOL) - set if axis number 71 has been
initialized

A72l (BOOL) - set if axis number 72 has been
initialized

<<INSTANCE NAME>>:M_CHKG65(ENOO := <<BOOL>>, OK => <<BOOL>>

AB5l => <<BOOL>>, A66l => <<BOOL>>, A67l => <<BOOL>>, A68| =>
<<BOOL>>, A69I => <<BOOL>>, A70l => <<BOOL>>, A71l =>
<<BOOL>>, A72| =><<BOOL>>);

Thisfunction block checksto see which digitizing axes numbered from 65 to 72
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENOO) input of this function.

The outputs of this function will remain set even after the function is no longer

enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other functions.

2-37

M_CHK?73

Check for Digitizing Axis Initialized USER/M_INIT
M 'E'ﬁ“,g%_ Inputs. ENOO (BOOL) - enables execution

mog okl Outputs: OK (BOOL) - execution complete
A7371= A73l (BOOL) - set if axis number 73 has been

A1l initialized

A757 A74] (BOOL) - set if axis number 74 has been
. initialized

7 -

A75] (BOOL) - set if axis number 75 has been
ATTH=initialized
ABL— A76l (BOOL) - set if axis number 76 has been
AT8I = initialized

ABBLI— A771 (BOOL) - set if axis humber 77 has been

initialized

A78l (BOOL) - set if axis number 78 has been

initialized

AT79l (BOOL) - set if axis number 79 has been

initialized

A80I (BOOL) - set if axis number 80 has been

initialized

<<INSTANCE NAME>>:M_CHK73(ENOO := <<BOOL>>, OK =><<BOOL>>

AT3l => <<BOOL>>, A74l => <<BOOL>>, A75| => <<BOOL>>, A76l =>

<<BOOL>>, A77I => <<BOOL>>, A78| => <<BOOL>>, A79] =>
<<BOOL>>, A80I => <<BOOL>>);

Thisfunction block checks to see which digitizing axes numbered from 73 to 80
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENOO) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other functions.

2-38

M_CHK9

Check for Servo Axis Initialized USER/M_INIT
M 'E'ﬁ“,ﬁg] Inputs: ENOO (BOOL) - enables execution

{mee ok~ Outputs: OK (BOOL) - execution complete
A9T = A9l (BOOL) - set if axis number 9 has been

AoIL initialized

AT A10l (BOOL) - set if axis number 10 has been
Aol initialized

121

A11l (BOOL) - set if axis number 11 has been

AT initialized

A12] (BOOL) - set if axis number 12 has been

A= initialized

AT61— A13l (BOOL) - set if axis humber 13 has been

initialized

A14] (BOOL) - set if axis number 14 has been

initialized

A15] (BOOL) - set if axis number 15 has been

initialized

A16l (BOOL) - set if axis number 16 has been

initialized

<<INSTANCE NAME>>:M_CHK9(ENOQO := <<BOOL>>, OK => <<BOOL>>

A9l =><<BOOL>>, A10l => <<BOOL>>, A11l => <<BOOL>>, A12| =>

<<BOOL>>, A13l => <<BOOL>>, A14l => <<BOOL>>, A15| =>
<<BOOL>>, A16l => <<BOOL>>);

This function block checks to see which servo axes numbered from 9 to 16 have
been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(ENOO) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of thisfunction can be used to ensure the correct setup information has
been used. They can aso be used as conditional contacts to qualify other motion
functions,

2-39

M_CLOS1

Close Loop on Servo Axes 1to 8 USER/M_INIT
M 'E'ﬁggf Inputs: ENO1 (BOOL) - enables execution

ot cLsple MSTR (BOOL) - machine start input

IMstR A1cle DELY (TIME) - amount of time that will elapse after
apositive transition of MSTR until the loops will be

{DELY A2C|- closed
A3C |- .
A Outputs: CLSD (BOOL) - one or more of axes 1to 8 have their
AC

position loops closed
AL AlC (BOOL) - set when the loop is closed on axis 1

AL aoc (BOOL) - set when the loop is closed on axis 2
AC= asc (BOOL) - set when the loop is closed on axis 3
A8C |

A4C (BOOL) - set when the loop is closed on axis 4
A5C (BOOL) - set when the loop is closed on axis 5
A6C (BOOL) - set when the loop is closed on axis 6
A7C (BOOL) - set when the loop is closed on axis 7
A8C (BOOL) - set when the loop is closed on axis 8

<<INSTANCE NAME>>:M_CLOS1(ENO1 := <<BOOL>>, MSTR :=
<<BOOL>>, DELY :=<<TIME>>, CLSD => <<BOOL>> A1C =>
<<BOOL>>, A2C => <<BOOL>>, A3C => <<BOOL>>, A4C => <<BOOL >>,
A5C =><<BOOL>>, A6C => <<BOOL>>, A7C => <<BOOL >>, A8C =>
<<BOOL>>);

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
servo axes 1 through 8 when the machine start input is pulsed. It closes the loop on
servo axes 1 through 8 after the machine start input is pulsed and a programmable
time delay has elapsed. It drops the loop closed flag if an E-stop fault occurs.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

2-40

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended |adder logic for the E-stop handling of
the M_CLOS1 application. Please refer to MMC2_EX.LDO for an example of
M_CLOSL.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime at DELY isnormally in the range from 500 msto 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 1 through 8.

The positive transition of MSTR enables atimer with a preset time of DELY.
After DELY has elapsed, the loops will be closed on axes 1 to 8. CLSD will be
energized if one or more axes 1 to 8 have their position loops closed. The delay
allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 1to 8, itsloop closed output (A1 to A8)
will be dropped. CLSD istrue aslong as one or more of axes 1 to 8 have their
position loops closed.

2-41

M_CLOS9

Close Loop on Servo Axes 9to 16 USER/M_INIT
M 'E'ﬁggg_ Inputs. ENOO (BOOL) - enables execution

oo cLsple MSTR (BOOL) - machine start input

MSTR Agcl— DELY (TIME) - amount of time that will elapse after
apositive transition of MSTR until the loops will be

{DELY A10C|- closed
A11CH . :
Ao Outputs:CLSD (BOOL) - one or more of axis9to 16 have their
12C

position loops closed
A AgC (BOOL) - set when the loop is closed on axis 9

A4 a10C (BOOL) - set when the loop is closed on
A1SCH- axis 10

AT6C— A11C (BOOL) - set when the loop is closed on
axis 11

A12C (BOOL) - set when the loop is closed on
axis 12

A13C (BOOL) - set when the loop is closed on
axis 13

A14C (BOOL) - set when the loop is closed on
axis 14

A15C (BOOL) - set when the loop is closed on
axis 15

A16C (BOOL) - set when the loop is closed on
axis 16

<<INSTANCE NAME>>:M_CLOS9(ENOQO := <<BOOL>>, MSTR :=
<<BOOL>>, DELY :=<<TIME>>, CLSD => <<BOOL>> A9C =>
<<BOOL>>, A10C => <<BOOL>>, A11C => <<BOOL>>, A12C =>
<<BOOL>>, A13C => <<BOOL>>, A14C => <<BOOL>>, A15C =>
<<BOOL>>, A16C => <<BOOL>>);

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
servo axes 9 through 16 when the machine start input is pulsed. It closes the loop
on servo axes 9 through 16 after the machine start input is pulsed and a program-
mable time delay has elapsed. It drops the loop closed flag if an E-stop fault
OCCUrS.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

2-42

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

ESTOPACT
4 /b=

MACHSTRT |
__+ P}»———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that appliesto M_CLOS9 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime at DELY isnormally in the range from 500 msto 2 sec.

On apositive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 9 through 16.

The positive transition of MSTR enables atimer with a preset time of DELY.
After DELY has elapsed, the loops will be closed on axes 9 to 16. CLSD will be
energized if one or more of axes 9 to 16 have their position loops closed. The delay
allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 9 to 16, its loop closed output (A9 to A16)
will be dropped. CLSD istrue aslong as one or more of axes 9 to 16 have their

position loops closed.

2-43

M _CLS101

Close Loop on Servo Axes 101-108 (17th to 24th) USER/M_INIT
M_C'E'é“{'gf Inputs. ENOO (BOOL) - enables execution

ENOO CLSD
MSTR A101

MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after
apositive transition of MSTR until the loops will be

DELY A102 closed
A103 Outputs: CLSD (BOOL) - one or more of axes 101 to 108 have
- their position loops closed

A101 (BOOL) - set when the loop is closed on
AB5— axiscalled 101 (the 17th defined axis)

Aes— A102 (BOOL) - set when the loop is closed on
axis called 102 (the 18th defined axis)

A7 A103 (BOOL) - set when the loop is closed on
Ae8— axiscalled 103 (the 19th defined axis)

A104 (BOOL) - set when the loop is closed on
axis called 104 (the 20th defined axis)

A105 (BOOL) - set when the loop is closed on
axis called 105 (the 21st defined axis)

A106 (BOOL) - set when the loop is closed on
axis called 106 (the 22nd defined axis)

A107 (BOOL) - set when the loop is closed on
axis called 107 (the 23rd defined axis)

A108 (BOOL) - set when the loop is closed on
axis called 108 (the 24th defined axis)

<<INSTANCE NAME>>:M_CLS101(ENQO := <<BOOL>>, MSTR :=
<<BOOL>>, DELY :=<<TIME>>, CLSD => <<BOOL>> A101 =>
<<BOOL>>, A102 => <<BOOL>>, A103 => <<BOOL>>, A104 =>
<<BOOL>>, A105 => <<BOOL>>, A106 => <<BOOL>>, A107 =>
<<BOOL>>, A108 => <<BOOL >>);

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
servo axes called 101 through 108 (the 17th to the 24th defined axes) when the
machine start input is pulsed. It closes the loop on servo axes 101 through 108 after
the machine start input is pulsed and a programmabl e time delay has elapsed. It
drops the loop closed flag if an E-stop fault occurs.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

2-44

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MM C example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended |adder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that appliesto M_CLS101 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime at DELY isnormally in the range from 500 msto 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 101 to 108.

The positive transition of MSTR enables atimer with a preset time of DELY.
After DELY has elapsed, the loops will be closed on axes 101 to 108. CLSD will
be energized if one or more of axes 101 to 108 have their position loops closed.
The delay allows the drive some time to power up before it starts controlling the
axis.

If an E-stop fault occurs on any of axis 101 to 108, its loop closed output

(A101 to A108) will be dropped. CLSD istrue aslong as one or more of axes
101 to 108 have their position loops closed.

2-45

M _CLS109

Close Loop on Servo Axes 109-116 (25th to 32nd USER/M_INIT
M_C'E'é“{'gg_ Inputs. ENOO (BOOL) - enables execution

ENOO CLSD

MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after

MSTR A109|— a positive transition of MSTR until the loops will be
DELY A110— closed

Outputs: CLSD (BOOL) - one or more of axes 109 to 116 have
AT their position loops closed

A1121= A109 (BOOL) - set when the loop is closed on
a3l eXiscalled 109 (the 25th defined axis)

A110 (BOOL) - set when the loop is closed on
A4 = axis called 110 (the 26th defined axis)

A1151— A111 (BOOL) - set when the loop is closed on
Al @Xiscaled 111 (the 27th defined axis)

A112 (BOOL) - set when the loop is closed on

axis called 112 (the 28th defined axis)

A113 (BOOL) - set when the loop is closed on
axis called 113 (the 29th defined axis)

A114 (BOOL) - set when the loop is closed on
axis called 114 (the 30th defined axis)

A115 (BOOL) - set when the loop is closed on
axis called 115 (the 31st defined axis)

A116 (BOOL) - set when the loop is closed on
axis caled 116 (the 32nd defined axis)

<<INSTANCE NAME>>:M_CLOS9(ENOO := <<BOOL>>, MSTR :=
<<BOOL>>, DELY :=<<TIME>>, CLSD => <<BOOL>> A9C =>
<<BOOL>>, A10C => <<BOOL>>, A11C => <<BOOL>>, A12C =>
<<BOOL>>, A13C => <<BOOL>>, A14C => <<BOOL>>, A15C =>
<<BOOL>>, A16C => <<BOOL>>);

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
servo axes called 109 through 116 (the 25th to the 32nd defined axes) when the
machine start input is pulsed. It closes the loop on servo axes 109 through 116 after
the machine start input is pulsed and a programmabl e time delay has elapsed. It
drops the loop closed flag if an E-stop fault occurs.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

2-46

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MM C example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended |adder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that appliesto M_CL S109 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime at DELY isnormally in the range from 500 msto 2 sec.

On apositive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 109 to 116.

The positive transition of MSTR enables atimer with a preset time of DELY.
After DELY has elapsed, the loops will be closed on axes 109 to 116. CLSD will
be energized if one or more of axes 109 to 116 have their position loops closed.
The delay allows the drive some time to power up before it starts controlling the
axis.

If an E-stop fault occurs on any of axis 109 to 116, itsloop closed output
(A209 to A116) will be dropped. CLSD istrue aslong as one or more of axes
109 to 116 have their position loops closed.

2-47

M_CRSFIN

Coarse, Medium and Fine Resolver USER/M_REF

 MUE) Inputs: ENOO (BOOL) - enables execution
{mee okl C_AX (USINT) - coarse resolver axis number
{c.ax ERR M_AX (USINT) - medium resolver axis number
M_AX FPOS| F_AX (USINT) - fine resolver axis number

F_AX CVALl- CRAT (DINT) - coarse to medium or coarse to

CRAT WAL~ fineratio

MRAT FVALI— MRAT (DINT) - mediumto fineratio

Outputs:OK (BOOL) - execution complete without error
ERR (INT) - error number

FPOS (DINT) - position that the fine axis has
been part referenced to

CVAL (DINT) - value read from the coarse resolver
MVAL (DINT) - value read from the medium
resolver

FVAL (BOOL) - value read from the fine resolver

<<INSTANCE NAME>>:M_CL S101(ENOQO := <<BOOL>>, C_AX =
<<USINT>>, M_AX := <<USINT>>, F_AX:=<<USINT>>, CRAT :=
<<DINT>>, MRAT := <<DINT>> OK =><<BOOL>> ERR => <<INT>>,
FPOS => <<DINT>>, CVAL => <<DINT>>, MVAL => <<DINT>>, FVAL =>
<<BOOL>>);

Thisfunction block reads coarse, medium, and fine resolvers and then part refer-
ences the fine axis to the value calculated by using coarse, medium and fine.
Three separate combinations of resolvers can be used: coarse, medium, and fine;
coarse and fine; or medium and fine.

This function block should be one-shot after the axes have been initialized by the
user's servo setup function.

The value entered at C_AX isthe axis number for the coarse resolver, or O if you
are not using a coarse resolver.

Thevalueentered at M_AX isthe axis number for the medium resolver, or Oif you
are not using a medium resolver.

Thevaueentered at F AX isthe axis number for the fineresolver. Thisisalso the
axis that will be part referenced by this function block.

2-48

The value entered at CRAT isthe coarse to medium ratio if coarse, medium and
fine resolvers are being used, or the coarse to fineratio if only coarse and fine
resolvers are being used.

The value entered at MRAT is the medium to fine ratio.

The OK output indicates execution complete without error. If the OK output is not
set, then an error has occurred and the error code will be stored in the ERR output.
A listing of possible errorsis shown below:

ERR Description

No error

The OK fromthe READ_ SV function for the fine axis was not set
The OK from the READ_SV function for the medium axis was not
set

3 TheOK fromthe READ_SV function for the coarse axis was not set
4 M_AX and C_AX inputs are both zero

5 M_AX was non-zero, but MRAT was zero

6 C_AX was non-zero, but CRAT was zero
7
8
9

N — O

The fine axisis moving or drifting
The medium axis is moving or drifting
The coarse axisis moving or drifting
10 Thefine axis position was not between 0 and 3999
11 Themedium axis position was not between 0 and 3999
12 The coarse axis position was not between 0 and 3999
13 Anerror occurred in the calculations for coarse, medium and fine
14 Anerror occurred in the calculations for coarse and fine
15 Anerror occurred in the calculations for medium and fine
16 The OK from the part reference function for F_AX did not get set

The FPOS output will show the final value that the fine axis has been part refer-
enceto.

The CVAL output will show the value read from the coarse resolver.
The MVAL output will show the value read from the medium resolver.
The FVAL output will show the value read from the fine resolver.

2-49

M_DATCAP

Captures Axis Information USER/M_DATA

7 MUE <1 Inputs: ENOO (BOOL) - enables execution
{enee 1onel= INIT (BOOL) - initializes data capture memory area

1INIT 1ERRE SRCE (STRUCT(0..7)) - defines axis number and
variable number to capture

QTY (USINT) - defines the number of variablesto
capture (Thisisthe same as the number of elements
1312E SNDE— sed in the SRCE array.)

1STRT SFALI= " q1ZE (UINT) - defines the number of samplesto
10NCE SERR— be captured

4{SRCE ELEM|—
41QTY CDNE |-

{SEND STRT (BOOL) - starts data capture

1 RDSK ONCE (BOOL) - et to capture data once; reset
{SDIR to capture data continuously

{FILE SEND (BOOL) - starts save of captured data

to RAMDISK or workstation

RDSK (BOOL) - set if datawill be saved to the
RAMDISK or reset if datawill be saved to the
workstation

SDIR (STRING) - the subdirectory on the
workstation or RAMDISK to send the data to (an eight
character maximum)

FILE (STRING) - the file name that the data will be
saved as (a 12 character maximum)

Outputs: IDNE (BOOL) - initialization complete without error
IERR (USINT) - error number that occurred during
initialization

ELEM (UINT) - the element number currently

being captured

CDNE (BOOL) - capture done

SDNE (BOOL) - file send done

SFAL (BOOL) - file send failed

SERR (INT) - error number that occurred during
filesend

2-50

<<INSTANCE NAME>>:M_DATCAP (EN0O := <<BOOL>>, INIT :=
<<BOOL>>, SRCE := <<MEMORY AREA>>, QTY:=<<USINT>>, SIZE :=
<<UINT>>, STRT := <<BOOL>>, ONCE := <<BOOL>> SEND :=
<<BOOL>>, RDSK := <<BOOL>>, SDIR := <<STRING>>, FILE :=
<<STRING>>, IDNE => <<BOOL >>, IERR => <<USINT>>, ELEM =>
<<UINT>>, CDNE => <<BOOL>>, SDNE => <<BOOL>>, SFAL =>
<<BOOL>>, SERR => <<INT>>);

Thisfunction block is considered obsolete. 1t requires the CAP2ASC.EXE DOS
utility to extract the data captured. The M_DATCPT function block performs the
same data capture operations as M_DATCAP with the same function block inputs
and outputs except M_DATCPT creates an output file that is already in a directly
viewable ASCII text format (it is a tab-delimited variable format).

Thisfunction block captures axis information on an interrupt basis and storesit in
astructure. The structure can then be written out to abinary file on the RAMDISK
or the workstation. In order to manipulate the data, convert this binary file to an
ASCII text file using the CAP2A SC.exe which isincluded with the Motion ASFB
examples. On your PC, type:

CAP2ASC filename

where filename is the name you assigned to the binary file. You can then view and/
or edit this ASCII file using atext editing program or import it into a
Spreadsheet.

The ENOO input of this function block should be set every scan.

On apositive transition of the INIT input, the values entered at the SRCE input are
examined. The SRCE input is an array of structures and must have the following
members:

Name Data Type Definition

SRCE STRUCT(0..7) Defines axis and variables to capture
AXIS USINT Defines the axis to capture data for
VAR USINT Defines the variable to capture

2-51

The SRCE(X).VAR input must be one of the following values:

SRCE(X).VAR Déefinition
1 Actual Position (variable 1 of READ_SV)*

2 Fast input occurred

3 Commanded position (variable 3 of READ_SV)*
4 Position error (variable 4 of READ_SV)*

5 Filter error (variable 5 of READ_SV)*

6 Command change (variable 6 of READ_SV)*
7 Position change (variable 7 of READ_SV)*

8 Feedback position (variable 8 of READ_SV)*
9 Prefilter commanded

10 Prefilter command change

11 Remaining master offset

12 Remaining slave offset

* The variablesin the READ_SV function are reported in ladder units
(LU). The variablesin DATCAP function block are reported in feedback
units (FU).

If an error isfound at the SRCE input, then IDNE will not be set and IERR will
hold a number describing the error that occurred. If no errors are found at the
SRCE input, then IDNE will be set. A listing of possible errors at IERR are shown
below:

IERR Description
0 Noerror

1 Thefunction block has not stopped capturing data from a previous
data capture initialization.

2 Anaxisnumber in the structureisinvalid

3 Thelimit of eight variablesin the array of structures has been
exceeded.

4 Parameter number in the structure is out of range.

The initialization was done before the STRTSERV function was
cdled.

Reserved
Reserved
Reserved
The total number of bytes to capture exceeds 7992.

(63

© 00 N O

2-52

The QTY input defines the number of variables that will be captured. Thisisthe
same as the number of array elements used in the SRCE input.

The SIZE input defines the number of samplesto capture.

When the STRT input ison, if ONCE is also on, the data will be captured once.
When the STRT input ison, if ONCE is off, then the data will be captured contin-
uously until the STRT input drops.

While the data is being captured, the ELEM output will show the current element
number being captured. When data capture is complete, the CDNE output will be
Set.

Once the data has been captured, it can be sent to afile on the RAMDISK or work-
station. The datawill be sent when the SEND input is pulsed. If the RDSK input is
ON when the SEND input is pulsed, then the captured data will be sent to the
PiC900 RAMDISK. If the RDSK input is OFF when the SEND input is pulsed,
then the captured data will be sent to the workstation C: drive.

Thefile will be saved with the name entered at FILE. This must be of the form
FILENAME.EXT.

The SDIR input defines the subdirectory where the file will be located. The subdi-
rectory must not exceed eight characters.

When the file has been successfully sent, the SDNE output will be set. If an error
occurred in writing the file, then SFAL will be set and SERR will contain a num-
ber describing the error that occurred. A list of errorsis shown below:

SERR Description
0 No error

1t099 Error occurred on file open
101t0 199 Error occurred on file write
201t0299 Error occurred on file write
301t0399 Error occurred on file write
401t0499 Error occurred on file write
501t0599 Error occurred on file close

2-53

M_DATCPT

Capture Axis data to file

USER/M_DATA

ENOO
INIT
SRCE
ary

SIZE
STRT
ONCE
SEND
RDSK
SDIR
FILE

— NAME —
M_DATCPT

IDNE
IERR
ELEM
CDNE
SNDE
SFAL
SERR

Inputs: ENOO (BOOL) - enables execution
INIT (BOOL) - initializes data capture memory area

SRCE (STRUCT(0..7)) - defines axis number and
variable number for each item to capture

QTY (USINT) - number of variables to capture
(Thisisthe same as the number of elements
used in the SRCE array.)

SIZE (UINT) - number of samplesto be captured
STRT (BOOL) - starts the data capture

ONCE (BOOL) - set to capture data once; reset
to capture data continuously

SEND (BOOL) - starts save of captured data
to specified file

RDSK (BOOL) - set if datawill be saved to the
RAMDISK or reset if datawill be saved to the
PC hard disk.

SDIR (STRING) - name of subdirectory (an eight
character maximum)

FILE (STRING) - the file name that the data will be
saved as (8.3 format)

Outputs: IDNE (BOOL) - initialization complete without error

IERR (USINT) - initialization error number

ELEM (UINT) - the element number currently
being captured

CDNE (BOOL) - capture done
SDNE (BOOL) - file send done
SFAL (BOOL) - file send failed

SERR (INT) - error number that occurred during
filesend

2-54

<<INSTANCE NAME>>:M_DATCPT (ENOO := <<BOOL>>, INIT :=
<<BOOL>>, SRCE := <<MEMORY AREA>>, QTY:=<<USINT>>, SIZE :=
<<UINT>>, STRT := <<BOOL>>, ONCE := <<BOOL>> SEND :=
<<BOOL>>, RDSK := <<BOOL>>, SDIR := <<STRING>>, FILE :=
<<STRING>>, IDNE => <<BOOL >>, IERR => <<USINT>>, ELEM =>
<<UINT>>, CDNE => <<BOOL>>, SDNE => <<BOOL>>, SFAL =>
<<BOOL>>, SERR => <<INT>>);

Thisfunction block captures axis information on an interrupt basis and storesit in
astructure. The structure can then be written out to atext file on the RAMDISK or
the workstation. Thistext fileisdirectly viewable with any text editor. It isalso tab
delimited so its possible to import it into some spreadsheet applications. Thisfunc-
tion block provides ssimpler control of CAPTINIT and CAPSTAT. Both of these
standard functions are documented in the PiCPro Function Block Reference Guide
and in on-line Help.

The ENOO input of this function block should be set every scan.

On apositive transition of the INIT input, the values entered at the SRCE input are
examined. The SRCE input is an array of structures and must have the following
members:

Name Data Type Definition

SRCE STRUCT(0..7) Defines axisand variables to capture
AXIS USINT Defines the axis to capture data for
VAR USINT Defines the variable to capture

The SRCE(X).VAR input must be one of the following values:

SRCE(X).VAR Definition

1 Actual Position (variable 1 of READ_SV)*
Fast input occurred
Commanded position (variable 3 of READ_SV)*
Position error (variable 4 of READ_SV)*
Filter error (variable 5 of READ_SV)*
Command change (variable 6 of READ_SV)*
Position change (variable 7 of READ_SV)*
Feedback position (variable 8 of READ_SV)*
Prefilter commanded position
Prefilter command change
Remaining master offset
Remaining slave offset

O© 0O ~NO Ul h WDN

e
N RO

2-55

13 Command change (variable 6 of READ_SV)
14 Position change (variable 7 of READ_SV)
15 Prefilter command change

* Thevariablesin the READ_SV function are reported in ladder units (LU). The
variablesin DATCAP function block are reported in feedback units (FU).

If an error isfound at the SRCE input, then IDNE will not be set and IERR will
hold a number describing the error that occurred. If no errors are found at the
SRCE input, then IDNE will be set. A listing of possible errors at IERR are shown
below:

IERR Description
0 Noerror

1 Thefunction block has not stopped capturing data from a previous
data capture initialization.

2 Anaxisnumber in the structureisinvalid

3 Thelimit of eight variablesin the array of structures has been
exceeded.

4 Parameter number in the structure is out of range.

The initialization was done before the STRTSERV function was
cdled.

Reserved
Reserved
Reserved
The total number of bytesto capture exceeds 7992.

ol

O 0 N O

The QTY input defines the number of variables that will be captured. Thisisthe
same as the number of array elements used in the SRCE input.

The SIZE input defines the number of samplesto capture.

When the STRT input ison, if ONCE is also on, the data will be captured once.
When the STRT input ison, if ONCE is off, then the data will be captured contin-
uously until the STRT input drops.

While the datais being captured, the ELEM output will show the current element
number being captured. When data capture is complete, the CDNE output will be
Set.

Once the data has been captured, it can be sent to afile on the RAMDISK or work-
station. The datawill be sent when the SEND input is pulsed. If the RDSK input is
ON when the SEND input is pulsed, then the captured data will be sent to the
PiC900 RAMDISK. If the RDSK input is OFF when the SEND input is pulsed,
then the captured data will be sent to the workstation C: drive.

2-56

The file will be saved with the name entered at FILE. This must be of the form
FILENAME.EXT.

The SDIR input defines the subdirectory where the file will be located. The subdi-
rectory must not exceed eight characters.

When the file has been successfully sent, the SDNE output will be set. If an error
occurred in writing the file, then SFAL will be set and SERR will contain a num-
ber describing the error that occurred. A list of errorsis shown below:

SERR Description
0 No error

1t099 Error occurred on file open.
(See Appendix B in the Software Manual)

101t0 199 Error occurred on file write
201t0299 Error occurred on file close

2-57

M_DNJOGC

Jog DeviceNet Axis USER/M_DEVNET

1 MVES] Inputs:ENOO (BOOL) - enables execution

lenes ok JPLS(BOOL) - jog in the PLUS direction (CW)

s JacTe IMNS(BOOL) - jog in the MINUS direction (CCW)

s wrele RATE (DINT) - rate or velocity (programmed as RPM * 65536)

RATE cotol. WDB (BOOL) - DeviceNet write data busy flag

ws co11l ZERV (BOOL) - axis zero velocity - axis has stopped

7RV o2 Outputs: OK (BOOL) - function block is active
apl. JACT (BOOL) - axisjog isactive

WRC (BOOL) - write data/command to the drive

CDIO (BOOL) - command dataindex - bit O

CDI1 (BOOL) - command dataindex - bit 1

CDI2 (BOOL) - command dataindex - bit 2

CMD (DWORD) - command data value

<<INSTANCE NAME>>:M_DNJOGC (ENOO := <<BOOL>>, JPLS :=
<<BOOL>>, IMNS := <<BOOL>>, RATE:=<<DINT>>, WDB :=
<<BOOL>>, ZERV := <<BOOL>>, OK =><<BOOL>>, JACT =>
<<BOOL>>, WRC => <<BOOL>>, CDI0 => <<BOOL>>, CDI1 =>
<<BOOL>>, CDI2 => <<BOOL>>, CMD => <<DWORD>>);

Thisfunction block is used to allow a manual jog (move at a velocity) of a Centu-
rion DeviceNet Drive axis.

Before this function block can be used, the axis must be enabled and placed into
servo lock.

If the enableis active, triggering job plus (JPLS) or jog minus (JIMNS) input will
cause the specified DeviceNet axis to move at the indicated rate in the correspond-
ing direction. When the input is deactivated, motion will stop.

Thisfunction block should be used only to allow an operator to manually move an
axis on amachine. It is not designed for any other purpose.

Important - If the enable is disabled while amove is underway the axis will con-
tinue to move until the jog switch is deactivated.

The JPL S input enables a move in the positive direction for the selected axis. The
JMNS input enables a move in the negative direction for the selected axis.

Rate is programmed in RPM * 65,536. An example: for 100 RPM, Rate =
6553600. If both the JPL S and the IMNS inputs are set; motion will stop until both
inputs are dropped and one is again selected.

2-58

M_DNPOSC

Move DN Axis to Position USER/M_DEVNET

 WES1 Inputs ENOO (BOOL) - enables execution

lenoe okl STRT (BOOL) - start the axis move

sTRT sTaT. RATE (DINT) - rate or velocity (programmed as RPM * 65536)
rate sTRi. POS(DINT) - command position in FU

lpos wrcle ABSO (BOOL) - absolute or incremental position
(set indicates absolute)

{ABSO CDIO |

EDBK CDI1 FDBK (DWORD) - actual position (feedback) from the drive
lwos com2 WDB (BOOL) - DeviceNet write data busy flag
17ery cor3le ZERV (BOOL) - axisis at zero velocity - axis has stopped

INPO CDI4 - INEQ (BOOL) - axisisin position - axisis at its commanded
position

HOME (BOOL) - axisis homed

Outputs: OK (BOOL) - function block is active
STAT (INT) - axis status value

STRI (BOOL) - start move indicator

WRC (BOOL) - write data/command to the drive
CDIO (BOOL) - command dataindex - bit O

CDI1 (BOOL) - command dataindex - bit 1

CDI2 (BOOL) - command dataindex - bit 2

CDI3 (BOOL) - command dataindex - bit 3

CDI4 (BOOL) - command dataindex - bit 4 (not used)
CMD (DWORD) - command data value

HOME CMD |-

<<INSTANCE NAME>>:M_DNPOSC (ENOQO := <<BOOL>>, STRT :=
<<BOOL>>, RATE := <<DINT>>, POS := <<DINT>>, ABSO := <<BOOL >>,
ABSO :=<<BOOL>>, FDBK := <<DWORD>>, WDB := <<BOOL>>, ZERV
= <<BOOL>>, INPPO := <<BOOL>>, HOME := <<BOOL>>, OK =>
<<BOOL>>, STAT => <<INT>>, STRI => <<BOOL>>, WRC => <<BOOL >>,
CDIO => <<BOOL>>, CDI1 => <<BOOL>>, CDI2 => <<BOOL>>; CDI3 =>
<<BOOL>>, CDI4 => <<BOOL>>, CMD => <<BOOL>>);

Thisfunction block is used to allow a position / index move with a Centurion
DeviceNet Drive axis.

Before this function block can be used, the axis must be enabled and placed into
servo lock.

2-59

If the enableis active, triggering (STRT) input will cause the specified DeviceNet
axisto move at the indicated rate to the position endpoint (POS). The axis will
travel an incremental distanceif the ABSO input is deactivated. The axiswill
travel to an absolute position if the ABSO input is activated.

Important - If the enable is disabled while amove is underway, the axis will con-
tinue to move until it has reached its endpoint.

The Position command (POS) is entered in feedback counts. (Example: for an
8000 counts/rev encoder and an incremental move, Position = 16000 will result in
amove of 2 revolutions).

Rate is programmed in RPM * 65,536. For example, for 100 RPM, Rate =
6553600.

The axis status (STAT) will indicate the status of the axis based on the following
code:

1 = Axisis Positioning

2 = Absolute mode: the command is equal to current position
3 = Incremental mode: the command is equal to zero

4 = Rateisequal to zero

5 = Absolute mode and axisis not Homed

2-60

M_DNSTAT

DeviceNet Module Status USER/M_DEVNET

1 MUE 1 Inputs:ENOO (BOOL) - enables execution
lenee okl SLOT (USINT) - slot number for the DeviceNet module
sioT FArLL Outputs: OK (BOOL) - execution complete

oL FAIL (BOOL) - failure getting the DeviceNet status

nscle ONLI - (BOOL) - DeviceNet module is online

1rscl. NSC (BYTE) - DeviceNet Network Status Code

wrnl 1FSC (BYTE) - DeviceNet Interface Status Code

vewrle WARN (BOOL) - DeviceNet communication error warning

neusl. NPWR (BOOL) - No DeviceNet bus power

rviol. NBUS(BOOL) - No DeviceNet bus connection

EVLO (BOOL) - DeviceNet event was lost due to full event
queue

<<INSTANCE NAME>>:M_DNSTAT (ENOO := <<BOOL>>, SLOT :=
<<USINT>>, OK => <<BOOL>>, FAIL =>, <<BOOL>>, ONLI| =>
<<BOOL>>, NSC => <<BYTE>>, IFSC => <<BYTE>>, WARN =>
<<BOOL>>, NPWR => <<BOOL>>, NBUS => <<BOOL>>, EVLO =>);

Thisfunction block obtains the DeviceNet network and interface status conditions.
Those conditions are presented in outputs as bytes and booleans.

ONLI isset if the DeviceNet module is communicating with nodes.

NSC isthe status of the DeviceNet module network interface.

0 = network interface is offline.

1 = network interface is offline due to a network fault.

2 = network interface is offline due to a configuration fault.

3 = network interface is online and no faults are detected.

4 = network interface is online but one or more network services have failed.
5 = network interface is online and is exchanging data; no faults are detected.

6 = network interface is online and is exchanging data; one or more network ser-
vicesisreceiving an idle indication; no faults are detected.

7 = network interface is online but one or more previously active network services
have been suspended; no faults are detected.

IFC isthe status of the DeviceNet module data exchange interface.
0 = data exchange interface is closed.

2-61

1 = data exchange interface is open

2 = data exchange interface is faulted due to a "heartbeat” timeout.

WARN is set when the communication warning threshold has been exceeded.
NPWR is set when DeviceNet bus power is not present.

NBUS is set when DeviceNet bus is not connected.

EVLO isset when an event was lost due to afull event queue in the DeviceNet
module. Thisflag is cleared when the DeviceNet interfaceis closed (FB_CLYS).

For more information regarding how thisinformation is gathered or the meaning
of any of the outputs, consult the FB_STA function description.

2-62

M_DSMCOM

Centurion DSM Serial Communication USER/M_DRVCOM

TA_H@MEOM Inputs: ENOO (BOOL) - enables execution

communication port

{PORT FAIL|- e .

ADDR (USINT) - identifies the Centurion servo
{ADDR FERR|- .

drive address
{INIT OERR|— o

INIT (BOOL) - (one-shot) initializesM_DSMCOM
{SEND DERR |-

SEND (BOOL) - (one-shot) executes read or write

{WDAT CMD (UINT) - command to execute
1WNUM WDAT (memory area) source of data for the write

| RDAT command
memory areaisa STRING, ARRAY, or
STRUCTURE

WNUM (USINT) - number of bytes of datain
WDAT

RDAT (memory area) - destination of data returned
by the read command

memory area isa STRING, ARRAY, or
STRUCTURE

Outputs: DONE (BOOL) - command executed without error
FAIL (BOOL) - command encountered an error

FERR (UINT) - PiC format error number

OERR (UINT) - operation error number

DERR (UINT) - Centurion drive error number

RNUM (USINT) - number of bytes of datain RDAT

<<INSTANCE NAME>>:M_DSMCOM (ENOO := <<BOOL>>, PORT :=
<<STRING>>, ADDR := <<USINT>>, INIT := <<BOOL>>, SEND :=
<<BOOL>>, CMD := <<UINT>>, WDAT := <<MEMORY AREA>> DONE
=><<BOOL>>, FAIL =><<BOOL>>, FERR => <<UINT>>, DERR =>
<<UINT>>, RNUM => <<USINT>>);

The M_DSMCOM function block allowsthe PiC to interface with from 1 to 32
Centurion DSM 100 servo drives via RS232 or RS422/RS485 serial communica-
tion links. With this function block, various drive parameters can be read and writ-
ten. These parameters are listed in Appendix A.

2-63

Inputs

The ENOO input of this function block should be set every scan.

The PORT input identifies the serial communication port. If the PiC user port is
used, the reserved name USER:$00 is entered. If a serial communication moduleis
used, the name assigned to the port by the ASSIGN function block should be
entered. The string can be no longer than 10 characters, with up to eight characters
for the name followed by a":" and the null character"$00".

The ADDR input identifies the Centurion servo drive address. The drive addressis
set using the sixteen position rotary addressing switch on the drive or via software
using DSMPro. TherangeisO to 32.

The INIT input initializesthe M_DSMCOM function block. The DONE output
will be set when the initialization has successfully completed. Thisinitialization
must be executed before aread or write is executed.

The SEND input executes aread or write command.
To execute aread command:
1. Move the command number into the CMD input.
2. One-shot the SEND input.
When the DONE output goes high:
« RDAT will hold the data read.
« RNUM will hold the number of bytes of data read.
To execute a write command:
1. Move the command number into the CMD input.
2. Move the data to write into the WDAT inpui.
3. Move the number of bytes of data into the WNUM inpui.
4. One-shot the SEND input.
When the DONE output goes high, the command is compl ete.

NOTE: Never send a new command until any previous command or initialization
has completed. Completion isindicated by the DONE (or FAIL) output going
high.

The CMD input specifies which read or write command to execute. See Appendix
A for alist of all the available commands.

2-64

The WDAT input is the data to be written to the drive. The type and number of
data depends on the write command being executed. There are two waysto handle
the data to this inpuit:

1.

If your application will only be writing one specific command or different com-
mandsthat are al the same datatype, use a structure whose member(s) iarethe
correct data type(s) to be sent.

For example, the write command ODDH Analog Output Write Value expects an
unsigned byte value followed by a signed word value. With this command, you
could enter a structure at the WDAT input whose first member isan USINT and
whose second member isan INT.

. If your application will be writing different commands that are different data

types, use a structure with one member that is the largest data type and use the
PiCPro datatype conversion functionsto convert any data to the data type of the
structure member before sending the data.

The WNUM input is the number of bytes of datain WDAT.

The RDAT input is the data read from the drive. Following the successful comple-
tion of aread command, the memory area pointed to by the RDAT input holds the
dataread from the drive. The RNUM output will indicate the number of bytes of
dataread. The type and number of data depends on the read command being exe-
cuted. Again, there are two ways to handle this data.

1.

If your application will only be reading one specific command or different com-
mands that are all the same data type, use a structure whose member(s) is/are the
correct data type(s) to be sent.

For example, the read command 042H Gear Ratio reads two signed word val-
ues. With this command, you could enter a structure at the RDAT input with
two INT members.

. If your application will be reading different commands that are different data

types, use a structure with one member that represents the largest data type and
use the PiICPro conversion functions to convert any data to its correct data type
after reading it.

2-65

Outputs

The DONE output will be set if theinitialization or aread or write command is
completed successfully. The FAIL output will be set if an error occurs during the

execution of theinitialization or a read or write command.

The FERR output will identify errors encountered by the M_DSMCOM function
block when using the PiC serial communications function blocks. These errors are
defined in Appendix B. The OERR output will identify errors detected when aread

or write command is executed. They are described below.

OERR Description

O oo ~NOoO Ol WDNPEFLO

[
= O

No error

Checksum error - invalid checksum in the drive response
Timeout error - drive did not respond in time
Read or write attempted before initialization
Invalid PORT name

CMD input out of range

ADDR input out of range

WNUM input out of range

Invalid address in drive response

Invalid function in drive response

Invalid datain drive response

Invalid drive response

The DERR output will identify errors reported by the Centurion drivein a
response to a command. They are described below.

DERR Description

O oo ~NOoO O~ WDNPEFLO

The RNUM output indicates the number of bytes of datain RDAT after aread

No error

Invalid data

Command not enabled

EEPROM write error

Data accepted after limiting to minimum
Data accepted after limiting to maximum
Command disabled when drive is enabled
Flash programming error

Invalid function code

Command disabled when drive is disabled

command has executed.

2-66

Application Notes

1. TheM_DSMCOM function block must only be entered in the LDO once for
each serial port being used.

2. A read or write command must not be attempted until the function block initial-
ization is complete.

3. A read or write command must not be attempted until a previous read or write
command is complete.

4. If no datais being sent with a command (which is the normal mode for most
read commands), the WNUM input must be zero.

Connections

RS232 Connections

In single drive applications where the communications link isless than 50 feet, a
three wire RS232 serial communication link may be used. The pinout is shown

below.
Drive J5 Serial Port PiC User Port
9-pin D Connector 10-pin Screw Terminal Connector
2RCV 10TD
3XMT 9RD
5COM 8 GRD

RS422/RS485 Connections

Typically, theM_DSMCOM function block will be used with RS422/RS485 serial
communication. RS422/RS485 provides superior noise immunity, allows commu-
nication links greater than 50 feet, and allows multiple drive connections to one
PiC. A four wire daisy chain connection is made between a PiC Serial Communi-
cations Module and the DSM 100 drives.

Last First PiC Serial
DSM100 DSM100 Communications
J5 Connector J5 Connector Module Channel 1
F 8 XMT - 8 XMT - ————— 7 RD1_DIF- E
— 4 XMT + 4 XMT + ———— 5 RD1_DIF+
1 RCV + 1TRCV+ —— 6 TD1_DIF+ II
— 7 RCV - 7RCV- ——— 8 TD1_DIF-

11 Shield

IT Represents 100 ohm resistors which must be
=— installed at each end of the daisy chain connection.

Example LDO with theM_DSMCOM Function Block

Please refer to the example ASFB M_DSM_EX.LDO ladder.

2-67

M_DW2BOO
Convert DWORD to BOOLs

USER/M_COMMON

1IN 00

4
D
[TTTTTTTTTTTTTTTITITITITITITITTITITITITITOITTI

OOOCOOOCOOOOoOo

OOOOOOOOO0O
WRNINININNNNNNN
DOONDUITRWN—=OOWONOUTTRWN—

031

M__Dwggo_ Inputs: ENO1 (BOOL) - enables execution
NGO OK IN (DWORD) - the data to convert

Outputs: OK (BOOL) - execution complete
00 (BOOL) - bit 0 of IN (least significant bit of IN)
01 (BOOL) - bit 1 of IN
02 (BOOL) - bit 2 of IN
O3 (BOOL) - bit 3of IN
04 (BOOL) - bit 4 of IN
05 (BOOL) - bit5of IN
06 (BOOL) - bit 6 of IN
07 (BOOL) - bit 7 of IN
08 (BOOL) - bit 8 of IN
09 (BOOL) - bit9 of IN
010 (BOOL) - bit 10 of IN
011 (BOOL) - bit 11 of IN
012 (BOOL) - hit 12 of IN
013 (BOOL) - bit 13 of IN
014 (BOOL) - bit 14 of IN
014 (BOOL) - bit 15 of IN
016 (BOOL) - bit 16 of IN
017 (BOOL) - bit 17 of IN
018 (BOOL) - bit 18 of IN
019 (BOOL) - bit 19 of IN
020 (BOOL) - bit 20 of IN
021 (BOOL) - bit 21 of IN
022 (BOOL) - hit 22 of IN
023 (BOOL) - hit 23 of IN
024 (BOOL) - hit 24 of IN
025 (BOOL) - bit 25 of IN
026 (BOOL) - bit 26 of IN
027 (BOOL) - hit 27 of IN
028 (BOOL) - hit 28 of IN
029 (BOOL) - hit 29 of IN
030 (BOOL) - hit 30 of IN

031 (BOOL) - bit 31 of IN (most significant bit)

2-68

<<INSTANCE NAME>>:M_DW2BOO(ENOO := <<BOOL>>, IN :=
<<DWORD>>, 00 => <<BOOL>> 01 => <<BOOL >>, 02 => <<BOOL>>, O3
=> <<BOOL>>, 04 => <<BOOL>>, 05 => <<BOOL>>, 06 => <<BOOL>>,
O7 => <<BOOL>>, 08 => <<BOOL>>, 08 => <<BOOL>> 09 =>
<<BOOL>>, 010 => <<BOOL>>, 011 => <<BOOL>>, 012 => <<BOOL >>,
013 => <<BOOL>>, 014 => <<BOOL>>, 015 => <<BOOL >>, 016 =>
<<BOOL>>, 017 => <<BOOL>> 018 => <<BOOL >>, 019 => <<BOOL >>,
020 => <<BOOL>>, 021 => <<BOOL >>, 022 => <<BOOL >>, 023 =>
<<BOOL>>, 024 => <<BOOL>>, 025 => <<BOOL>>, 026 => <<BOOL>>
027 => <<BOOL>>, 028 => <<BOOL >>, 029 => <<BOOL >>, O30 =>
<<BOOL>>, 031 => <<BOOL >>);

This function block converts a DWORD to 32 BOOLSs.

2-69

M_ERROR
Axis Error Checking USER/M DATA

M'EQMER_ Inputs: ENO1 (BOOL) - enables execution

{mer okl AXIS(USINT) - identifies axis

AXIS ESTOL. Outputs: OK (BOOL) - execution complete
csTol ESTO (BOOL) - indicates an E-stop is active

psTol When set

e trl. CSTO(BOOL) - indicates an C-stop is active
C_ER when set

> . PSTO(BOOL) - indicates aprogramming error

has occurred when set

E_ER (WORD) - identifies E-stop errors

C_ER (WORD) - identifies C-stop errors

P_ER (WORD) - identifies programming errors

<<INSTANCE NAME>>:M_ERROR(ENO1 := <<BOOL>>, AXIS :=
<<USINT>>, OK => <<BOOL>> ESTO => <<BOOL>>, CSTO =>
<<BOOL>>, PSTO => <<BOOL>>, E_ER => <<WORD>>, C_ER =>
<<WORD>>, P_ER => <<WORD>>);

Thisfunction block is used to report servo E-stop, C-stop and programming error
conditionsin the ladder. These conditions may be caused by the servo software or defined
by the programmer. If defined by the programmer they will be triggered using the E-
STOP or C_STOP functions. All of these errors for the defined axis are reported in one
location

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The boolean outputs can be used as flags in the ladder to report error conditions.

The word outputs can be converted to aHEX display by using the Module Monitor
Edit View List command and inserting the variables. An option will be given on
the format to display them. The variable’s value during animation will be dis-
played in HEX format if the variable provided has 16#0 for itsinitial value. The
default format during animation is decimal.

After monitoring them in HEX, referring to the tables in the manual of functions
E_ERRORS, C_ERRORS and P_ERRORS will help identify the exact problem.

2-70

M_FHOME

Performs a Home Cycle using a Fast Reference

USER/M_REF

W_FHONE |
ENO1 HCMP
STRT HACT
AXIS QUE
PLUS SWPO
RATE ERR
- DIM
- OPTN
- BKOF
- HOME
- HDIM

<<INSTANCE NAME>>:M_FHOME(ENOL1 := <<BOOL>>, STRT :
<<USINT>>, AXIS := <<USINT>> PLUS := <<BOOL>>, RATE :
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF:

Inputs: ENO1 (BOOL) - enables execution

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when
the reference switch is set (entered in LUS)

OPTN (WORD) - provides referencing options (O or
1) 0=No option 1=Ignoreindex or null

BKOF (BOOL) - selects backoff of reference switch
option

HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move to after
reference is complete

Outputs: HCMP (BOOL) - home cycle is complete
HACT (BOOL) - home cycleis being executed
QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback units (FUSs)
from the reference switch to the index mark of an
encoder or the null of aresolver

ERR (BYTE) - report an error 1-4 if input dataiis
invalid

<<BOOL>>, HOME := <<BOOL>>, HDIM := <<DINT>>, HCMP =>
<<BOOL>>, HACT => <<BOOL>>, QUE => <<USINT>>, SWPO =>
<<DINT>>, ERR => <<BYTE>>,);

Thisfunction block performs afast reference cycle on an axis, followed by a hom-
ing (position) move to a designated location.

Before this function can be used, the axis must be initialized and the position loop

closed.

2-71

Thereference cyclewill cause the selected axisto movein the designated direction
until the reference switch is sensed. In afast reference this reference switch is
wired to the fast input of the selected axis on the feedback module in the PiC900.
When the fast input occurs, the position of the axisis latched by the hardware on
the encoder modul e independent of the ladder scan. When the reference switch is
sensed the axis will reference (assign avalue) to the next index mark of an encoder
or the nearest null of aresolver. After the value is assigned, the axis will decelerate
to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed, the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested, and the axisis on the ref-
erence switch, the axis will move in the opposite direction until the reference
switch opens and will then move back onto the reference switch. 1f the BKOF
input is not on the axis will move in the specified direction until it seesan off to on
transition of the limit switch.

Thisfunction block isused to perform afast reference, immediately followed by a
position move to a selected home position. It should be executed every scan unless
ahome cycle will only be performed when the machine is started. In that case a
normally closed contact of the output of HCMP may be used.

Theinputsto this function block are basically the same asfor the FAST_REF func-
tion. There are three additional inputs listed below.

The BKOF input selects the backoff reference switch option.
The HOME input selects the homing after referencing option.
The HDIM input assigns the home dimension to move to.

If the axisis sitting on the limit switch when the home cycle is requested, and the
BKOF input is on, the axis will move in the opposite direction of that indicated by
the PLUS input until the switch opens and then will complete the home cyclein
the normal manner.

2-72

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of aresolver it could possi-
bly reference arevolution off. To prevent this, the value reported by this output
should be as follows:

 For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/Rev, the value should be >2000 and <6000.

 For aresolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUSs) per revolution. Example: For
4000 FUS/Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 Anerror occurred in backing off of the reference switch
3 Aneror occurred in referencing
4 Anerror occurred in homing

M_INCPTR
Increment buffer pointers USER/M_DATA
T INWET Inputs:ENOO (BOOL) - enable
{mes okl P (STRUCT) - pointer for data buffer
1p | TOTB (UINT) - total bytesto increment
1T0TB Outputs: OK (BOOL) - increment of pointers ok

This function block increments the buffer pointersfor M_DATCPT.

<<INSTANCE NAME>>:M_INCPTR (ENOO := <<BOOL>>, P := <<MEMORY
AREA>>, TOTB := <<UINT>> OK => <<BOOL>>);

2-73

NOTES

2-74

M_JOG

Jogs a Closed Loop Axis USER/M_MOVE
—ME 5 Inputs ENO1 (BOOL) - enables execution
leng1 sacrl. JPLS(BOOL) - enables ajog in the plus direction
1ipis no ol IMNS(BOOL) - enables ajog in the minus direction

RATE (UDINT) - feedrate at which motion occurs
JWNS QUE = (entered in LU/MIN)

{RATE AXIS (USINT) - identifies axis

AXIS Outputs: JACT (BOOL) - indicatesjogging is active when set;
indicates no motion is occurring when not set

NO_Q (BOOL) - active queue for the specified axis
was not available

QUE (USINT) - number of move for queue

<<INSTANCE NAME>>:M_JOG(ENO1 := <<BOOL>>, JPLS := <<BOOL>>,
JMNS := <<BOOL>>, RATE := <<UDINT>>, AXIS := <<USINT>>, JACT =>
<<BOOL>>), NO_Q => <<BOOL>>, QUE => <<USINT>>);

Thisfunction block is designed to simplify the task of doing a manual jog (veloc-
ity) move on aclosed loop axis. The manual jog is defined as a move that would be
triggered by the operator physically pressing a switch or a button to move an axis
on the machine to a different location, without actually running acycle.

Before this function block can be used, the axis must be initialized and placed in
servo lock. If the enableinput is active, triggering the jog plus (JPLS) or jog minus
(IMNYS) input will cause the specified axisto move at the indicated rate in the cor-
responding direction. When the input is deactivated motion will stop.

Thisfunction block is used to jog an axis that has been initialized and placed in
servo lock with the close loop function. It checks the queue of the selected axisto
be certain that no other moves are being executed. This function block should be
used to alow the operator to manually move an axis on the machine. It is not
designed for any other purpose.

IMPORTANT

If the enable is disabled while a move is under way, the move
will end.

The JPL S input enables a move in the positive direction for the selected axis. The
JMNS input enables a move in the negative direction for the selected axis. If both
the JPLS and IMNS inputs are set, motion will stop until one of them is dropped.
At that time motion will resume in the direction still selected.

2-75

M_LHOME

Performs a Home Cycle using a Ladder Reference USER/M_REF
M TﬁMﬁE— Inputs: ENO1 (BOOL) - enables execution

eNe1 Howel STRT (BOOL) - enables the home cycle
STRT HACT AXIS (USINT) - identifies axis
AXIS QUEl PLUS(BOOL) - indicates direction of home cycle

PLUS SWPOl— RATE (UDINT) - feedrate at which motion occurs
RATE ERRL— (entered in LU/MIN)

{pIm DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when

10PN the reference switch is set (entered in LUS)
1BKOF OPTN (WORD) - provides referencing options (O or
1 HOME 1) 0=No option 1=Ignore index or null
1HOIM BKOF (BOOL) - selects backoff of reference switch
< RFSW option
HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move to after
reference is complete

RFSW (BOOL) - reference switch on axis
Outputs:HCMP (BOOL) - home cycle is complete
HACT (BOOL) - home cycleis being executed
QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback units (FUSs)
from the reference switch to the index mark of an

encoder or the null of aresolver.

ERR (BYTE) - report an error 1-4 if input dataiis
invalid

<<INSTANCE NAME>>:M_LHOME(ENO1 := <<BOOL>>, STRT :
<<BOOL>>, AXIS = <<USINT>>, PLUS := <<BOOL>>, RATE :
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF:
<<BOOL>>, HOME := <<BOOL>> HDIM := <<DINT>>, RFSW :=
<<BOOL>>, HCMP => <<BOOL>>, HACT => <<BOOL>>, QUE =>
<<USINT>>, SWPO <<DINT>>, ERR => <<BYTE>>);

2-76

Thisfunction block performs a ladder reference cycle on an axis, followed by a
homing (position) move to a designated |ocation.

Before this function block can be used, the axis must be initialized and the position
loop closed.

Thereference cyclewill cause the selected axisto movein the designated direction
until the reference switch is sensed. In aladder reference this reference switch is
wired to an input module in the PiC900 and updated each scan of the ladder. When
the reference switch is sensed the axis will reference (assign avalue) to the next
index mark of an encoder or the nearest null of aresolver. After thevaueis
assigned the axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested and if the axisis on the
reference switch the axis will move in the opposite direction until the reference
switch opens, and will then move back onto the reference switch. If the BKOF
input is not on the axis will move in the specified direction until it seesan off to on
transition of the limit switch.

Thisfunction block is used to perform aladder reference, immediately followed by
aposition move to a selected home position. It should be executed every scan
unless ahome cycle will only be performed when the machine is started. In that
case anormally closed contact of the output of HCMP may be used.

The inputs to this function block are similar to those of the FAST_REF function.
There are four additional inputs listed below.

The BKOF input selects the backoff reference switch option.
The HOME input selects the homing after referencing option.
The HDIM input assigns the home dimension to move to.
The RFSW input is the reference switch.

If the axisis sitting on the limit switch when the home cycle is requested, and the
BKOF input is on, the axis will move in the opposite direction of that indicated by
the PLUS input until the switch opens and then will complete the home cyclein
the normal manner.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of aresolver it could possi-
bly reference arevolution off. To prevent this, the value reported by this output
should be as follows:

« For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUYRev, the value should be >2000 and <6000.

2-77

 For aresolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUS/Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

ERR Description

0

1
2
3
4

No error

The queue was not empty when the reference was requested
An error occurred in backing off of the reference switch

An error occurred in referencing

An error occurred in homing

2-78

M_LINC

Performs Linear and Circular Moves

USER/M_MOVE

M LINCTR
ENG1 QUED
STRT ERR
INC

TIME

RATE

cow

LIN

CIRC

DEP

NDPT

CEN1

CEN2

BNDW
OVRD

PATH

<<INSTANCE NAME>>:M_LINCIR(ENO1 := <<BOOL>>, STRT :
<<BOOL>>, INC := <<WORD>>, TIME := <<BOOL>>, RATE :
<<DINT>>, CCW := <<BOOL>>, LIN := <<WORD>>, CIRC :=

Inputs: ENO1 (BOOL) - enables execution
STRT (BOOL) - enables the coordinated move

INC (WORD) - defines incremental or absolute
mode (O=absolute, 1=incremental)

TIME (BOOL) - definesif move is feedrate or time
of move (O=feedrate, 1=time of move)

RATE (DINT) - feedrate or time of move

CCW (BOOL) - defines direction of circular move
(O=clockwise, 1=counter-clockwise)

LIN (WORD) - defines which axesto movein a
linear mode

CIRC (WORD) - defines which axesto movein
acircular mode

DEP (WORD) - defines which axesto movein a
simultaneous endpoint arrival mode

NDPT (DINT(0..16)) - endpoints or distances to
move

CENL1 (DINT) - circle center for lowest numbered
circular axis

CEN2 (DINT) - circle center for highest numbered
circular axis

BNDW (DINT) - circular endpoint bandwidth
OVRD (USINT) - feedrate override percentage
PATH (USINT) - path number

Outputs: QUED (BOOL) - move was queued without error

ERR (INT) - error number describing error that
occurred when the move was queued

<<WORD>>, DEP := <<WORD>>, NDPT := <<DINT>>, CEN1 :=

<<DINT>>, CEN2 := <<DINT>>, BNDW := <<DINT>>, OVRD :=
<<USINT>>, PATH := <<USINT>>, QUED => <<BOOL>>, ERR =>

<<INT>>);

2-79

Thisfunction block performslinear, circular, or third axis departure (simultaneous
endpoint arrival) moves on a set of axes.

Before this function can be used, the axes must be initialized, the position loop
must be closed, and a queue must be available on al axes to be used in the move.

Thisfunction block provides the interface from the application .LDO to the
RATIO_RL and CORD2RL functionsin order to perform linear coordinated, cir-
cular, and third axis departure (simultaneous endpoint arrival) motions.

Up to four separate paths of coordinated motion can be controlled. Each path of
motion requires a separate instantiation of the M_LINCIR function block. Each
path must control a unique set of axes. Only one M_LINCIR function block per
path can be used within the application .LDO.

Thisfunction block can control up to 16 axes.
The ENOL input of this function block must be set every scan.

The STRT input must be one-shot. When it is one-shot, the function block will
start the coordinated move, or enter it in the queue for the axes. It isthe user's
responsibility to ensure that there isaqueue available on all of the axesinvolved in
the move before pulsing this inpuit.

The INC input defines whether each axis should move in the absolute or incremen-
tal mode. One bit of thisWORD is reserved for each of the sixteen possible axes.
Bit Oissetif axis1lisincremental, or reset if axis 1 isabsolute, bit 1 isset if axis2
isincremental, reset if axis 2 is absolute, etc..

The TIME input defines whether the move should be executed as a path feedrate
move or atime of move. Thisinput should be reset for path feedrate, or set for time
of move.

If the TIME input isreset, then the RATE input is the path feedrate for the movein
ladder units/minute. If the TIME input is set, then the RATE input is the time for
the move in milliseconds.

The CCW input is only used for circular moves. If it is reset, then the moveis
clockwise, if it is set, then the move is counter-clockwise.

The LIN input defines which axes in the move are to be moved in alinear mode.
One bit of the WORD is reserved for each of the sixteen axes. The bit must be set
for the axisto do alinear move. Axeswho have their bits set will beincluded in the
calculations for the path feedrate.

The CIRC input defines which axesin the move are to be moved in a circular
mode. One bit of the WORD is reserved for each of the sixteen axes. The bit must
be set for the axis to do a circular move. Axes who have their bits set will be
included in the calculations for the path feedrate.

The DEP input defines which axes in the move are to be moved in a simultaneous
endpoint arrival mode. One bit of the WORD isreserved for each of the sixteen
axes. The bit must be set for the axisto move. Axes who have their bits set will not
be included in the calculations for the path feedrate, but they will arrive at their
endpoints simultaneously with the axes that are.

2-80

The LIN, CIRC, and DEP words may never have the same bits set in them at a
time. You must always set abit for every axis ever used in the path, evenif the axis
isnot to movein this particular move. In this case, you would set either the LIN or
DEP bit for the axis, set the INC hit for the axis, and program an endpoint of zero
for the axis.

The NDPT array holds the endpoints for the axes used in the move. The Oth ele-
ment isnot used. If the INC bit isset for the axis, thisisthe distance to move, if the
INC bit isreset for the axis, then thisis the position to move to. The endpoints are
entered in ladder units.

The CEN1 and CENZ2 inputs define the circle centers if acircular move is being
performed. The CEN1 input is the center for the lowest numbered circular axis,
and the CENZ2 input is the center for the highest numbered circular axis. The cen-
ters are always programmed as an incremental distance from the starting point of
thecircle, even if the INC bit for the axesis not set. The centers are entered in lad-
der units. For example, if a circle were being done with axes 4 and 6, then CEN1
would be the center for axis 4, and CEN2 would be the center for axis 6.

The BNDW input defines abandwidth for circular moves. When acircular moveis
requested, the distance from the start point to the center point and the distance
from the endpoint to the center point are compared for both axes. If these distances
differ by more than the bandwidth entered here, then the move will not execute and
error 14 will be returned on the ERR output. This bandwidth is entered in ladder
units.

The OVRD input defines the feedrate override value. This can be changed at any
time, even if the STRT input is not energized. This adjusts the actual feedrate or
time to be from 0 to 255 percent of the programmed feedrate or time.

The PATH input defines the number of the path. Up to four totally independent
paths of coordinated motion can be defined. This must be a number from 1 to 4.
This should not be changed once it is set.

The QUED output will be set for one scan when STRT is pulsed and the move has
been successfully queued on all axes defined. If an error occurred in queueing the
move, this output will be reset when STRT is pulsed, and an error code will be
stored in the ERR outpui.

The ERR output will be non-zero if an error occurs in queueing amove. A list of
error codes is shown on the following table.

Notee WRITE_SV variable 25 Fast Queuing is enabled for the selected axes
when STRT is set. Fast queuing will remain on for those axes until
turned off by you.

2-81

m
@OO\ICDU'I-&OONHO;;S

=
o

[EEY
[N

12
13

14
IXX

2XX

3XX

32766
32767

Description

No error

No bitswere set in the LIN, CIRC, or DEP WORDs

The same bit was set in the LIN and CIRC WORDs

The same bit was set in the DEP and CIRC WORDs

The same bit was set in the LIN and DEP WORDs

The number of bits set in the CIRC WORD was not 0 or 2
Not used

Not used

The time of move or feedrate was negative

The time of move or feedrate was zero

The feedrate was too high or the time was too low to calcu-
late

The feedrate was too low or the time was too high to calcu-
late

An axis that was selected was not initialized by the servo
setup function

The STRTSRV function has not been called

Endpoint not on circle

When the distance to move was converted to feedback
units, it was too positive to fit into 32 bits. XX = Axis
number

When the distance to move was converted to feedback
units, it was too negative to fit into 32 bits. XX = Axis
number

The path feedrate or time entered causes an axis to exceed
its velocity limit from servo setup. XX = Axis number
The time axis could not be started

One of the OKs on the RATIO_RL functions did not get set

2-82

M_PRTCAM

Creates a RATIOCAM text file USER/M_DATA
B N/QM-EFCM Inputs. RQOO (BOOL) - request file generation and write
1R00O DONE CAM (STRUC0..) - CAM structure input of the
RATIOCAM function
4{STRT HACT
1cAM FAIL RAMD (BOOL) - If enabled, allowsfileto be
written to the RAMDISK. If disabled, fileiswritten
1RAVD ERR — {0 the PC running PiCPro.
TFILE FILE (STRING) - name of thefile
4{SDIR

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs:DONE (BOOL) - set when the file is generated and
written, reset when RQOO goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQOO0 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

<<INSTANCE NAME>>:M_PRTCAM(RQO0 := <<BOOL>>, CAM :=
<<MEMORY AREA>>, RAMD := <<BOOL>>, FILE := <<STRING>>
SDIR := <<STRING), DONE => <<BOOL >>, FAIL => <<BOOL>> ERR
=> <<INT>>);

This function block creates atext file for aRATIOCAM CAM structure. The
file can be created on either the RAMDISK in the PiC or on the PC running
PICPro.A positive transition of RQOO requests that the data specified by the
CAM input be converted to ASCII code, concatenated, and written to the
RAMDISK or to the PiCPro port. The CAM input is an array of structures and
must have the following members:

Name
CAM

Data Type Definition

STRUCT (0..998) The structure of the RATIOCAM profile
INT Master segment size

INT Slave segment size

2-83

The FILE input requires a string data type variable with the filename as an initial
value. Theformat is"FILENAME.EXT".

The SDIR input requires a string data type. A subdirectory is not required if you
are writing the file to the RAMDISK. If you are writing the file to a PC running
PiCPro, then the SDIR isrequired. It must contain the drive and subdirectory path.
The following are examples showing the drive and subdirectory path:

C: indicatesthat the file will be written to C:Filename.ext.

C:\PRT_CAM indicates the file will be written to the directory
C:\PRT_CAM\Filename.ext.

2-84

M_PRTREL

Creates a RATIO_RL text file

USER/M_DATA

"M PRTREL
RQOE DONE
REAL FAIL
RAVD ERR
IFILE
1sp1R

Inputs: RQOO (BOOL) - request file generation and write

REAL (STRUC 0..) - REAL structure input of the
RATIO_RL function

RAMD (BOOL) - If enabled, allowsfileto be
written to the RAMDISK. If disabled, fileiswritten
to the PC running PiCPro.

FILE (STRING) - name of thefile

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs:DONE (BOOL) - set when the file is generated and
written, reset when RQOO goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQOO0 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

<<INSTANCE NAME>>:M_PRTREL (RQOQO0 := <<BOOL>>, REAL :=

<<MEMORY AREA>> RAMD :=<<BOOL>>, FILE := <<(STRING>>,
SDIR := <<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>,

ERR => <<INT>>);

Thisfunction block creates atext file for a RATIO_RL structure. The file can be
created on the RAMDISK in the PiC or on the PC running PiCPro. A positive tran-
sition of RQOO requests that the data specified by the REAL input be converted to
ASCII code, concatenated, and written to the RAMDISK or to the PiCPro port.
The REAL input is an array of structures and must have these members:

Name
REAL

M

S

.LEN
AMPL
.STANGL
.SPARE
FLAGS

Data Type Definition

STRUCT (0..998) The structure of the RATIO_RL profile
DINT Master segment size

DINT Slave segment size

LREAL Length or K1

LREAL Amplitude or K2

LREAL Start angle or K3

LREAL Spare for future use

DWORD Flags

2-85

The FILE input requires a string data type variable with the filename as an initial
value. Theformat is"FILENAME.EXT". The SDIR input requires a string data
type. A subdirectory isnot required if you are writing the file to the RAMDISK. If
you are writing the file to a PC running PiCPro, then the SDIR isrequired. It must
contain the drive and subdirectory path. The following are examples showing the
drive and subdirectory path:

C: indicates that the file will be written to C:Filename.ext.

C:\PRT_CAM indicates the file will be written to the directory C:\PRT_CAM\File-
name.ext.

2-86

M_PRTSLP

Creates a RATIOSLP text file USER/M_DATA
_MN/?M'ErSL_p Inputs; RQOO0 (BOOL) - request file generation and write

RQOO DONE
SLPE FAIL
RAMD ERR
4 FILE
- SDIR

SLPE (STRUC 0..) - SLPE structure input of the
RATIOSLP function

RAMD (BOOL) - If enabled, allowsfileto be
written to the RAMDISK. If disabled, fileiswritten
to the PC running PiCPro.

FILE (STRING) - name of thefile

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs:DONE (BOOL) - set when the file is generated and
written, reset when RQOO goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQOO0 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

<<INSTANCE NAME>>:M_PRTSLP(RQO00 := <<BOOL>>, SLPE :=
<<MEMORY AREA>>RAMD :=<<BOOL>>, FILE := <<STRING>> SDIR
:= <<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>);

Thisfunction block creates atext file for a RATIOSLP structure. The file can be
created on either the RAMDISK in the PiC or on the PC running PiCPro.

A positive transition of RQOO requests that the data specified by the SL PE input be
converted to ASCII code, concatenated, and written to the RAMDISK or to the

PiCPro port.
The REAL input is an array of structures and must have the following members:
Name Data Type Definition
SLPE STRUCT (0..998) The structure of the RATIOSLP profile
M INT Master segment size
S INT Slave segment size
SLP DINT Slope of segment
SR DINT Start ratio
FLAGS DWORD Default flags

2-87

The FILE input requires a string data type variable with the filename as an initial
value. Theformat is"FILENAME.EXT". The SDIR input requires a string data
type. A subdirectory isnot required if you are writing the file to the RAMDISK. If
you are writing the file to a PC running PiCPro, then the SDIR isrequired. It must
contain the drive and subdirectory path. The following are examples showing the
drive and subdirectory path:

C: indicates that the file will be written to C:Filename.ext.

C:\PRT_CAM indicates the file will be written to the directory C:\PRT_CAM\File-
name.ext.

2-88

M_RATREL
Calculates Ending Ratio and Slope USER/M_DATA

M__R%“F’JEL— Inputs: ENO1 (BOOL) - enables execution
{mee okl S(DINT) - slave distance

15 Rl M (DINT) - master distance

1M StP SR (LREAL) - starting ratio

1SR K2 Outputs:OK (BOOL) - execution complete
ER (LREAL) - ending ratio

SLP (LREAL) - slope

K2 (LREAL) - slope output divided by 2

<<INSTANCE NAME>>:M_RATREL (ENO1 := <<BOOL>>, S:=
<<DINT>>, M := <<DINT>>, SR := <<LREAL>>, OK =><<BOOL>>, ER
=> <<LREAL>>, SLP=> <<LREAL>>, K2 => <<LREAL>>);

Thisfunction block calculates the ending ratio, slope, and K2 (dope/2) used in the
ratio real structure from the master distance, slave distance, and starting ratio.

Thisfunction block cal culates the ending ratio and slope to be used with the
RATIO_RL structure as one segment of the RATIO_RL profile. Refer to the
documentation in the PiC900 software manual regarding RATIO_RL for more
information.

The slave and master segments (S and M) are entered in feedback units.

The starting ratio for the first segment of aRATIO_RL profileis normally zero.
The starting ratio iscalled LEN or K1 in the ratio real documentation.

The formulas used by this function for calculation are as follows:
ER=(2S/M) - SR

SLP=(ER-SR)/M

K2=SLP/2

where ER isthe ending ratio, SR isthe starting ratio, Sis the slave distance, M is
the master distance, SLP isthe slope, and K2 isthe slope divided by 2. K2 isthe
AMPL structure member of the RATIO_RL REAL structure for alinear move.

The ending ratio is not an input to the RATIO_RL structure. However the ending
ratio of one segment is normally used as the starting ratio of the next segment.

2-89

M_RATSLP
Calculates Ending Ratio and Slope USER/M_DATA

W Avere] Inputs: ENOL (BOOL) - enables execution

{mvee okl S(INT) - slave distance

15 fRRl= M (INT) - master distance

IM R SR (DINT) - starting ratio

{SR SLP| Outputs:OK (BOOL) - execution complete without error
ERR (INT) - error number

ER (DINT) - ending ratio

SLP (DINT) - slope

<<INSTANCE NAME>>:M_RATREL(ENO1 := <<BOOL>>, S:= <<INT>>,
M = <<INT>>, SR := <<DINT>>, OK => <<BOOL>>, ERR => <<INT>>,
ER => <<DINT>>, SLP => <<DINT>>);

Thisfunction block calculates the ending ratio and slope used in the ratio slope
structure from the master distance, slave distance, and starting ratio.

Thisfunction block cal culates the ending ratio and slope to be used with the
RATIOSLP structure as one segment of the RATIOSLP profile. Refer to the
documentation in the PiC900 software manual regarding RATIOSLP for more
information. The slave and master segments (S and M) are entered in feedback
units.

The starting ratio for the first segment of aslope profileisnormally zero. Non zero
starting ratios must already be multiplied by the scaling factor of 16777216 before
being used as an input to this function.

The formulas used by this function for calculation are as follows:
ER=(2S/M) - SR
SLP=(ER-SR)/M

where ER isthe ending ratio, SR isthe starting ratio, Sis the slave distance, M is
the master distance, and SLP is the slope.

2-90

The ending ratio and slope that are outputs of thisfunction have been multiplied by
the scaling factor of 16777216. The ending ratio is not an input to the RATIOSLP
structure. However, the ending ratio of one segment is normally used as the
starting ratio of the next segment.

ERR Description

1 The calculation for ER failed when Swas between -64 and +63
(inclusive)

2 The calculation for ER failed when S was less than -64 or
greater than +63

3 The calculation for SLP failed

Note: AnM vaue of zero resultsin an error due to an attempt to divide by O.
No master distance can have avalue of zero in aRATIOSLP profile.

2-91

M_RDTUNE
Reads tuning parameters USER/M_DATA

T AE] Inputs: ENOO (BOOL) - enables execution
linoe okl AXIS(USINT) - identifies axis

{axis pL Outputs: OK (BOOL) - execution complete
Il P(DINT) - proportional gain

D | (DINT) - integral gain

OFST~ D (DINT) - derivative gain

FILT OFST (DINT) - analog output offset

FRWDI— FILT (DINT) - dow speed filter value
FFWD (DINT) - feedforward percentage

<<INSTANCE NAME>>:M_RDTUNE(ENOO := <<BOOL>>, AXIS :=
<<USINT>>, OK => <<BOOL>>, P=> <<DINT>>, | => <<DINT>>, D =>
<<DINT>>, DFST => <<DINT>>, FILT => <<DINT>>, FFWD =>
<<DINT>>);

Thisfunction block allows you to read all six tuning parameters from the
TUNEREAD function in asingle function.

Thisfunction block requires the numeric processor or a486 DX processor.

The proportional gain for AXISwill bereturned in P. Pisin ladder units per
minute per ladder unit of following error (LU / MIN / LUFE).

Theintegral gain for AXISwill bereturnedin|. | isin ladder units per minute per
ladder units of following error times minutes (LU / MIN / LUFE * MIN).

The derivative gain for AXISwill bereturned in D. D isin ladder units per minute
per ladder unit of following error per minute (LU / MIN / LUFE / MIN).

The analog output offset voltage for AXIS will be returned in OFST. OFST isin

millivolts.

The slow speed filter value for AXIS will be returned in FILT. FILT isin millisec-
onds.

The feedforward percentage for AXIS will be returned in FFWD. FFWD will be
from O to 100.

2-92

M_RGSTAT

Returns Registration Data

USER/M_DATA

— NAME—
M_RGSTAT

{ENG® OK|-
AXIS DIST |~
STAT FPOS|—
CHNG |
DSTL |-
FOCR —
FINP —
GDMK —
NMGD (—
BDMK —
NMBD (—
TOTL |-

Inputs: ENOO (BOOL) - enables execution
AXIS (USINT) - axis number

STAT (WORD) - status word from STATUSSV
function

Outputs:OK (BOOL) - execution complete
DIST (DINT) - fast input distance
FPOS (DINT) - fast input position

CHNG (DINT) - registration/referencing
position change

DSTL (BOOL) - indicates distance plus
tolerance has been exceeded

FOCR (BOOL) - fast input occurred

FINP (BOOL) - fast input on

GDMK (BOOL) - good mark detected

NMGD (DINT) - number of good registration marks
BDMK (BOOL) - bad mark detected

NMBD (DINT) - number of bad registration marks

TOTL (DINT) - total number of fast inputs that
have occurred

<<INSTANCE NAME>>:M_RGSTAT(ENOO := <<BOOL>>, AXIS :=
<<USINT>>, STAT := <<WORD>>, OK => <<BOOL>>, DIST =>
<<DINT>>, FPOS => <<DINT>>, CHNG => <<BOOL>>, DSTL =>
<<BOOL>>, FOCR => <<BOOL>>, FINP => <<BOOL>>, GDMK =>
<<BOOL>>, NMGD => <<DINT>>, BDMK => <<BOOL>>, NMBD =>
<<DINT>>, TOTL => <<DINT<<);

Thisfunction block obtains information about registration. The information gath-
ered is distance between fast inputs, fast input position, registration reference
change, number of good marks, number of bad marks, total number of marks, and
the state of STATUSSV flags.

Thisfunction block should be enabled every scan.

Theinput at AXIS determines which axis the output information isfor. AXIS can
be a closed loop or digitizing axis.

2-93

The STAT input is the status word read from the STATUSSV function. STA-
TUSSV can only be called once per scan, so its output is used as an input to this
function.

The OK output will not be set if the axis has not been initialized.

The DIST output is the distance between the most recent fast input and the previ-
ous fast input in ladder units.

The FPOS output is the actual position of the axis at the point where the most
recent fast input occurred in ladder units.

The CHNG output is the amount the position of the axis has changed in ladder
units due to registration or the last machine reference.

The DSTL output will be set if the distance from the last mark exceeds the val ue of
DIST + TOLR whether or not amark has occurred. It will be reset when any mark
oCCurs.

The FOCR output will be set if afast input has occurred since the last time the
STATUSSV function was called.

The FINP output is set if the fast input is on, and reset if the fast input is off.

The GDMK output will be set if agood mark has been detected since the last time
the STATUSSV function was called.

The NMGD output holds the total number of good registration marks that have
been detected.

The BDMK output will be set if abad mark has been detected since the last time
the STATUSSV function was called.

The BAD output holds the number of bad registration marks that have been
detected.

The TOTL output holds the total number of fast input transitions that have
occurred.

2-94

M _RSET49
Reset Errors on Digitizing Axes 49 to 56 USER/M_INIT

Inputs: ENO1 (BOOL) - enables execution
MSTR (BOOL) - machine start input
Outputs: OK (BOOL) - execution complete

NAME
M_RSET49
ENOT OK
MSTR

<<INSTANCE NAME>>:M_RSET49(ENO1 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

Thisfunction block is used to reset the E-stop errors on digitizing axes 49 through
56 when the machine start input is pul sed.

Thisfunction block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset al E-stop errors on axes
49 through 56.

2-95

M _RSET57
Reset Errors on Digitizing Axes 57 to 64 USER/M_INIT

Inputs: ENO1 (BOOL) - enables execution
MSTR (BOOL) - machine start input
Outputs: OK (BOOL) - execution complete

NAME
M_RSET57
ENOT OK
MSTR

<<INSTANCE NAME>>:M_RSET57(ENO1 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

Thisfunction block is used to reset the E-stop errors on digitizing axes 57 through
64 when the machine start input is pul sed.

Thisfunction block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset al E-stop errors on axes
57 through 64.

2-96

M _RSET65
Reset Errors on Digitizing Axes 65 to 72 USER/M_INIT

Inputs: ENO1 (BOOL) - enables execution
MSTR (BOOL) - machine start input
Outputs: OK (BOOL) - execution complete

NAME
M_RSETG5
ENOT OK
MSTR

<<INSTANCE NAME>>:M_RSET65(ENO1 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

Thisfunction block is used to reset the E-stop errors on digitizing axes 65 through
72 when the machine start input is pul sed.

Thisfunction block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset al E-stop errors on axes
65 through 72.

2-97

M _RSET73
Reset Errors on Digitizing Axes 73 to 80 USER/M_INIT

Inputs: ENO1 (BOOL) - enables execution
MSTR (BOOL) - machine start input
Outputs: OK (BOOL) - execution complete

NAME
M_RSET73
ENOT OK
MSTR

<<INSTANCE NAME>>:M_RSET73(ENO1 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

Thisfunction block is used to reset the E-stop errors on digitizing axes 73 through
80 when the machine start input is pul sed.

Thisfunction block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset al E-stop errors on axes
73 through 80.

2-98

M_SACC

Calculate ACC and JERK values with ACC_JERK USER/M_MOVE
_MNéXEC— Inputs: ENOO (BOOL) - enables execution (one-shot)
1eNoe oK|l= VM (Upl NT) - maximum velocity of move in ladder
units/min
4W ACC

TM (REAL) - total timeto reach velocity VM if axis
4™ JERK|
] starts from rest

S (USINT) - pecentage of time spent in constant jerk
Outputs: OK (BOOL) - execution completed without error

ACC (LREAL) - maximum acceleration rate in ladder
units or counts/min/sec

JERK (LREAL) - constant jerk in ladder units or counts/
min/sec?
<<INSTANCE NAME>>:M_SACC(ENQO := <<BOOL>>, VM :=

<<UDINT>>, TM :=<<REAL>>, S:= <<USINT>>, OK =><<BOOL>>),
ACC =><<LREAL>>), JERK =><<LREAL>>);

This function block is used to calculate the ACC and JERK values to be used with
the ACC_JERK function.

Note: Thisfunction block is not intended to be used directly with the SCURVE or
M_SCRVLC because the unitsfor those functions are different (e. g ACC is
Counts/min/min).

Inputs:
The ENOO input of this function block would normally be one-shot.

The VM input is set to the maximum velocity for the servo or time axis moveto be
executed.

The TM input sets the total time to reach velocity VM if the axis starts from rest.
Typical values might be 0.1 seconds or 10 seconds. This value must be positive or
the OK will not be set.

The Sinput sets the percentage of time spent in constant jerk. A value of 80(%)
percent means 40% of the acceleration time spent in constant jerk, 20% in constant
acceleration and another 40% in constant jerk. This value must be set to 100 or less
or the OK will not be set.

2-99

Outputs:

The OK isset if theinput values are within range and the output values were calcu-
lated.

The ACC output is the maximum acceleration rate for the axis expressed in ladder
units/min/sec for a servo axis and counts/min/sec for atime axis.

The JERK output is the constant jerk in ladder units/min/sec for a servo axis and
counts/min/sec? for atime axis.

2-100

M_SCRVLC

Performs Linear and Circular Moves with S-Curve USER/M_MOVE
—M_'g‘é“FQ\E/E Inputs: ENO1 (BOOL) - enables execution
{1ene1 aueple STRT (BOOL) - enables the coordinated move
{STRT ERR INC (WORD) - defines incremental or absolute
I mode for up to 16 axes (O=absolute, 1=incremental)
1r1ME TIME (BOOL) - definesif move is feedrate or time
AT of move (O=feedrate, 1=time of move)
] - RATE (DINT) - feedrate or time of move
N CCW (BOOL) - defines direction of circular move
1 (O=clockwise, 1=counter-clockwise)
JCIRe LIN (WORD) - defines which axesto movein a
1DEP linear mode
NDPT CIRC (WORD) - defines which axesto movein a
{CEN1 circular mode
1CEN2 DEP (WORD) - defines which axesto movein a
1 BNDW simultaneous endpoint arrival mode
10VRD NDPT (DINT(0..16)) - endpoints or distances to
{PATH move
IaccL CENL1 (DINT) - circle center for lowest numbered
JERK circular axis
VA CEN2 (DINT) - circle center for highest numbered

circular axis

BNDW (DINT) - circular endpoint bandwidth
OVRD (USINT) - feedrate override percentage
PATH (USINT) - path number

ACCL (LREAL) - path acceleration in ladder
units/min?

JERK (LREAL) - path jerk in ladder units/min3

MAXF (DINT) - maximum path feedrate in ladder
units/minute

Outputs: QUED (BOOL) - move was queued without error

ERR (INT) - error number describing error that
occurred when the move was queued

2-101

Inputs

<<INSTANCE NAME>>:M_SCRVLC(ENO1 := <<BOOL>>, STRT :=
<<BOOL>>, INC := <<WORD>>, TIME := <<BOOL>>, RATE :=
<<DINT>>, CCW :=<<BOOL>>, LIN :=<<WORD>>, CIRC =
<<WORD>>, DEP := <<WORD>>, NDPT := <<DINT (0..16)>>, CEN1 :=
<<DINT>>, CEN2 := <<DINT>>, BNDW := <<DINT>>, OVRD :=
<<USINT>>, PATH := <<USINT<<, ACCL := <<LREAL>>, JERK :=
<<LREAL>> MAXF := <<DINT>>, QUED => <<BOOL>>, ERR =>
<<INT>>);

The M_SCRVLC function block provides the interface from the application .LDO
to the RATIO_RL function in order to perform linear coordinated, circular, or
third axis departure (s multaneous endpoint arrival) moves with S-curve accelera-
tion and decel eration. Before this function can be used, the axes must be initial-
ized, the position loop must be closed, and a queue must be available on al axesto
be used in the move.

Up to four separate paths of coordinated motion can be controlled. Each path of
motion requires a separate instantiation of the M_SCRVLC function block. Each
path must control a unique set of axes. Only one M_SCRVLC function block per
path can be used with the application .LDO.

Thisfunction block can control up to 16 axes.

Note: Thisfunction block requires a numeric processor or a 486 DX
processor in the PIC900 and version 6.2 or higher of PiCPro.

The ENOL input of this function block must be set every scan.

The STRT input must be one-shot. When it is one-shot, the function block will
start the coordinated move, or enter it in the queue for the axes. It is the user's
responsibility to ensure that there is aqueue available on all of the axesinvolved in
the move before pulsing this input.

The INC input defines whether each axis should move in the absolute or incremen-
tal mode. One bit of thisWORD isreserved for each of the sixteen possible axes.
Bit Oissetif axis1lisincremental, or reset if axis 1 isabsolute, bit 1 isset if axis2
isincremental, reset if axis 2 is absolute, etc..

The TIME input defines whether the move should be executed as a path feedrate
move or atime of move. Thisinput should be reset for path feedrate, or set for time
of move.

If the TIME input isreset, then the RATE input is the path feedrate for the movein
ladder units/minute. It the TIME input is set, then the RATE input is the time for
the move in milliseconds.

The RATE isthe path feedrate or the time for the move to execute depending on
the TIME input.

The CCW input is only used for circular moves. If it isreset, then the moveis
clockwise, if it is set, then the move is counter-clockwise.

2-102

The LIN input defines which axes in the move are to be moved in alinear mode.
One bit of the WORD is reserved for each of the sixteen axes. The bit must be set
for the axisto do alinear move. Axeswho have their bits set will beincluded in the
calculations for the path feedrate.

The CIRC input defines which axesin the move are to be moved in a circular
mode. One bit of the WORD is reserved for each of the sixteen axes. The bit must
be set for the axis to do acircular move. Axes who have their bits set will be
included in the calculations for the path feedrate.

The DEP input defines which axes in the move are to be moved in a simultaneous
endpoint arrival mode. One bit of the WORD is reserved for each of the sixteen
axes. The bit must be set for the axisto move. Axes who havetheir bits set will not
be included in the calculations for the path feedrate, but they will arrive at their
endpoints simultaneously with the axes that are.

Note: TheLIN, CIRC, and DEP words may never have the same bits set in
them at atime. You must always set a bit for every axis ever used in
the path, even if the axisis not to move in this particular move. In this
case, you would set either the LIN or DEP bit for the axis, set the INC
bit for the axis, and program an endpoint of zero for the axis.

The NDPT array holds the endpoints for the axes used in the move. The Oth
element isnot used. If the INC bit is set for the axis, thisis the distance to move, if
the INC bit isreset for the axis, then thisis the position to move to. The endpoints
are entered in ladder units.

The CEN1 and CENZ inputs define the circle centersif acircular moveis being
performed. The CEN1 input is the center for the lowest numbered circular axis,
and the CENZ2 input is the center for the highest numbered circular axis. The cen-
ters are always programmed as an incremental distance from the starting point of
the circle, even if the INC bit for the axesis not set. The centers are entered in lad-
der units. For example, if a circle were being done with axes 4 and 6, then CEN1
would be the center for axis 4, and CEN2 would be the center for axis 6.

The BNDW input defines abandwidth for circular moves. When acircular moveis
requested, the distance from the start point to the center point and the distance
from the endpoint to the center point are compared for both axes. If these distances
differ by more than the bandwidth entered here, then the move will not execute and
error 14 will be returned on the ERR output. This bandwidth is entered in ladder
units.

The OVRD input defines the feedrate override value. This can be changed at any
time, even if the STRT input is not energized. This adjusts the actual feedrate or
time to be from 0 to 255 percent of the programmed feedrate or time.

The PATH input defines the number of the path. Up to four totally independent
paths of coordinated motion can be defined. This must be a number from 1 to 4.
This should not be changed once it is set.

The ACCL isthe path acceleration in ladder unitsmin?. The JERK isthe path jerk
in ladder units/min3. The MAXF isthe maximum path feedrate in ladder units/min.
This should not be changed once it is set.

2-103

Outputs

The QUED output will be set for one scan when STRT is pulsed and the move has
been successfully queued on all axes defined. If an error occurred in queueing the
move, this output will be reset when STRT is pulsed, and an error code will be
stored in the ERR outpui.

The ERR output will be non-zero if an error occurs in queueing amove. A list of
error codes is shown below:

m
Py
Py

Description

No error

No bitswere set inthe LIN, CIRC, or DEP WORDs
The same bit was set in the LIN and CIRC WORDs
The same bit was set in the DEP and CIRC WORDs
The same bit was set in the LIN and DEP WORDs
The number of bits set in the CIRC WORD was not 0 or 2
Not used

Not used

The time of move or feedrate was negative

The time of move or feedrate was zero

The feedrate was too high or the time was too low to
calculate

The feedrate was too low or the time was too high to
calculate

12 An axis that was selected was not initialized by the servo
setup function

13 The STRTSRV function has not been called
14 Endpoint not on circle

1XX When the distance to move was converted to feedback units,
it was too positive to fit into 32 bits. XX = Axis number

2XX When the distance to move was converted to feedback units,
it was too negative to fit into 32 bits. XX = Axis number
3XX The path feedrate or time entered causes an axisto exceed its
velocity limit from servo setup. XX = Axis number
32766 The time axis could not be started

32767 One of the OKson the RATIO_RL functions did not get set
or the OK on the time axis distance move did not get set

O© o ~NO Ul WDNPEFEO

=
o

[EEY
[E

2-104

Calculating ACCL and JERK

This section explains how to calculate the ACCL and JERK inputsfor the function

block.
The drawing below illustrates an S-curve acceleration.

vm

|
I

Velocity

|
! >

0
- . + > > Time
0.51] ta 051

&N = constant jerk
~ > = constant acceleration

tm

Vi, = Maximum path velocity

= Thetotal timeit takesto get to velocity V,, if the axis starts at
0.

s= The percentage of time (t,,) spent in constant jerk.

tm

From 0 to t,, the axis will be in constant jerk
Fromt, tot,, the axiswill be in constant acceleration.

Fromt, to t,,, the axis will again be in constant jerk.
The formulas below show the relationship between t, t;, t,, and s,
a

= tm—1y = stxtmg

2-105

iy = tm—%xsxtng

For a10% S-curve, 10% of thetime (t,,) is spent in constant jerk.

Thismeansthat s=0.1.
For a20% S-curve, 20% of the time (tm) is spent in constant jerk.
This meansthat s= 0.2, etc.

If you know V ,,, t,, @nd s, then you can calculate jerk and acceleration using the
following formulas.

_ 2 %X Vm
JERK s Xt,2(1-0.5x%5)
ACCL = Vim

tm*(1-0.5x%xs)

The units for JERK are ladder units per minute?; therefore, V,, isin ladder units
per minute and t,,, isin minutes. The units for ACCL are ladder units per minute?.

2-106

M_SRCMON

Monitors up to five SERCOS IDNs USER/M _SERCOS
M_S%MEN_ Inputs. ENOO (BOOL) - enables execution
{mee okl SRS(STRUCT) - dot, ring, and slave to monitor
1srs ra1Ll. IDNA (UINT) - number of first IDN to monitor
41DNA MoDA| P_A (BOOL) - set for Product IDN, reset for
lp A wmopgl. SystemIDN
110N MoDC = IDNB (UINT) - number of second IDN to monitor
{p 8 moopl P_B(BOOL) - set for Product IDN, reset for System
- IDN
4{IDNC MODE
I ern IDNC (UINT) - number of third IDN to monitor
110ND SERR P_C (BOOL) - set for Product IDN, reset for
System IDN
{P_D BSER .
TONE T FL IDND (UINT) - number of fourth IDN to monitor

P_E

P_D (BOOL) - set for Product IDN, reset for
System IDN

IDNE (UINT) - number of fifth IDN to monitor

P_E (BOOL) - set for Product IDN, reset for
System IDN

Outputs: OK (BOOL) - execution complete
FAIL (BOOL) - execution failure

MODA (REAL) - valueof first IDN

MODB (REAL) - value of second IDN
MODC (REAL) - value of third IDN

MODD (REAL) - value of fourth IDN
MODE (REAL) - value of fifth IDN

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS dlave error*

BSER (INT) - SERCOS block specific error*

|_FL (UINT) - indicatesthe IDN that failed
(1 through 5 corresponding to A through E) if
an error occurs during aread

*See error tables at end of the M_SRCWTL function
block section.

2-107

<<INSTANCE NAME>>:M_SRCMON(ENQO := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDNA := <<UINT>>, P_A := <<BOOL>>, IDNB
:= <<UINT>>, P_B := <<BOOL>>, IDNC := <<UINT>>,P_C:=
<<BOOL>>, IDND := <<UINT>>, P_D := <<BOOL>>, IDNE :=
<<UINT>>, P_E := <<BOOL>>, OK => <<BOOL>>, FAIL =>
<<BOOL>>, MODA => <<REAL>>, MODB => <<REAL>>, MODC =>
<<REAL>>, MODD => <<REAL>>, MODE => <<REAL>>, ERR =>
<<INT>>, SERR => <<UINT>>, BSER => <<INT>>, |_FL =>
<<UINT>>);

TheM_SRCMON function block monitors up to five SERCOS IDNsfor asingle
SERCOS dave. The operation datafor each IDN is continuously read as long as
the ENQO input is energized.

The IDNA through IDNE inputs can be used or left blank. When the ENOO input
transitions from off to on, the attributes of each IDN are read and saved in the
function block. These attributes are used to scale the data being monitored into
engineering units for the output. If the IDNA through IDNE inputs are changed
while monitoring, the ENOO input must be dropped and then re-energized so that
the attributes for each IDN are read again.

The SRS input is used to indicate which SERCOS slave to monitor. Slot, ring, and
slave are used instead of an axis number so that this function block can be used in
phase 2 initialization if desired. The SRS structure must be declared as follows:

Name Data Type Definition
SRS STRUCT
SLOT UINT Slot number of the SERCOS
module
.RING UINT Ring number on the module
SLAVE UINT Slave number on thering
END_STRUCT

If FAIL isset, ERR or BSER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

2-108

M_SRCPRC
Executes SERCOS procedure command function USER/M _SERCOS

M'g'é“é'E@ Inputs: RQOO (BOOL) - requests execution of a procedure

command function (one-shot)

RQ0O DONE -

sRs farLl SRS(STRUCT) - st ring, and slave number of the
| SERCOS slave to execute the procedure command

IDN ACTVI- function

PROD ERRI— |DN (UINT) - IDN number of procedure command
SERR|— function

BSER— PROD (BOOL) - set for Product IDN, reset for
System IDN

Outputs:DONE (BOOL) - procedure command
function complete

FAIL (BOOL) - procedure command function failure

ACTV (BOOL) - set while the procedure command
function is active

ERR (INT) - SERCOS error*
SERR (UINT) - SERCOS dlave error*
BSER (INT) - SERCOS block specific error*

*See error tables at end of the M_SRCWTL
function block section.

<<INSTANCE NAME>>:M_SRCPRC(RQO0 := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDN := <<UINT>>, PROD := <<BOOL>>, DONE
=><<BOOL>>, ACTV =><<BOOL>>, ERR => <<INT>>, SERR =>
<<UINT>>, BSER => <<INT>>);

The M_SRCPRC function block executes a SERCOS procedure command func-
tion for asingle SERCOS slave. The RQOO input of this function block should be
one-shot to initiate the procedure command function. While the procedure com-
mand function is executing within the SERCOS dave, the ACTV output will be
set. If the procedure command function compl etes without error, the DONE output
will be set and the ACTV output will be reset. If the procedure command function
fails, the FAIL output will be set and the ACTV output will be reset. The DONE or
FAIL output will remain set until the RQO0 input is one-shot again.

The SRS input isused to indicate which SERCOS slaveis to execute the procedure
command function. Slot, ring, and slave are used instead of an axis number so that
this function can be used in phase 2 initialization if desired. The SRS structure
must be declared as shown in the following table:

2-109

Name Data Type Definition

SRS STRUCT

SLOT UINT Slot number of the SERCOS module

.RING UINT Ring number on the module

SLAVE UINT Slave number on thering
END_STRUCT

If FAIL isset, ERR or BSER will be non-zero indicating the type of error.

If ERR = 128 indicating slave error, SERR will be non-zero indicating the type of
dave error.

2-110

M_SRCRDL
Reads SERCOS IDNs

USER/M_SERCOS

— NAME—
M_SRCRDL

RQOO DONE
SRS FAIL
IDN ACTV
PROD ERR
FILE SERR
BSER
I0ER
NUM
CURR

Inputs: RQOO (BOOL) - requests execution (one-shot)
SRS (STRUCT) - dlat, ring, and slave number

IDN (UINT) - IDN number that will return alist
of IDNs

PROD (BOOL) - set for Product IDN, reset for
System IDN

FILE (STRING [80]) - filename of the file to save to
Outputs: DONE (BOOL) - execution complete
FAIL (BOOL) - execution failed

ACTV (BOOL) - set while executing

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS dave error*

BSER (INT) - SERCOS block specific error*

IOER (INT) - 1/O function block error (See
Appendix B in the Software Manual.)

NUM (UINT) - number of IDNsinthelist
CURR (UINT) - current member being read

*See error tables at end of the M_SRCWTL
function block section.

<<INSTANCE NAME>>:M_SRCRDL (RQOQO0 := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDN := <<UINT>>, PROD := <<BOOL>>, FILE
= <<STRING>>, DONE =><<BOOL>>, FAIL =><<BOOL>> ACTV =>
<<BOOL>>, ERR => <<INT>>, SERR => <<UINT>> BSER => <<|INT>>,
IOER => <<INT>>, NUM => <<UINT>>, CURR => <<UINT>>);

TheM_SRCRDL function block reads alist of up to 400 IDNs and savesthelist to
the PIC RAMDISK or workstation as an ASCI| file along with the name, units,
and operation data limitsfor each IDN inthelist. Each IDN appearsinasingleline
in the file. The data for each IDN is separated by tabs. This function block can be
used in conjunction with M_SRCWTL to read and write lists of IDNsto and from
aSERCOS dave.

The IDN number specified with the IDN and PROD inputs must return alist of
IDNsin order to use this function block.

2-111

The RQOO input must be one-shot. While the function block is reading the list of
IDNSs, the ACTV output will be set. If the read completes without error, the DONE
output will be set and the ACTV output will be reset. If an error occurs during
reading, the FAIL output will be set and the ACTV output will be reset. The
DONE or FAIL output will remain set until the RQOO0 input is one-shot again.

The NUM output indicates the total number of IDNs that exist in the list being
read. The CURR output indicates the current member of the list being read and
will range from O to NUM.

The SRS input is used to indicate from which SERCOS slave the list of IDNswill
be read. Slot, ring, and dave are used instead of an axis number so that this func-
tion block can be used in phase 2 initialization if desired. The SRS structure must
be declared as follows:

Name Data Type Definition

SRS STRUCT

SLOT UINT Slot number of the SERCOS module

.RING UINT Ring number on the module

SLAVE UINT Slave number on thering
END_STRUCT

FILE isastring containing the full file specification of the file in which the list of
IDNsis saved. This string must be terminated by the null character $00, (i.e.
RAMDISK:\IDNFILE.DAT$00).

If FAIL isset ERR, BSER, or IOER will be non-zero indicating the type of error.
If ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
dave error.

2-112

M_SRCWT

Writes and reads SERCOS IDNs

USER/M_SERCOS

— NAME—
M_SRCWT

RQOO
SRS

DONE
FAIL

IDNA ACTV

P_A

ERR

WODA SERR

IDNB
P_B
WoDB
IDNC
P_C
WwoDC
IDND
P_D
WODD
IDNE
P_E
WODE

BSER
FIDN
RODA
RODB
RODC
RODD
RODE

Inputs: RQO0 (BOOL) - requests execution (one-shot)
SRS (STRUCT) - dlot, ring, and slave number
IDNA (UINT) - number of first IDN to write

P_A (BOOL) - set for Product IDN, reset for
System IDN

WODA (REAL) - value of operation datum
for IDNA

IDNB (UINT) - number of second IDN to write

P B (BOOL) - set for Product IDN, reset for
System IDN

WODB (REAL) - value of operation datum
for IDNB

IDNC (UINT) - number of third IDN to write

P_C(BOOL) - set for Product IDN, reset for
System IDN

WODC éREA L) - value of operation datum
for IDN

IDND (UINT) - number of fourth IDN to write

P_D (BOOL) - set for Product IDN, reset for
System IDN

WODD (REAL) - value of operation datum
for IDND

IDNE (UINT) - number of fifth IDN to write

P_E (BOOL) - set for Product IDN, reset for
System IDN

WODE (REAL) - value of operation datum for IDNE

Outputs: DONE (BOOL) - set when the writes and reads
are complete

FAIL (BOOL) - set if write or read fails

ACTV (BOOL) - set when operation isin process
ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*
FIDN (UINT) - the IDN the operation failed on

RODA (REAL) - value of operation datum read
back from IDNA

RODB (REAL) - value of operation datum read
back from IDNB

RODC (REAL) - value of operation datum read back
from IDNC

RODD (REAL) - value of operation datum read back
from IDND

RODE (REAL) - value of operation datum read back
from IDNE

*See error tables at end of M_SRCWTL function
block section.

2-113

<<INSTANCE NAME>>:M_SRCWT(RQO0O0 := <<BOOL>>, SRS :=
<<MEMORY AREA>>,IDNA :=<<UINT>>, P_A :=<<BOOL>>, WODA
= <<REAL>>, IDNB := <<UINT>>, P_B := <<BOOL>>, WODB :=
<<REAL>>, IDNC := <<UINT>>, P_C := <<BOOL>>WODC :=
<<REAL>>, IDND := <<UINT>>, P_D := <<BOOL>>, WODD :=
<<REAL>>, IDNE := <<UINT>>, P_E := <<BOOL>>, WODE :=
<<REAL>> DONE => <<BOOL>>, FAIL => <<BOOL>>, ACTV =>
<<BOOL>>, ERR => <<INT>>, SERR => <<UINT>> BSER => <<INT>>,
FIDN => <<UINT>>, RODA => <<REAL>>, RODB => <<REAL>>,
RODC => <<REAL>>, RODD => <<REAL>>, RODE => <<REAL>>);

The M_SRCWT function block writes and reads up to five SERCOS IDNs.

The M_SRCWT function block will write and read back operation data to a maxi-
mum of five IDNson a SERCOS slave. The operation datafor each IDN iswritten
and read once when the RQOO0 input is energized.

The IDNA through IDNE inputs can be used or left blank. When the RQOO input
transitions from off to on, the attributes of each IDN are read and saved in the
function block. These attributes are used to scal e the data at the input to the correct
units for the SERCOS slave. After the attributes are read the operation data is writ-
ten and read back again to verify that the write was successful. While this process
is happening, the ACTV output will remain set. If the process completes without
error, the DONE output will be set and the ACTV output will be reset. If an error
occurs, the FAIL output will be set and the ACTV output will be reset.

The RQOO0 input must be one-shot each time you wish to write data to the SERCOS
dlave. A second request cannot be made while the first oneis still active. If this
happens, the second request will be ignored.

The SRSinput is used to indicate which SERCOS dave to write to. Slot, ring, and
slave are used instead of an axis number so that this function can be used in phase
2 initialization if desired. The SRS structure must be declared as follows:

Name Data Type Definition

SRS STRUCT

SLOT UINT Slot number of the SERCOS module

RING UINT Ring number on the module

SLAVE UINT Slave number on thering
END_STRUCT

If FAIL isset, ERR or BSER will be non-zero indicating the type of error. If ERR
=128 indicating Slave Error, SERR will be non-zero indicating the type of slave
error.

2-114

M_SRCWTL

Writes SERCOS IDNs USER/M_SERCOS
— NAME— I nputs: RQO0 (BOOL) - requests execution (one-shot
M_SRCWTL P Q00 ()-req ()

SRS (STRUCT) - dlot, ring, and slave number
FILE (STRING [80]) - filename
SRS FAIL|—= Outputs: DONE (BOOL) - execution complete
FILE ACTVI- FAIL (BOOL) - execution failed
ERR|- ACTV (BOOL) - execution active

SERRl= ERR(INT) - SERCOS error*

Bserl SERR (UINT) - SERCOS slave error*
BSER (INT) - SERCOS block specific error*

IOER (INT) - 1/O function block error (See Appendix B in the
CURR — Software Manual.)

CURR (UINT) - current IDN being written
* See error tables at end of the this function block section.

<<INSTANCE NAME>>:M_SRCWTL(RQO00 := <<BOOL>>, SRS := <<MEM-
ORY AREA>>, FILE := <<STRING>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ACTV =><<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>
BSER => <<INT>>, IOER => <<INT>>, CURR => <<UINT>>);

The M_SRCWTL function block writesalist of SERCOS IDNSs.

The M_SRCWTL function block reads a list of IDNs from an ASCI|I file on the
PIC RAMDISK or workstation and writes the operation data from the list to a
SERCOS dave. The ASCII file must be of the same format used for the
M_SRCRDL function block. M_SRCWTL can be used in conjunction with
M_SRCRDL to read and write lists of IDNsto and from a SERCOS slave.

The RQOO input to this function must be one-shot. While the function block is
writing the list of IDNs, the ACTV output will be set. If the write completes with-
out error, the DONE output will be set and the ACTV output will be reset. If an
error occurs during the write, the FAIL output will be set and the ACTV output
will be reset. The DONE or FAIL output will remain set until the RQOO input is
one-shot again.

The CURR output indicates the current IDN being written to the SERCOS slave.
Thiswill continually update while the function block is active.

RQOO DONE —

I0ER |—

2-115

The SRS input is used to indicate which SERCOS slave the list of IDNswill be
written to. Slot, ring, and slave are used instead of an axis number so that this func-
tion can be used in phase 2 initialization if desired. The SRS structure must be
declared as shown in the following table:

Name Data Type Definition

SRS STRUCT

SLOT UINT Slot number of the SERCOS module

.RING UINT Ring number on the module

SLAVE UINT Slave number on thering
END_STRUCT

FILE isastring containing the full file specification of the file in which the list of
IDNsissaved. This string must be terminated by the null character $00 (i.e. RAM-
DISK:\IDNFILE.DAT$00).

If FAIL isset ERR, BSER, or IOER will be non-zero indicating the type of error.
If ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
dave error.

M_SERCOS Function Block Errors

There are three types of error outputs that can appear on the M_SERCOS function
blocks. They are described in the three tables that follow.

ERR Output

Table 1 contains the list of SERCOS errors that can appear at the ERR output of
the M_SERCOS function blocks.

2-116

Table 1 - List of ERR Codes

Err # Description

0
1
2

w

15

16
17

18
19

20

21

22

23

24
25

30

No error
IDN queue was busy when called.

Quantity specified in the .AVAIL structure member is not large enough for received
data.

Axisisnotinitialized, is not a SERCOS axis, or the sot/ring/slave specification is
incorrect.

Invalid datain DATA input structure

Error reset function could not be completed.
SERCOS ring 1 busy*

SERCOS ring 2 busy*

SERCOS ring 1 configuration size error**
SERCOS ring 2 configuration size error**
Function block enabled while already in process

Bit 3 or bit 8 set in the procedure command acknowledgment (data status) Either oper-
ation datainvalid or procedure command error

Not enough pool memory available
Change hit in status word was zero after reference complete.

The IDN gueue was cleared during an IDN transfer, typically caused by calling the
SC_INIT function while an IDN is being read or written.

SERCOS module is unavailable for IDN transfer because the phase-to-phase
transition in progress is between phase 2 and phase 4.
Slave response timed out

The SERCOS module did not receive an expected AT response. SERCOS cable may
be disconnected.

Number of SERCOS dlots equals zero.

The SERCOS module did not receive an expected MDT response. SERCOS cable
may be disconnected.

Phase 0 detected that the ring is not complete. The optic cable could be open or drive
turned off.

The SERCOS module firmware is outdated for the features requested from a newer
version of the motion library.

The SERCOS module firmware is a newer version and the motion library is outdated
and unable to interface.

The data (user function) is outdated for the features requested from the library or the
SERCOS module firmware.

The datais a newer version and the library is unable to interface.

A two-ring SERCOS module was specified in SERCOS setup but the moduleis aone-
ring SERCOS module.

The drive status word (bit 13=1) indicates an error.

2-117

31
32
33

35
36
48
49
50

51

65
66
67
68
69
70
71
72
73
74
128

136
144

An E-stop condition exists for this axis in the PiC900.

Incorrect phase number, contact Giddings & Lewis.

Incorrect address error, contact Giddings & Lewis.

Incorrect AT number error, contact Giddings & Lewis.

Variable 48 is set to 1 and you attempt to close the loop

OPTN input isinvalid.

Service channel not ready when attempt to send/receive non-cyclic data
No datato send or receive

The value of the .SIZE member of the TASK input structure does not match the byte
count in the SERCOS module.

The value of the .SIZE member of the MAIN input structure does not match the byte
count in the SERCOS module.

Error occurred calculating when MDT should occur.

Error occurred calculating when drive data valid.

Error occurred calculating when feedback data valid.

Error occurred calculating total time required for communication cycle.
Error occurred calculating cyclic data memory for SERCON processor.
Error occurred calculating cyclic data memory for internal memory map.
Error occurred calculating service channel memory map.

Incorrect ring error, contact Giddings & Lewis.

Incorrect AT count error, contact Giddings & Lewis.

CPU on SERCOS module has too many tasks during update.

Slave error occurred. Read SERR output to identify error. The SLV output indicates
the slave number.

Slave will not respond in phase 1. The SLV output indicates the slave number.

Procedure command error - The slave number can be viewed at the SLV output and
the IDN number at the IDN output.

*Thisbusy error may occur if the SC_INIT function is not one-shotted and a second store operation is attempted
before the first oneis done.

**This size error will occur if too many IDNs are defined in the SERCOS setup data.

2-118

SERR Output

SERR #

4097
4105
8193
8194
8195
8196
8197
12290
12291
12292
12293
16385
16386
16387
16388
16389
20481
20482
20483
20484
20485
24577
24578
24579
24580
24581
28674
28675
28676
28677
28678
28679
28680

Table 2 contains the list of slave errors that can appear at the SERR output of
M_SERCOS function blocks.

Table 2 - List of SERR Error Codes

Description

No error

ThisIDN does not exist.

The data for this IDN may not be accessed.
The name does not exist

The name transmission is too short

The name transmission istoo long

The name may not be changed

The name is write-protected

The attribute transmission is too short

The attribute transmission istoo long

The attribute may not be changed

The attribute is write-protected at thistime
The units do not exist

The units transmission is too short

The units transmission is too long

The units may not be changed

The units are write-protected at this time
The minimum value does not exist

The minimum value transmission is too short
The minimum value transmission is too long
The minimum value may not be changed
The minimum value is write-protected

The maximum value does not exist

The maximum value transmission is too short
The maximum value transmission is too long
The maximum value may not be changed
The maximum value is write-protected

The datais too short.

The dataistoo long

The data may not be changed.

The datais write-protected at thistime.

The datais smaller than the minimum value.
The datais larger than the maximum value.
The bit pattern for thisIDN isinvalid.

2-119

BSER Output

Table 3 containsthellist of block specific errorsthat can appear at the BSER output
of M_SERCOS function blocks.

Table 3 - Block Specific Error Codes

BSER # Description
0 No error
Request to execute but not in phase 2 or 4
IDN is a procedure command
Datais variable length
Datais reserved
IDN is not a procedure command

a b~ wWwN -

2-120

M_STATUS
Return Axis Data USER/M DATA

SWMEST Inputs: ENO1 (BOOL) - enables execution
{1 okl AXIS(USINT) - axis number
AXIS INPS|- Outputs:OK (BOOL) - execution completed without error

0AvL = INPS(BOOL) - set when axisisin position
QEl QAVL (BOOL) - set when next queue is empty

WTP QUE (USINT) - queue number of movein
ACTL — active queue

conl= MVTP (DINT) - type of movein active queue

PERR— ACTL (DINT) - actua position of axisin ladder
repl Units

COMD (DINT) - commanded position of axisin
ladder units

PERR (DINT) - position error of axisin ladder units
FERR (DINT) - filter error of axisin ladder units

<<INSTANCE NAME>>:M_STATUS(ENOL := <<BOOL>>, AXIS :=
<<USINT>>, OK => <<BOOL >>, INPS => <<BOOL >>, QAVL =>
<<BOOL>>, QUE => <<USINT>>, MVTP => <<DINT>> ACTL =>
<<DINT>>, COMD => <<DINT>>, PERR => <<DINT>>, FERR =>
<<DINT>>);

Thisfunction block obtains information for adigitizing, time, or closed loop axis.
It returns the in position flag, the queue available flag, the active queue number,
the active move type, the actual position, the commanded position, the position
error, and the filter error for the axis.This function block should be enabled every
scan.

Theinput at AXIS determines which axis the output information isfor.

The INPS output is set whenever the following error of the axisiswithin thein
position limit entered in servo setup. It will be reset while the axisisin motion.

The QAVL output is set whenever the next queue or both the next and active
gueues are empty. When set it means another move can be put in the axis queue.

The QUE output holds the queue number of the move in the active queue. The
gueue number is assigned to each move when the move function is enabled. If no
moves are active, the QUE number will be 0.

2-121

The MV TP output holds the type of the move in the active queue. If no moveis
active, thiswill be 0. The moves types are defined below:

MVTP Description
11 POSITION
12 DISTANCE
14 VEL_STRT
16 FAST_REF or LAD_REF
18 RATIOPRO
20 RATIOSYN or RATIO_GR
22 RATIOCAM
23 RATIOSLP
24 RATIO_RL

The ACTL output holds the actual position of the axisin ladder units.

The COMD output holds the commanded position of the axis in ladder units.
The PERR output holds the proportional error of the axisin ladder units.
The FERR output holds the filter error of the axisin ladder units.

Thisfunction block can be used for adigitizing axis, atime axis, or a closed loop
axis. If used for adigitizing axis only the ACTL and COMD outputs are used and
there is no need to enter variables for the INPS, QAVL, QUE, MVTP, PERR, or
FERR outputs. If used for atime axis, only the ACTL output is used and there is
no need to enter variables for the INPS, QAVL, QUE, MVTP, COMD, PERR, and
FERR outputs.

The OK output will not be set if the axis has not been initialized.

2-122

M_WTTUNE
Writes tuning parameters USER/M_DATA

_M%ATA'EFUE Inputs; ENOO (BOOL) - enables execution

Imes okl AXIS(USINT) - identifies axis

{aAx1s ERRl. WT_P (BOOL) - enables write of proportional gain

{wt p P (DINT) - proportional gain

1P WT_I (BOOL) - enables write of integral gain

HWT_I | (DINT) - integral gain

1l WT_D (BOOL) - enableswrite of derivative gain

AWT_D D (DINT) - derivative gain

1D WTOF (BOOL) - enables write of analog output

{WTOF offset

{OFST OFST (DINT) - analog output offset

{WTFL WTFL (BOOL) - enables write of slow speed

JFILT filter value

WTFF FILT (DINT) - ow speed filter value

{ FFWD WTFF (BOOL) - enableswrite of feedforward
percentage

FFWD (DINT) - feedforward percentage
Outputs: OK (BOOL) - execution complete
ERR (INT) - error number
<<INSTANCE NAME>>:M_WTTUNE(ENOO := <<BOOL>>, AXIS =
<<USINT>>, WT_P:=<<BOOL>>, P:= <<DINT>>, WT_1 := <<BOOL>>, |
:=<<DINT>>, WT_D :=<<BOOL>> D := <<DINT>>, WTOF := <<BOOL>>,

OFST := <<DINT>>, WTFL := <<BOOL>>, FILT := <<DINT>>, WTFF :=
<<BOOL>>, FFWD := <<DINT>>, OK => <<BOOL>>, ERR => <<INT>>);

Thisfunction block allows you to write all six tuning parameters from the TUNE-
WRIT function in asingle function.

This function block requires the numeric processor or a 486 DX processor.
The ENOO input of this function should be set every scan.

The AXISinput identifies which axis to write datato. It must be between 1 and 16
or between 101 and 116, inclusive.

Note: LU = ladder units, MIN = minutes, LUFE = ladder units of following error.

2-123

When the WT_Pinput is set, the proportional gain of AXISwill be changed to the
valueentered at P. Pisin LU / MIN / LUFE and must be between 0 and 20000.

When the WT_I input is set, the integral gain of AXI1Swill be changed to the value
enteredat I. I isin LU/ MIN / LUFE * MIN. | must be from 0 to 32000.

When the WT_D input is set, the derivative gain of AXIS will be changed to the
vaueenteredat D. Disin LU/ MIN /LUFE/ MIN.

When the WTOF input is set, the analog output offset voltage of AXIS will be
changed to the value entered at OFST. OFST must be from -10000 to +10000 mil-
livolts.

When the WTFL input is set, the slow speed filter value of AX1Swill be changed
to the value entered at FILT. FILT must be from 0 to 10000 milliseconds.

When the WTFF input is set, the feedforward percentage of AXISwill be changed
to the value entered at FFWD. FFWD must be from 0 to 100%.

TheWT_P,WT_I, WT_D, WTOF, WTFL and WTFF inputs can be one-shot. The
parameters will remain changed until the axisisre-initialized or until thisfunction
block or the TUNEWRIT function is called again for AXIS.

The OK output will be set if the function executes without error. If an error occurs,
OK will not be set and ERR will hold a number describing the error that occurred.
A listing of errorsis shown below:

ERR Description

0 No error
1 Triedto change P for AXIS number that was not initialized or is out
of range

3 Datafor Pisout of range or can not be calculated

101 Triedto changel for AXIS number that was not initialized or is out
of range

103 Datafor | isout of range or can not be calculated

201 Triedto change D for AXIS number that was not initialized or is out
of range

203 Datafor D isout of range or can not be calculated

301 Triedto change OFST for AXIS number that was not initialized or is
out of range

303 Datafor OFST isout of range or can not be calculated

401 Tried to change FILT for AXIS number that was not initialized or is
out of range

403 Datafor FILT isout of range or can not be calculated

501 Tried to change FFWD for AXIS number that was not initialized or
isout of range

503 Datafor FFWD isout of range or can not be calculated

2-124

S_CLOS1

Close Loop on SERCOS Servo Axes 1to 8 USER/S ASFB
r MWEST Inputs: ENOO (BOOL) - enables execution
1 EN&G cLsple MSTR (BOOL) - machine start input
{msTR A1cl DELY (TIME) - amount of time that will elapse after a positive
loery azcle transition of MSTR until the loops will be closed
A3C L Outputs: CLSD (BOOL) - one or more of axes 1 to 8 have their
cL position loops closed
ascl A1C (BOOL) - set when the loop is closed on axis 1
nec A2C (BOOL) - set when the loop is closed on axis 2
ATcl A3C (BOOL) - set when the loop is closed on axis 3
ABC L A4C (BOOL) - set when the loop is closed on axis 4
A5C (BOOL) - set when the loop is closed on axis 5

A6C (BOOL) - set when the loop is closed on axis 6
A7C (BOOL) - set when the loop is closed on axis 7
A8C (BOOL) - set when the loop is closed on axis 8

<<INSTANCE NAME>>:S_CLOS1(ENOO := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY := <<TIME>>, CLSD =><<BOOL>>, A1C =>
<<INT>>, A2C => <<BOOL>>, A3C => <<BOOL>>, A4C => <<BOOL>>,
A5C => <<BOOL>>, A6C => <<BOOL>>, A7C => <<BOOL>>, A8C =>
<<BOOL>>);

Thisfunction block isareplacement for M_CLOSL1 for SERCOS axes. It isnot for
analog controlled axes.

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 1 through 8 when the machine start input is pulsed. It also
sends aclass one diagnostics fault reset to the SERCOS drive. It closes the [oop on
SERCOS servo axes 1 through 8 after the machine start input is pulsed and a pro-
grammable time delay has elapsed. If there are no E-stop faults and the driveis
enabled the loop will be closed and the closed output will be energized.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

2-125

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The MM C example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended |adder logic for the E-stop handling of
the S_ CLOSL application. Please refer to MMC4_SOI.LDO for an example of

S CLOSL

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime DELY isnormally in the range from 500 msto 2 seconds.

On apositive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 1 through 8.

The positive transition of MSTR enables atimer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes 1
through 8. If the E-stops are reset and the SERCOS drive is enabled, the loops will
be closed on axes 1 to 8. CL SD will be energized if one or more of axes 1 to 8 have
their position loops closed.

If an E-stop fault occurson an axis 1 to 8, itsloop closed output (A1 to A8) will be
dropped. CLSD istrue aslong as one or more of axes 1 to 8 have their position
loops closed.

2-126

S_CLOS9

Close Loop on SERCOS Servo Axes 9 to 16 USER/S ASFB
r MWEST Inputs: ENOO (BOOL) - enables execution
1 EN&G cLsple MSTR (BOOL) - machine start input
{msTR Agcl DELY (TIME) - amount of time that will elapse after a positive
lpeLy atacl transition of MSTR until the loops will be closed
Atic Outputs: CLSD (BOOL) - one or more of axes 9 to 16 have
i their position loops closed
AaCL A9C (BOOL) - set when the loop is closed on axis 9
aack A10C (BOOL) - set when the loop is closed on axis 10
ascl A11C (BOOL) - set when the loop is closed on axis 11
Atge A12C (BOOL) - set when the loop is closed on axis 12
A13C (BOOL) - set when the loop is closed on axis 13

A14C (BOOL) - set when the loop is closed on axis 14
A15C (BOOL) - set when the loop is closed on axis 15
A16C (BOOL) - set when the loop is closed on axis 16

<<INSTANCE NAME>>:S CLOS9(ENQO := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY :=<<TIME>>, CLSD => <<BOOL>>, A9C =>
<<INT>>, A10C => <<BOOL>>, A11C => <<BOOL>>, A12C =>
<<BOOL>>, A13C => <<BOOL>>, A14C => <<BOOL>>, A15C =>
<<BOOL>>, A16C => <<BOOL>>);

Thisfunction block isareplacement for M_CLOS9 for SERCOS axes. It isnot for
analog controlled axes.

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 9 through 16 when the machine start input is pulsed. It also
sends aclass one diagnostics fault reset to the SERCOS drive. It closes the [oop on
SERCOS servo axes 9 through 16 after the machine start input is pulsed and a pro-
grammable time delay has elapsed. If there are no E-stop faults and the driveis
enabled the loop will be closed and the closed output will be energized.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

2-127

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The MM C example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended |adder logic for the E-stop handling of
the S_ CLOSx application. Please refer to MMC4_SOI.LDO for an example of

S CLOSx.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime DELY isnormally in the range from 500 msto 2 seconds.

On apositive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 9 through 16.

The positive transition of MSTR enables atimer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes 9
through 16. If the E-stops are reset and the SERCOS drive is enabled, the loops
will be closed on axes 9 to 16. CLSD will be energized if one or more of axes 9 to
16 have their position loops closed.

If an E-stop fault occurs on an axis 9 to 16, itsloop closed output (A9 to A16) will
be dropped. CLSD istrue aslong as one or more of axes 9 to 16 havetheir position
loops closed.

2-128

S CLS101

Close Loop on SERCOS Servo Axes 101 to 108 USER/S ASFB
r MWEST] Inputs: ENOO (BOOL) - enables execution
1 EN&G cLsple MSTR (BOOL) - machine start input
{msTR A101 DELY (TIME) - amount of time that will elapse after a positive
peLy Atezl transition of MSTR until the loops will be closed
A3 Outputs: CLSD (BOOL) - one or more of axes 101 to 108 have
sl their position loops closed
o5 A101 (BOOL) - set when the loop is closed on axis 101
Aag A102 (BOOL) - set when the loop is closed on axis 102
A7l A103 (BOOL) - set when the loop is closed on axis 103
A8 A104 (BOOL) - set when the loop is closed on axis 104
A105 (BOOL) - set when the loop is closed on axis 105

A106 (BOOL) - set when the loop is closed on axis 106
A107 (BOOL) - set when the loop is closed on axis 107
A108 (BOOL) - set when the loop is closed on axis 108

<<INSTANCE NAME>>:S CLOSI101(ENOO := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY :=<<TIME>>, CLSD => <<BOOL>>, A101 =>
<<INT>>, A102 => <<BOOL>>, A103 => <<BOOL >>, A104 => <<BOOL >>,
A105 => <<BOOL>>, A106 => <<BOOL>>, A107 => <<BOOL>>, A108 =>
<<BOOL>>);

Thisfunction block is areplacement for M_CLS101 for SERCOS axes. It is not
for analog controlled axes.

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 101 through 108 when the machine start input is pulsed. It
also sends a class one diagnostics fault reset to the SERCOS drive. It closes the
loop on SERCOS servo axes 101 through 108 after the machine start input is
pulsed and a programmable time delay has elapsed. If there are no E-stop faults
and the drive is enabled the loop will be closed and the closed output will be ener-
gized.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

2-129

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime DELY isnormally in the range from 500 msto 2 seconds.

On apositive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 101 through 108.

The positive transition of MSTR enables atimer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes
101 through 108. If the E-stops are reset and the SERCOS drive is enabled, the
loops will be closed on axes 101 to 108. CLSD will be energized if one or more of
axes 101 to 108 have their position loops closed.

If an E-stop fault occurs on an axis 101 to 108, itsloop closed output (A101 to
A108) will be dropped. CLSD istrue aslong as one or more of axes 101 to 108
have their position loops closed.

2-130

S CLS109

Close Loop on SERCOS Servo Axes 109 to 116 USER/S ASFB
o MWEST Inputs: ENOO (BOOL) - enables execution
1 E&@@ cLsple MSTR (BOOL) - machine start input
{msTR A1e9l= DELY (TIME) - amount of time that will elapse after a positive
peLy a11ele transition of MSTR until the loops will be closed
A1 Outputs: CLSD (BOOL) - one or more of axes 109 to 116 have
Al their position loops closed
13l A109 (BOOL) - set when the loop is closed on axis 109
aial A110 (BOOL) - set when the loop is closed on axis 110
A5 A111 (BOOL) - set when the loop is closed on axis 111
A6 A112 (BOOL) - set when the loop is closed on axis 112
A113 (BOOL) - set when the loop is closed on axis 113

A114 (BOOL) - set when the loop is closed on axis 114
A115 (BOOL) - set when the loop is closed on axis 115
A116 (BOOL) - set when the loop is closed on axis 116

<<INSTANCE NAME>>:S_CLOSI109(ENOO := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY :=<<TIME>>, CLSD => <<BOOL>>, A109 =>
<<INT>>, A110 => <<BOOL>>, A111 => <<BOOL >>, A112 => <<BOOL >>,
A113 =><<BOOL>>, A114 => <<BOOL>>, A115 => <<BOOL>>, A116 =>
<<BOOL>>);

Thisfunction block is areplacement for M_CL S109 for SERCOS axes. It is not
for analog controlled axes.

Thisfunction block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 109 through 116 when the machine start input is pulsed. It
also sends a class one diagnostics fault reset to the SERCOS drive. It closes the
loop on SERCOS servo axes 109 through 116 after the machine start input is
pulsed and a programmable time delay has elapsed. If there are no E-stop faults
and the drive is enabled the loop will be closed and the closed output will be ener-
gized.

Thisfunction block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

2-131

ESTOPACT
/b

MACHSTRT |
__+ P|~———J————ENXX

The reason for these two input conditionsisto provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

Thetime DELY isnormally in the range from 500 msto 2 seconds.

On apositive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 109 through 116.

The positive transition of MSTR enables atimer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes
109 through 116. If the E-stops are reset and the SERCOS drive is enabled, the
loops will be closed on axes 109 to 116. CLSD will be energized if one or more of
axes 109 to 116 have their position loops closed.

If an E-stop fault occurs on an axis 109 to 116, its loop closed output (A109 to
A116) will be dropped. CLSD istrue as long as one or more of axes 109 to 116
have their position loops closed.

2-132

S ERRORC
Axis Error Checking Centurion SERCOS Drives USER/S ASFB

- MME =1 Inputs: ENOO (BOOL) - enables execution

lmoe okl AXIS(USINT) - identifies SERCOS axis

AXIS DSTAL- SLOT (USINT) - slot number for the SERCOS module
IstoT ESTO RING (USINT) - ring the axis is connected to

{RING RERR|~ Outputs: OK (BOOL) - execution complete

SV_E—~ DSTA (USINT) - indicates the drive status

CSTO—~ ESTO (BOOL) - indicates an E-stop is active when set
PSTO- RERR (BOOL) - indicates aring error

E_ER— SV _E (BOOL) - indicates a slave (drive) error

RENF csTo (BOOL) - indicates a C-stop is active when set

VN psto (BOOL) - indicates a programming error has occurred
C_ER— E_ER(WORD) - identifies E-stop errors
P_ER|—

RE_N (INT) - identifies ring error number

SV_N (UINT) - identifies slave (drive) error number
C_ER (WORD) - identifies C-stop errors

P_ER (WORD) - identifies programming errors

<<INSTANCE NAME>>:S ERRORC(ENOO := <<BOOL>>, AX|S :=
<<USINT>>, SLOT := <<USINT>>, RING := <<USINT>>, OK =>
<<BOOL>>, DSTA => <<USINT>>, ESTO => <<BOOL>>, RERR =>
<<BOOL>>, SV_E => <<BOOL>>, CSTO => <<BOOL>>, PSTO =>
<<BOOL>>, E_ER => <<WORD>>, RE_N => <<INT>>, SV_N
=><<UINT>>, C_ER => <<\WORD>>, P_ER => <<\WORD>>);

Thisfunction block is a replacement for M_ERROR for a SERCOS axis with a
Centurion drive. It is not for an analog controlled axis.

Thisfunction block is used to report errors that occur on a SERCOS servo axis.
The types of errorsinclude ring errors, drive errors, E-stop, C-stop and program-
ming errors. These conditions may be caused by the SERCOS hardware, SERCOS
drive, servo software or the ladder programming. If defined by the programmer,
they will be triggered using the E-STOP or C_STORP functions. All of these errors
for the defined axis are reported by this one function block.

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The boolean outputs can be used as flags in the ladder to report error conditions.

2-133

The E_ER, C_ER and P_ER word outputs can be converted to HEX display by
using the Module Monitor Edit View List command and inserting the variables.
Alternately, they can be given aninitial value of 16#0 for a hex value during ani-
mation. After monitoring them in HEX, refer to the tables in the manual of
functions E_ERRORS, C_ERRORS and P_ERRORS to help identify the exact
problem. The RE_N value (ring error number) value can be identified by refering
to the SCR_ERR function in the Function/Function Block Reference Guide. Refer
to the SERCOS drive manual for the description of errors occuring onthe SV_N
value (drive error number).

2-134

Performs a SERCOS Home Cycle using a Fast Reference USER/S ASFB
[N/é“H"SME_ Inputs. ENOO (BOOL) - enables execution

ENeo Howpl STRT (BOOL) - enables the home cycle
sTRT HACT AXIS (USINT) - identifies SERCOS axis
AXIS QUE PLUS(BOOL) - indicates direction of home cycle

PLUS SWPOl- RATE (UDINT) - feedrate at which motion occurs (entered in
RATE ERR|— LU/MIN)

{pIm DIM (DINT) - reference dimension for the nearest resolver null
or the next encoder index mark when the reference switch is set

10PN (entered in LUS)

BKOF OPTN (WORD) - provides referencing options (0 or 1) 0 = no
1 HOME option, 1 = Ignore index or null

1HOIM BKOF (BOOL) - selects backoff of reference switch option

HOME (BOOL) - selects homing after referencing option

HDIM (DINT) - home location to move after referenceis
complete

Outputs: HCMP (BOOL) - home cycle is complete
HACT (BOOL) - home cycleis being executed
QUE (USINT) - number of moves for queue

SWPO (DINT) - distance in feedback units (FUs) from the
reference switch to the index mark of an encoder or the null of a
resolver

ERR (BYTE) - report an error 1-4 if input dataisinvalid

<<INSTANCE NAME>>:S FHOME(ENOO := <<BOOL>>, STRT :=
<<BOOL>>, AXIS:= <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF :=
<<BOOL>>, HOME := <<BOOL>>, HDIM := <<DINT>>, HCMP =>
<<BOOL>>, HACT => <<BOOL>>, QUE => <<USINT>>, SWPO =>
<<DINT>>, ERR => <<BYTE>>);

Thisfunction block is a replacement for M_FHOME for a SERCOS axis. It is not
for an analog controlled axis.

Thisfunction block performs a fast reference cycle on a SERCOS axis, followed
by ahoming (position) move to a designated location.

Before this function can be used, the SERCOS axis must be initialized and the
position loop must be closed.

2-135

The reference cycle will cause the selected SERCOS axis to move in the desig-
nated direction until the reference switch is sensed.

In the Centurion SERCOS drive the reference switch iswired to the input number
two of the selected axis on the Centurion drive. This function block uses
SCA_RFIT toinitialize the SERCOS drive's fast input for the reference cycle and
to direct the SERCOS drive to latch the position upon that input.

When the fast input occurs, the position of the axisislatched by the hardware in
the drive independent of the ladder scan.

When the reference switch is sensed, the axis will reference (assign avalue) to the
next index mark of an encoder or the nearest null of aresolver. After thevalueis
assigned, the axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed, the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested, and the axisis on the ref-
erence switch, the axis will move in the opposite direction of that indicated by the
PLUS input until the switch opens and then will complete the home cycle in the
normal manner. If the BKOF input is not on the axis will move in the specified
direction until it sees an off to on transition of the limit switch.

Thisfunction block isused to perform afast reference, immediately followed by a
position move to a selected home position. It should be executed every scan unless
ahome cycle will only be performed when the machine is started. In that case a
normally closed contact of the output of HCMP may be used.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of aresolver it could possi-
bly reference arevolution off. To prevent this, the value reported by this output
should be as follows:

« For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUY Rev, the value should be >2000 and <6000.

» For aresolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUY Rev, the value should be <1000 or >3000.

2-136

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted. The ERR output indicates that invalid data was entered
on one of the inputs. The possible errors are listed in the following table:

ERR Description

0

a b~ wWwN -

No error

The queue was not empty when the reference was requested
An error occurred in backing off of the reference switch

An error occurred in referencing

An error occurred in homing

An error occurred within the SERCOS drive, either during the ini-
tialization of the SERCOS drive (its probe input) or during the mon-
itoring of the SERCOS drive whileit is referencing. The SERCOS
ring and slave error values can be obtained by animating this func-
tion block after the error.

2-137

$_ 10 C

Inputs/Outputs Centurion SERCOS Drive USER/S_ASFB
r MME Inputs: ENOO (BOOL) - enables execution
lenes okl AXIS(USINT) - identifies SERCOS axis
JAXIS RST FOT (BOOL) - force the outputs of a Centurion SERCOS drive
1FOT ENAB RDY 1 (BOOL) - state to be sent to the drive ready output
{RDY1 DINT BRK1 (BOOL) - state to be sent to the drive brake output
{BRK1 DIN2 OUT1 (BOOL) - state to be sent to drive output one
10UT?1 DIN3 OUT2 (BOOL) - state to be sent to drive output two
10UT3 DINd = QUT3 (BOOL) - state to be sent to drive output three
10UT4 DRVRI— OUT4 (BOOL) - state to be sent to drive output four
DoT™ Outputs: OK (BOOL) - execution complete
DOT2 RST (BOOL) - state of the drive reset input
boTs ENAB (BOOL) - state of the drive reset input
O™~ DIN1 (BOOL) - state of the drive input one

DIN2 (BOOL) - state of the drive input two
DIN3 (BOOL) - state of the drive input three
DIN4 (BOOL) - state of the drive input four
DRVR (BOOL) - state of the drive ready signal
DRVB (BOOL) - state of the drive brake signal
DOT1 (BOOL) - state of the drive output one
DOT2 (BOOL) - state of the drive output two
DOT3 (BOOL) - state of the drive output three
DOT4 (BOOL) - state of the drive output four

<<INSTANCE NAME>>:S |O_C(ENQO := <<BOOL>>, AXIS := <<USINT>>,
FOT := <<BOOL>>, RDY1 :=<<BOOL>>, BRK1 := <<BOOL>>, OUT1 :=
<<BOOL>>, OUT2 := <<BOOL>>, OUT3 := <<BOOL>>, OUT4 :=
<<BOOL>>, OK => <<BOOL>>, RST => <<BOOL>>, ENAB =>
<<BOOL>>, DIN1 => <<BOOL>>, DIN2 => <<BOOL>>, DIN3 =>
<<BOOL>>, DIN4 => <<BOOL>>, DRVR => <<BOOL >>, DRVB =>
<<BOOL>>, DOT1 => <<BOOL>>, DOT2 => <<BOOL>>, DOT3 =>
<<BOOL>>, DOT4 => <<BOOL >>);

Thisfunction block provides the ladder access to the inputs and outputs of a Cen-
turion SERCOS drive through the SERCOS service channel.

2-138

Thisfunction block provides the ladder access to the inputs and outputs of a Cen-
turion SERCOS drive through the SERCOS service channel. It isnot for a non-
Centurion SERCOS drive and it is not for an analog controlled axis.

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The FOT when enabled will transfer the state of the next six function block inputs
to the Centurion SERCOS drive outputs.

The digital output override IDN PO036 must be set in the drive to use this feature.
Refer to the Centurion SERCOS Drive IDN Manual.

The function block outputs can be used as flags in the ladder to report the state of
the SERCOS drive hardware.

2-139

S LHOME

Perform a SERCOS Home Cycle using a Ladder Reference USER/S_ASFB
r MWEET Inputs: ENOO (BOOL) - enables execution
1N Howel= STRT (DINT) - move from reference switch and move back to
home position after referencing.
{STRT HACT o .
IaxIs oue AXIS (USINT) - identifies SERCOS axis
IR PLUS (BOOL) - indicates direction of home cycle
{RATE ERR RATE (UDINT) - feedrate at which motion occurs
ol (entered in LU/MIN)
0PTN DIM (DINT) - reference dimension for the nearest resolver null
1 or the next encoder index mark when the reference switch is set
-{BKOF (entered in LUS)
1 HOME OPTN (WORD) - provides referencing options (0 or 1)
{HDIM 0= No option, 1 = Ignoreindex or null
{RFSW BKOF (BOOL) - selects backoff of reference switch option

HOME (BOOL) - selects homing after referencing option

HDIM (DINT) - home location to move to after referenceis
complete

RFSW (BOOL) - references switch on axis
Outputs: HCMP (BOOL) - home cycle is complete
HACT (BOOL) - home cycleis being executed
QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback unit (FUs) from the
reference switch to the index mark of an encoder or the null of a
resolver

ERR (BYTE) - report an error 1-4 if input dataisinvalid

<<INSTANCE NAME>>:S LHOME(ENOO := <<BOOL>>,
STRT := <<DINT >> AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF :=
<<BOOL>>, HOME := <<BOOL>>, HDIM := <<DINT>>, RFSW :=
<<BOOL>>, HCMP => <<BOOL>>, HACT => <<BOOL>>, QUE =>
<<USINTL>>, SWPO => <<DINT>>, ERR => <<BYTE>>);

Thisfunction block is a replacement for M_LHOME for a SERCOS axis. It is not
for an analog controlled axis.

2-140

Thisfunction block performs aladder reference cycle on a SERCOS axis, fol-
lowed by a homing (position) move to a designated location.

Before this function block can be used, the SERCOS axis must be initialized and
the position loop closed.

The reference cycle will cause the selected SERCOS axis to move in the desig-
nated direction until the reference switch is sensed. This function block uses
SCA_RFIT to direct the drive to ignore the fast input for the reference and to mon-
itor the position while the ladder checks for the reference switch. In aladder refer-
ence, thisreference switch iswired to an input in the MMC or in an input module
within the PiC rack and updated each scan of the ladder. When the reference
switch is sensed the SERCOS axis will reference (assign a value) to the next index
mark of an encoder or the nearest null of aresolver. After the value is assigned the
axiswill decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed the home move
will automatically be triggered to position the SERCOS axis at a desired location.

If the BKOF input is on when the reference is requested and if the axisis on the
reference switch, the axis will move in the opposite direction of that indicated by
the PLUS input until the reference switch opens, and then will complete the home
cyclein the normal manner. If the BKOF input is not on, the axis will movein the
specified direction until it sees an off to on transition of the limit switch.

Thisfunction block is used to perform aladder reference, immediately followed by
aposition move to a selected home position. It should be executed every scan
unless ahome cycle will only be performed when the machine is started. In that
case anormally closed contact of the output of HCMP may be used.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of aresolver it could possi-
bly reference arevolution off. To prevent this, the value reported by this output
should be as follows:

 For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUY Rev, the value should be >2000 and <6000.

 For aresolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUY Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

2-141

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

ERR Description
0 No error
The queue was not empty when the reference was requested
An error occurred in backing off of the reference switch
An error occurred in referencing
An error occurred in homing

An error occurred within the SERCOS drive, either during the ini-
tialization of the SERCOS drive (its probe input) or during the mon-
itoring of the SERCOS drive whileit is referencing. The SERCOS
ring and slave error values can be obtained by animating this func-
tion block after the error.

a b~ wWwN -

2-142

WORD2HEX

Converts a word to a hex value USER/M COMMON
- NAVE = Inputs: EN (BOOL) - enables execution
WORD2HEX
1N okl WORD (WORD) - value to convert
JWoR STRG (STRING) - Converted value
1STRG Outputs: OK (BOOL) - execution complete

<<INSTANCE NAME>>:WORD2HEX (ENQO := <<BOOL>>, WORD := <<
WORD>> STRG := <<STRING>>, OK => <<BOOL >>);

This function block places the hexadecimal notation of the value at WORD into
the string at STRG.

Example: If 26,854 is entered at the WORD input, 68E6 will be reported at STRG.

2-143

NOTES

2-144

APPENDIX A M_DSMCOM Commands

This appendix contains the commands that can be entered at the CMD input of the
M_DSMCOM function block. These commands allow you to communicate with
the DSM 100 drive over the communications port. The tables that follow contain
detailed descriptions of the commands, applicable values, responses, and excep-

tions.

Exception Responses

If acommand is received by the drive without a communication error, but cannot
be processed normally, an exception response is generated. The table below lists
the possible exception responses.

Response Exception Description Applicable Commands
Data Type
01 Invalid Data The command data parameter was unacceptable, and the| Non-Range Variable Commands,
parameter was not changed in the drive. Low Level Commands
02 Command Not Enabled The command is disabled and is dependent on another | Manufacturing,
command for enabling. Firmware Upgrades
03 EEPROM Write Error The command required a write to EEPROM, and the All
datawas not able to be written.
04 Data Accepted After Limiting| The command data was out of range, but was modified | Range Variable Commands
to Minimum to the minimum value.
05 Data Accepted After Limiting| The command data was out of range, but was modified | Range Variable Commands
to Maximum to the maximum value.
06 Command Disabled When The command cannot be complied with, because the All
Driveis Enabled driveisenabled.
07 Flash Programming Error The command required the flash memory to be altered | Flash Memory Altering Commands
and an error occurred.
08 Invalid Function Code The master function code was not recognized by the All
drive.
09 Command Disabled When The command cannot be complied with, because the All
DriveisDisabled driveisdisabled.

A-1

Host Command Set

two ASCII-hex characters):

The tables below use the following symbols to specify data widths.
Note: Every bytein the specified datafield is sent in the command encoded as

Data Signed Unsigned
8-bit data [c1]..[cn] [b1]..[bn]
16-bitdata | [s1]..[sn] [wi]..[wn]
32-bitdata | [L].[Ln] [d1]..[dn]

On numeric parameters, the Range of Data Values field contains the range of val-
uesin user units and the resolution [denoted by (€: xxxxxx)]. Thefield also con-
tains the range of command hexadecimal values expected for the parameter.

In addition, the Units field contains the multiplier for converting the user unitsto
the command hexadecimal values. These multipliers are presented in hexadecimal
aso.

A-2

Common Product Line Commands

These commands will remain consistent across product lines. The bit definitions
on the Powerup Status command may change between products, but the command
must return zero (00) on a successful

powerup.

Parameter

Range of Data Values

Units

Command

Com-
mand
Data

Response
Data

Excep-
tion
Responses

Product Type
Identifies the type of product.

Currently only the BCM-03isknown. but is
provided for future expansion.

[b1] - Type
0- BCM-03

Read | 000

[b1]

Write

Powerup Status

The status of the drive during power up
testing. The bit definitions of the READ
Powerup Status command may change
between products, but the command will
aways return zero (00) on a successful
powerup.

[b1] - Status

00 - Successful Power-Up

51 - Boot Block Checksum Error

52 - Non-Boot Block Checksum Error

53 - Uninitialized Personality EEPROM Error
54 - Personality EEPROM Read Error

55 - Personality EEPROM Data Corruption
Error

56 - Main Processor Watchdog Error

57 - Sub Processor Watchdog Error

58 - Main Processor RAM Error

59 - Sub Processor RAM Error

60 - Uninitialized Service EEPROM Error
61 - Service EEPROM Read Error

62 - Service EEPROM Data Corruption Error
63 - Main Processor A/D Converter Error

64 - Sub Processor A/D Converter Error

65 - Analogl Output Error

66 - Gate Array Error

67 - Analog2 Output Error

68 - Inter-Processor Communication Error

69 - Sub Processor Initialization Error

70 - Sub Processor SRAM Error

71 - Sub Processor Code Loading Error

72 - Sub Processor Startup Error

73 - Sub Processor Checksum Error

74 - Personality EEPROM Write Error

75 - Service EEPROM Write Error

76 - Software Clock Error

77 - Sub Processor Communication Checksum
Error

78 - Sub Processor Sine Table Generation Error
79 - Personality Data Out Of Range

80 - Service Data Out Of Range

81 - Motor Block Checksum Error

Read | 001

[b1]

Write

Main Firmware Version
The version number of the drive’'smain
firmware.

[b1] - Major Version
0..255
(00..ff)

[b2] - Minor Revision
0..255
(00..ff)

Read | 002

[b1] [b2]

Write

Boot Firmware Version
The version number of the drive's boot
firmware.

[b1] - Major Version
0..255

(00..ff)

[b2] - Minor Revision
0..255

(00..ff)

Read | 003

[b1] [b2]

Write

A-3

General Commands

Parameter Range of Data Values Units Command | Command| Response | Excep-
Data Data tion
Responses
Reset Personality EEPROM [No Datal - Read | - - -
Resets the personality EEPROM to its fac-
tory settings.
Write | 010] - - 03, 06
Drive Name, [b1]..[b32] - Name - Read | 011 - [b1]..[b32]
Identifiesthe drivein amultidrop system. | Nameis a 32-character string.
Write | 012| [b1]..[b32] | - 03
Position Scale Value [d1] - Value units/ count Read | 013] - [d1]
The position scale used by the host com- -3.4e+38..3.4e+38 (¢: 1.19e-7)
puter for scaling position variables. This
information is not necessary for drive oper-
ation. The scaleisa32 bit IEEE floating
point value.
(80000000..7fffffff) Write | 014 [d1] - 03
Position Scale Text [b1]..[b8] - Name - Read | 015] - [b1]..[b8]
The position scale text used by the host Nameis an 8-character string.
computer to identify the unitsof the posi-
tion scale.
Write | 016] [b1]..[b8] | - 03
Velocity Scale Value [d1] - Value units/ RPM| Read | 017] - [d1]
The velocity scale used by the host com- -3.4e+38..3.4e+38 (: 1.19e-7)
puter for scaling velocity variables. This
information is not necessary for drive opera
tion. Thescaleisa32 bit IEEE floating
point value.
(80000000.. 7fffffff) Write | 018] [d1] - 03
Velocity Scale Text [b1]..[b8] - Name - Read | 019| - [b1]..[b8]
The velocity scale text used by the host Name s an 8-character string.
computer to identify the units of the
velocity scale. Write | Ola| [b1]..[b8] | - 03
Acceleration Scale Value [d1] - Value units/RPM | Read | O1b| - [d1]
The accel eration scale used by the host -3.4e+38..3.4e+38 (¢: 1.19e-7) /second
computer for scaling acceleration variables.
Thisinformation is not necessary for drive
operation. The scaleisa32 bit |EEE float-
ing point value.
(80000000..7fffffff) Write | O1c| [d1] - 03
Acceleration Scale Text [b1]..[b8] - Name - Read | 01d| - [b1]..[b8]
The accel eration scale text used by the host | Name is an 8-character string.
computer to identify the units of the accel-
eration scale.
Write | 0le| [b1]..[b8] | - 03
Torque Scale Value [d1] - Value units/ Amp| Read | O1f | - [d1]
The torque scale used by the host computer | -3.4e+38..3.4e+38 (¢: 1.19e-7)
for scaling torque variables. This informa-
tion is not necessary for drive operation.
The scale isa 32 bit IEEE floating point (80000000..7fffffff) Write | 020| [d1] - 03
value.
Torque Scale Text [b1]..[b8] - Name - Read | 021] - [b1]..[b8]
The torque scale text used by the host com- | Name is an 8-character string.
puter to identify the units of the torque
scale.
Write | 022| [b1]..[b8] | - 03

A-4

Position Loop Commands

Parameter Range of Data Values Units Command | Command| Response | Excep-
Data Data tion
Responses
Position L oop Proportional Gain [w1] - Gain in/min/mil | Read | 030] - [wi]
0.0..31.98 (g: 7.8e-3)
(0000..0fff) (x0080) | Write| 031 [w1] - 03, 05
Position Loop Integral Gain [w1] - Gain - Read | 032 - [w1]
0..31.98 (&: 7.8e-3)
(0000..0fff) (x 0080) Write | 033] [w1] - 03, 05
Position Loop Derivative Gain [w1] - Gain - Read | 034/ - [w1]
0..31.98 (&: 7.8e-3)
(0000..0fff) (x 0080) Write | 035] [w1] - 03, 05
Position L oop Feedforward Gain [w1] - Gain - Read | 036] - [w1]
0..200 (e: 1)
(0000..00c8) (x 0001) Write | 037 [w1] - 03, 05
Integrator Zone [w1] - Zone counts Read | 038] - [w1]
Maximum position error which the integra- | 0..32767 (g: 1)
tor isstill active. If the position error is
greater than the | Zone, the integrator is
reset
(0000..7fff) (x 0001) Write | 039 [w1] - 03, 05
Position Window Size [wil] - Size counts Read | 03a| - [w1]
Maximum position error which allowsthe | 0..32767 (g: 1)
In Position flag to remain set.
(0000..7fff) (x0001) | Write| 03b| [wi] - 03, 05
Position Window Time [b1] - Time millisec- Read | 03c| - [b1]
The minimum time which the position error| 0..255 (¢: 1) onds
must be less than the Position Window Size
to set the In Position flag.
(00..ff) (x 01) Write | 03d| [b1] - 03
Position Error Limit [d1] - Limit counts Read | 03e| - [d1]
Minimum position error which alows the | 1..2147483647 (¢: 1)
excess Position Error flag to remain clear
(00000001.. 7Fffffff) (x Write | 03f | [d1] - 03, 04, 05
00000001)
Position Error Time [w1] - Time millisec- Read | 040| - [w1]
The minimum time which the position error| 0..65535 (g: 1) onds
must be greater than the Position Error
Limit to cause an Excess Position Error
fault.
(00. ffff) (x0001) | Write| 041 [w1] - 03
Gear Ratio [s1] - Motor counts Read | 042 - [s1] [s2]
The ratio between the motor and master -32767..32767 (¢: 1)
counts for following. (8001..7fff) (x 0001)
[s2] - Master master Write | 043 [s1] [s2] | - 03,04
1..32767 (e: 1) counts
(0001..7fff) (x 0001)
Master Rotation [b1] - Direction - Read | 044| - [b1]
The rotation direction of the master 0 - forward direction (TP: Normal)
encoder in follower mode, and the polarity | 1 . reverse direction (TP: Reverse) Write | 045| [b1] - 01, 03, 06
of the direction input in the step/direction
mode.
Slew Rate [d1] - Rate RPM/sec | Read | 046| - [d1]
The acceleration limit for the motor when | 0..2147483647 (&: 1)
used in afollower mode.
(00000000.. 7fffffff) (x Write | 047| [d1] - 03, 05
00000001)
Slew Enable [b1] - Flag - Read | 048] - [b1]
Determinesif the dew rateisused infol- | 0- Disabled (TP: Off)
lower mode 1- Enabled (TP: On)
Write | 049 [b1] - 01, 03

Velocity Loop Commands

Parameter Range of Data Values Units Command Com- Response | Excep-
mand Data tion
Data Responses
Velocity Loop Proportional Gain [w1] - Gain - Read | 04a | - [w1]
0..1000 (g: 1)
(0000..03e8) (x 0001) Write| 04b | [w1] - 03, 05
Velocity Loop Integral Gain [wl] - Gain - Read | 04c - [w1]
0..1000 (g: 1)
(0000..03e8) (x0001) | Write| 04d | [w1] - 03, 05
Velocity L oop Derivative Gain [s1] - Gain - Read | Ode - [s1]
-1000..1000 (g: 1)
(fc18..03e8) (x0001) | Write| 04f | [s1] - 03, 04, 05
Zero Speed Limit [d1] - Limit RPM Read | 050 | - [d1]
Maximum motor velocity which allowsthe | 0..32767.99998 (g: 1.53e-5)
ZeroSpeed flag to remain set.
(00000000. . 7Fffffff) (x Write| 051 | [d1] - 03, 05
00010000)
Speed Window Size [d1] - Limit RPM Read | 052 | - [d1]
Maximum motor velocity error which 0..32767.99998 (¢: 1.53e-5)
allows the Speed Window flag to remain
Set.
(00000000.. 7fffffff) x Write| 053 [d1] - 03, 05
00010000)
Over Speed Limit [d1] - Limit RPM Read | 054 | - [d1]
Minimum motor velocity which causes the | 0..32767.99998 (g: 1.53e-5)
Overspeed fault to occur.
(00000000. . 7Fffffff) (x Write| 055 | [d1] - 03, 05
00010000)
At Speed Limit [d1] - Limit RPM Read | 056 | - [d1]
Minimum motor velocity which causesthe | 0..32767.99998 (e: 1.53e-5)
At Speed flag to be set
(00000000.. 7fffffff) x Write| 057 [d1] - 03, 05
00010000)
Velocity L oop Update Period [b1] - Period - Read | 058 - [b1]
Velocity control loop execution period. 0 - 200 pisecond
1 - 400 psecond
2 - 600 psecond
3 - 800 psecond
4 - 1000 pisecond Write | 059 [b1] - 01, 03, 06
5 - 1200 pisecond
6 - 1400 psecond
7 - 1600 pisecond
Velocity Error Limit [d1] - limit RPM Read | 0O5A | - [d1] 03, 05
Sets or returns the minimum velocity error | 0..32767.99998 (g: 1.53e-5)
which allows the Excess Velocity Error flag
to remain clear.
(00000000.. 7fffffff) (x Write| 05B | [d1] -
00010000)
Velocity Error Time [wl] - time millisecond| Read | 05C | - [w1] 03
Sets or returns the minimum time which the| 0..65535 (e: 1.53e-5)
velocity error must be greater than the
Velocity Error Limit to cause an Excess
Velocity Error fault
(00.. ffff) (x0001) Write| 05D | [w1] -

A-6

Torque Current Conditioning Commands

Parameter Range of Data Values Units Command Com- Response | Excep-
mand Data tion
Data Responses
Low Pass Filter Bandwidth [w1] - Bandwidth Hz Read | 070 | - [w1]
Cutoff frequency of the low pass filter. 1..992 (e: 1)
(0001..03e0) (x 0001) Write| 071 | [w1] - 03, 04, 05
Low PassFilter Enable [b1] - Flag - Read | 076 - [b1]
Determinesif the low passfilter isusedin | O - Disabled (TP: Off)
the control loop.
1- Enabled (TP: On) Write | 077 [b1] - 01, 03
Softwar e Positive Current Limit [w1] - Limit Amps Read | 07a - [w1]
User specified positive current limit for the | 0..255.992 (: 7.8e-3)
drive.
The minimum of this value, the peak rating| (0000..7fff) (x 0080) Write | 07b [wi1] - 03, 05
of the drive, the peak rating of the motor,
and the +ILIMIT analog input is used as the
limiting value.
Software Negative Current Limit [w1] - Limit Amps Read | 07c - [w1]
User specified negative current limit for the| 0..255.992 (: 7.8e-3)
drive.
The minimum of this value, the peak rating| (0000..7fff) (x 0080) Write | 07d [w1] - 03, 05
of the drive, the peak rating of the motor,
and the -ILIMIT analog input is used asthe
limiting value.
Continuous Current Limit [w1] - Limit Amps Read | 07e | - [w1]
User specified current faulting value. 0..255.992 (¢: 7.8e-3)
This parameter is provided to allow afault-| (0000..7fff) (x 0080) Write | O7f [w1] - 03, 05
ing current value which is less than the
capacity of the drive and motor.
PWM Frequency Switching Disable [b1] - Flag - Read | 1A8 | - [b1]
Sets or returnsthe flag which indicatesif | 00 - Enabled
the PWM frequency changeswith the speed
and current demands of the motor.
01 - Disabled - Write| 1A9 | [b1] - 01, 03

A-7

Motor Commands

Note:

tion response 02 unless Motor ID is set to 65535 (ffff).

All Motor Commands other than Motor 1D are disabled and return the excep-

Parameter (Motor Commands) Range of Data Values Units Command | Com- Response | Excep-
mand Data tion
Data Responses
Motor 1D [w1] - Number - Read | 090| - [w1]
Identifies the motor in the drive’s motor 0..65535
parameter table currently being used. (0000..ffff)
The word is separated into various groups
of hit fields to specify the encoder resolu- | B|ITS USAGE
tion, motor, type, and table ID.
The setting 0 (0000) indicates that no motor | 15..12 Table ID Write | 091/ [w1] - 03, 06
has been selected, and the setting 65535 11..8 Encoder Resolution
(ffff) indicates motor parameterswereset | 7 Type (0 = synch., 1 = induct.)
Individually and not read from the drive’'s | 6..0 Motor Number
motor parameter table.
Encoder Lines [w1] - Lines lines/rev Read | 092| - [w1]
The number of lines on the motor encoder. | 100..15000 (g: 1)
(0064..3a98) (x0001) | Write| 093| [wi] - 01, 02, 03,
06
Maximum Motor Speed [d1] - Speed RPM Read | 094| - [d1]
The minimum speed of the motor which 0..32767.99998 (¢: 1.53e-5)
causes an Overspeed fault.
(00000000.. 7fffffff) (x Write| 095| [d1] - 01, 02, 03,
00010000) 06
Motor Peak Current [w1] - Current Amps Read | 096/ - [wi1]
The peak current which the motor can han- | 0..255.992 (g: 7.8e-3)
dle
(0000..7fff) (x 0080) Write| 097 [w1] - 01, 02, 03,
06
Motor Continuous Current [w1] - Current Amps Read | 098] - [wi1]
The continuous current which the motor can| 0..255.992 (¢: 7.8e-3)
handle.
(0000..7fff) (x0080) | Write| 099| [wi] - 01, 02, 03,
06
Torque Constant [wi] - K¢ N-m/Amp | Read | 09a| - [w1]
The sine wave torque constant of the motor.| 0,00024..15.9998 (&: 2.44e-4)
(0001..ffff) (x 1000) Write| 09b| [w1] - 01, 02, 03,
06
Rotor Inertia [wi] - Iy kg-cm? Read | 09c| - [wi]
I 0.0156..1023.98 (¢: 1.56e-2)
(0001..ffff) (x 0040) Write| 09d| [w1] - 01, 02, 03,
06
Back EMF Constant [wl] - Kg Volts/ Read | 09e| - [w1]
Ke 0.0039..255.996 (¢: 3.91e-3) 1000 RPM
(0001..ffff) (x 0100) Write | 09f | [w1] - 01, 02, 03,
06
Winding Resistance [w1] - Resistance Ohms Read | 0a0| - [w1]
The phase to phase resistance of the motor | 0.0039..255.996 (&: 3.91e-3)
windings at 25° C.
(0001..ffff) (x 0100) Write| Oal| [wi] - 01, 02, 03,
06
Winding Inductance [w1] - Inductance mH Read | 02| - [w1]
The phase to phase inductance of the motor| 0.0039..255.996 (&: 3.91e-3)
windings.
(0001. fff) (x0100) | Write| 0a3| [wi] - 01, 02, 03,
06
Thermostat Flag [b1] - Flag - Read | Oad| - [b1]
Indicates if the motor contains a thermostat.| O - no thermostat present
1 - thermostat is present Write | 05| [b1] - 01, 02, 03,
06

A-8

Motor Commands (Continued)

Parameter (Motor Commands) Range of Data Values Units Command Com- Response | Excep-
mand Data tion
Data Responses
Commutation Type [b1] - Type - Read | 0a6 - [b1]
0 - induction motor
1- 6-step ABS/Index
2 - 8-step ABS/Index Write | 0a7 [b1] - 01, 02, 03,
3 - Hall/Index 06
4 - Hall/Hall
Current Feedforward [s1] - Value degrees/ Read | 0a8 - [s1]
-127.996..127.996 (g: 3.91e-3) kRPM
(8001..7fff) (x 0100) Write | 0a9 [s1] - 02, 03, 04,
06
Thermal Time Constant [w1] - Time seconds Read | Oaa | - [w1]
The thermal time constant for protecting | 0..65535 (g: 1)
the motor.
(0000. ffff) (x0001) | Write| Oab | [w1] - 02, 03, 06
Pole Count [b1] - Poles - Read | Oac - [b1]
Number of poles. 0-2Poles
1-4Poles
2-6Poles Write| Oad | [b1] - 01, 02, 03,
3-8 Poles 06
Hall Offset [w1] - Offset electricall | Read | Oce | - [wi]
The offset of the Hall-effect sensor relative | 0..359 (e: 1) degrees
to the rotor.
(0000..0167) (x 0001) Write | Oaf [wi] - 01, 02, 03,
06
Index Offset [w1] - Offset electrical Read | OO | - [w1]
The offset of the motor encoder relativeto | 0..359 (e: 1) degrees
therotor.
(0000..0167) (x 0001) Write| Obl | [wi] - 01, 02, 03,
06
Motor Table Information [b1] - Sync. Records Read | Ob2 | - [b1] ..[b3]
Information about the Motor Tableinthe | 0..255
drive. Theinformation returned includesthe| (00..ff)
number of synchronous motors and induc- | h2] - Induction Records
tion motorsin the table, and the table ID 0..255
number.
(00..ff) Write| - - -
[b3] - Table ID
0..31
(00..1f)
Motor Table Record Size [w1] - Sync. Record Size Read | 0b3 - [wl] ..[w2]
Information about the Motor Table records | 0..65535
in the drive. The information returned (0000..ffff)
includes the synchronous motor and induc-
tion motor record sizes.
[w2] - Induction Record Size Write| - - -
0..65535
(0000..ffff)
Motor Table Version [b1] - M&jor Version Read | Ob4 | - [b1]..[b2]
Version of the Motor Table in the drive. 0..255
(00..ff)
[b2] - Minor Revision Write | - - -
0..255
(00..ff)
Thermal Time Constant Enable [b1] - Flag - Read | 1A6 | - [b1]
Sets or returnsthe flag which indicatesif | 00 - Disabled
the Thermal Time Constant is used for pro- | 01 - Enabled
tecting the motor.
Write| 1A7 | [b1] - 02, 03, 06

A-9

Motor Commands (Continued)

Parameter Range of Data Values Units Command Com- Response | Excep-
mand Data tion
Data Responses
Motor Forward Direction Flag [b1] - Flag Read | 1AA | - [b1]
Sets or returns the motor’s forward direc- | 00 - clockwise
tion when viewed from the shaft end. 01 - counterclockwise
Write| 1AB | [b1] - 01, 02, 03,
06

A-10

Digital I/O Commands

Parameter Range of Data Values Units Command Com- Response | Excep-
mand Data tion
Data Responses
Digital Input Configuration Register [b1] - Input Number Read | 0cO [b1] [w2]
Determines which flag is (or flags are) con-| O - Inputl
trolled by the specified digital input. 1f no | 1 - Input2
bits are set for an input, it is unassigned. 2 - Input3
The Preset Select lines can be used together | 3 - Input4
or separately to select the desired preset. [w2] - Flag Number
Unassigned select linesare set to 0. The Bit O - Torque Override (TP: TrgqMode)
select codes are asfollows: Bit 1 - Integrator Inhibit (TP: Intlnh)
Bit 2 - Follower Enable (TP: FolEnab)
Presst CB A Bit 3 - Forward Enable (TP: FClamp) Write | Ocl [b1] [w2] 01, 03, 06
0000 Bit 4 - Reverse Enable (TP: RClamp)
1001 Bit 5 - Analog Override (TP: Overide)
2010 Bit 6 - Preset Select Line A (TP: PreSelA)
3011 Bit 7 - Preset Select Line B (TP: PreSelB)
4100 Bit 8 - Preset Select Line C (TP: PreSelC)
5101
6110
7111
Digital Output Configuration Register [b1] - Output Number Read | Oc2 [b1] [w2]
Determines which flag is (or flags are) 0 - Outputl
monitored on the specified digital output. | f | 1 - Output2
no bits are set for an input, it isunassigned. | 2 - Output3
3 - Output4
[w2] - Flag Number
Bit O - In-Position (TP: InPos)
Bit 1 - Within Position Window (TP: PoswWin)
Bit 2 - Zero Speed (TP: 0 Speed)
Bit 3 - Within Speed Window (TP: Spdwin) Write | Oc3 [b1] [w2] 01, 03, 06
Bit 4 - Positive ILimit (TP: +ILimit)
Bit 5 - Negative ILimit (TP: -ILimit)
Bit 6 - At Speed (TP: AtSpeed)
Bit 7 - Drive Enabled (TP: DrvEnab)
Bit 8 - DC Bus Charged (TP: BusChg)
Bit 9 - Disabling Fault
Override Digital Output [b1] - State - Read | Oc4 - [b1]
Overridesthe digital output control toalow | 0 - Normal
the user to write the output bits directly.
1- Override Write | Oc5 [b1] - 01
Digital Output Write Mask [w1] - States - Read | 0c6 - [w1]
Contains the bit pattern to write to the digi- | Bit 0 - READY Output State
tal outputs when in override control. Bit 1 - BRAKE Output State
Bit 2 - OUTPUT1 Output State
Bit 3- OUTPUT2 Output State Write | Oc7 [wi] - 01
Bit 4 - OUTPUT3 Output State
Bit 5 - OUTPUT4 Output State
BRAKE Active Delay [s1] - Delay millisec- Read | 0c8 - [s1]
Thetime delay between disabling the drive, | -32767..32767 (¢: 1) onds
and activating the BRAKE output. Nega . .
tive values indicate the time that the (800L.71f) (x 0001) Wwrite | 0c9 | [s1] . 03,04
BRAKE isactive before disabling the drive|
BRAKE Inactive Delay [s1] - Delay millisec- Read | Oca - [s1]
Thetime delay between enabling the drive| -32767..32767 (¢: 1) onds
and deactivating the BRAKE output. Neg-
ative values indicate the time that the
BRAKE isinactive before enabling the
drive.
(8001..7fff) (x 0001) Write | Ocb [s1] - 03, 04

A-11

Analog I/0O Commands

Parameter (Analog 1/0 Com- Range of Data Values Units Command | Command | Respons| Exception
mands) Data e Responses
Data
COMMAND Velocity Offset [s1] - Offset millivolts Read | Occ | - [s1]
The offset applied to the COM- -10000..10000 (g: 1)
MAND analog input when being
used for velocity command.
(d8f0..2710) (% 0001) Write | Ocd | [s1] - 03, 04
COMMAND Velocity Scale [s1] - Scale RPM /Volt | Read | Oce | - [s1]
The scale applied to the COM- -32767..32767 (¢: 1)
MAND analog input when being
used for velocity command.
(8001..7fff) (x 0001) Write | Ocf | [s1] - 03, 04
COMMAND Torque Offset [s1] - Offset millivolts Read | 0dO | - [s1]
The offset applied to the COM- -10000..10000 (g: 1)
MAND analog input when being
used for torque command.
(d8f0..2710) (% 0001) Write | 0d1 | [s1] - 03,04
COMMAND Torque Scale [s1] - Scale Amps/Volt | Read | 0d2 | - [s1]
The scale applied to the COM- -127.996..127.996 (g: 3.91e-3)
MAND analog input when being
used for torque command.
(8001..7fff) (x 0100) Write | 0d3 | [s1] - 03, 04
Analog Output Configuration [b1] - Output Number Read | 0d4 | [b1] [b2]
Register 0 - Outputl
Determines which signal is moni- 1 - Output2
tored on the specified analog output.| (2] - Signal Number
0 - Current Command (TP: | Cmd)
1 - Current Average Command (TP: Avg I)
2 - Current Positive Peak (TP: +IPeak)
3 - Current Negative Peak (TP: -1Peak)
4 - Positive ILimit (TP: +ILimit)
5 - Negative ILimit (TP: -ILimit)
6 - Motor Velocity (TP: MtrVel)
7 - Velocity Command (TP: VelCmd)
8 - Velocity Error (TP: VelErr)
9 - Motor Position (TP: MtrPos)
10 - Position Command Slewed (TP: PosCmd)
11 - Position Error (TP: PosErr) Write | 0d5 | [b1] [b2] 01,03
12 - Position Peak Positive Error (TP: +PosEPk)
13 - Position Peak Negative Error (TP: -PosEPk)
20 - Master Position (TP: MstrPos)
21 - Position Loop Output (TP: [not avail])
22 - Velocity Loop Output (TP: [not avail])
23 - Filter Output (TP: [not avail])
24 - Notch Output (TP: [not avail])
25 - R Phase Current (TP: [not avail])
26 - T Phase Current (TP: [not avail])
27 - Torque Current (TP: [not avail])
28 - Field Current (TP: [not avail])
29 - Torque Voltage (TP: [not avail])
30 - Field Voltage (TP: [not avail])
31 - Scaled A/D Command Value (TP: [not avail])
32 - Bus Voltage (TP: [not avail])
Analog Offset [b1] - Output Number Read | 0d6 | [b1] [s2]
The offset applied to the specified | O - Outputl
Analog output. 1 - Output2
[s2] - Offset millivolts Write | 0d7 | [b1] [s2] - 01, 03, 04
-32767..32767 (&: 1)
(8001..7fff) (x 0001)

A-12

Analog I/0 Commands (Continued)

Parameter (Analog 1/0 Com- Range of Data Values Units Command | Command | Respons| Exception
mands) Data e Responses
Data
Analog Scale [b1] - Output Number Drivelnter- | Read | 0d8 | [b1] [s2]
The scale applied to the specified 0 - Outputl nal Units
Analog output. 1 - Output2
[s2] - Scale (Dependent | Write | 0d9 | [b1] [s2] - 01, 03, 04
-32767..32767 (€: 1) on selected
(8001..7fff) signal)
Override Analog Outputs [b1] - State - Read | Oda | - [b1]
Overrides the anal og output control | 0 - Normal
to write the outputs directly. 1 - Override
Write | Odb | [b1] - 01
Analog Output Write Value [b1] - Output Number - Read | Odc | [b1] [s2]
Contains the value to write to the 0 - Outputl
anal og outputs when in override 1 - Output2
cotrol
[s2] - Value millivolts Write | 0dd | [b1] [s2] - 01
-10000..10000 (g: 1)
(d8f00.2710) (x 0001)

A-13

Serial Port Commands

Parameter Range of Data Values Units Command | Com- Response | Excep-
mand Data tion
Data Responses
Serial Port Baud Rate [b1] - Rate - Read | Ode| - [b1]
Thedrive' sserial port baud rate. If thebaud| 0- 1200 (TP: 1200)
rateis changed, it will not take effect until | 1-2400 (TP: 2400)
thedriveisreset.
2-4800 (TP:4800) Write| Odf | [b1] - 01, 03
3-9600 (TP: 9600)
4-19200 (TP: 19200)
Serial Port Frame Format [b1] - Frame - Read | 0e0| - [b1]
Thedrive' sserial port baud rate. If thebaud| 0 - 7 data bits, even parity, 1 stop bit (TP:
rate is changed, it will not take effect until | 7D1SEP)
thedriveisreset. 1- 7 data bits, odd parity, 1 stop bit (TP:
7D1SOP)
2 - 8 data bits, no parity, 1 stop bit (TP: Write | Oel| [b1] - 01, 03
8D1SNP)
3 - 8 databits, even parity, 1 stop bit (TP:
8D1SEP)
4 - 8 databits, odd parity, 1 stop bit (TP:
8D1SOP)
Software Drive ID [b1] - ID - Read | Oe2| - [b1]
The ID used for drive addressing when the | 0..255
rotary DIP switch is set to position "F".
(00..ff) Write | Oe3| [b1] - 03

A-14

Operating Mode Commands

Parameter (Operating Mode Com- Range of Data Values Units Command Com- Response | Excep-
mands) mand Data tion
Data Responses
Encoder Output Configuration Register | [b1] - Divisor - Read | 0f0 - [b1]
The divisor for the motor encoder quadra- | O - Divideby 1 (TP: + by 1)
ture output. 1- Divideby 2 (TP: + by 2)
2- Divideby 4 (TP: = by 4) Write| 0f1 | [b1] - 01,03
3-Divideby 8 (TP: + by 8)
Command Source [b1] - Source Read | 0f2 - [b1]
The signal used for the drive's command 0 - Analog COMMAND Input (TP: Analog)
source. 1- Presets (TP: Presets)
2 - Master Encoder (TP: AuxEnc) Write | 0f3 [b1] 01, 03, 06
3 - Step/Direction (TP: StepDir)
4 - Step+/Step- (TP: Step+/-)
Drive Mode [b1] - Mode Read | 0f4 - [b1]
The flag which determinesiif thevelocity | O - Velocity (TP: Velocity)
control loop isactive.
1- Torque (TP: Torque) Write | Of5 [b1] 01, 03,06
Velocity Preset [b1] - Preset - Read | 0f6 [b1] [L2]
The command velocity levels used when 0.7
the driveis configured with Presets asthe | (00..07)
Command Source, and Velocity asthe drive R i
o y [L2] - Velocity RPM
-32767.99998..32767.99998 (&: 1.53e-5) Write | Of7 [b1] [L2] | - 01, 03, 04
(80000001.. 7fffffff) (x
00010000)
Torque Preset [b1] - Preset - Read | 0f8 [b1] [s2]
The command torque levels used when the | 0.7
driveis configured with Presets as the Com-| (00..07)
mand Source, and Torque as the drive [s2] - Torque
mode. Amps
-255.992..255.992 (g: 7.81e-3) Write | 0f9 [b1] [s2] | - 01, 03, 04
(8001..7fff) (x 0080)
Analog Input Acceleration Limit [d1] - Rate RPM/sec | Read | Ofa - [wi1]
The acceleration value used when the ana- | 0..2147483647 (&: 1)
log command input changes while the drive
isin velocity mode.
(00000000.. 7fffffff) (x Write | Ofb [wi] - 03, 05
00000001)
Analog Input Deceleration Limit [d1] - Rate RPM/sec | Read | Ofc - [d1]
The deceleration value used when the ana- | 0..2147483647 (s: 1)
log command input changes while thedrive
isin velocity mode.
(00000000.. 7fffffff) x Write | Ofd [d1] - 03, 05
00000001)
Preset Input Acceleration Limit [d1] - Rate RPM/sec | Read | Ofe - [d1]
The acceleration value used when changing| 0..2147483647 (s: 1)
between velocity presets. Thislimit isonly
used while the driveisin velocity mode and
the Command Source is set to Preset input.
(00000000.. 7fffffff) (x Write | Off [d1] - 03, 05
00000001)
Preset Input Deceleration Limit [d1] - Rate RPM/sec | Read | 100 - [d1]
The deceleration value used when changing| 0..2147483647 (s: 1)
between velocity presets. Thislimitisonly
used while the driveisin velocity mode and
the Command Source is set to Preset input.
(00000000. . 7FfFffff) x Write| 101 | [d1] - 03,05
00000001)
Tuning Direction Flag [b1] - Flag Read | 1A0 | - [b1]
Sets or returns the flag which indicates the | 00 - Bi-directional
direction the motor rotates during tuning.
01 - Forward Write| 1A1 | [b1] - 01, 03, 06
02 - Reverse

A-15

Operating Mode Commands (Continued)

Parameter (Operating Mode Com- Range of Data Values Units Command Com- Response | Excep-
mands) mand Data tion
Data Responses
Analog Input Acceleration Limits Enable [bl] - Flag Read | 1A2 | - [b1]
Sets or returns the flag which indicates that | 00 - Disabled
acceleration limits are enabled. Thisflagis| o1 - Enabled
only used while the drive isin velocity
mode and the Command Source is set to
analog COMMAND input.
Write| 1A3 | [b1] - 01,03
Preset Acceleration Limits Enable [bl] - Flag Read | 1A4 | - [b1]
Sets or returns the flag which indicates that | 00 - Disabled
acceleration limitsare enabled. Thisflagis| o1 - Enabled
only used while the drive isin velocity
mode and the Command Source is set to
Preset input.
Write| 1A5 | [b1] - 01,03
Change Direction Flag [b1] - Flag Read | 1AC | - [b1]
Sets or returns the flag which indicates if 00 - Normal
the normal direction has been changed 01 - Reversed
(reversed).
Write| 1AD | [b1] - 01, 03, 06

A-16

Alternative Operating Mode Commands

Parameter (Operating M ode Com- Range of Data Values Units Command | Com- Response | Excep-
mands) mand Data tion
Data Responses|
Operating Mode [b1] - Mode Read | 102| - [b1]
The operating mode for the drive. Usually, | 0- Normal (TP: Normal)
thedriveisin Normal mode. Themodecan| 1 - AutoTuning (TP: Auto)
bechanged for tuning, encoder alignment,
and encoder resolution detection.
2 - Manual Tuning (Velocity Step) (TP: Man Write | 103| [b1] 01, 06
Vel)
3- Manual Tuning (Position Step) (TP: Man
Pos)
4 - Encoder Alignment (TP: Align)
5 - Encoder Resolution Detection (TP: [not
avail])
Operating Mode Status [w1] - Status Read | 104/ - [w1]
Contains status bits for above alternative Bit O - AutoTuning Complete
operating modes. Bit 1 - Encoder Alignment Complete
Bit 2 - Motor Index Detected
Bit 3 - Master Index Detected Write| - - -
Bit 4 - Motor Encoder Resolution Determined
Bit 5 - Master Encoder Resolution Determined
Bit 6 - AutoTune Failed
Autotune Maximum Current [w1] - Current Amps Read | 105/ - [w1]
The maximum current used in the autotun- | 0.0078..255.992 (¢: 7.81e-3)
ing algorithim.
(0001..7fff) (x 0080) Write| 106 [w1] - 03, 04, 05
Autotune Maximum Distance [d1] - Distance Counts Read | 107| - [d1]
The maximum distance the motor can travel | 1..2147483647 (g: 1)
in the autotuning a gorithim.
(00000001.. 7fffffff) (x 0001) Write| 108| [d1] - 03, 04, 05
Manual Tune Position Period [w1] - Period millisec- Read | 109| - [w1]
The period of the square wave used inthe | 1..32767 (g: 1) onds
position step manual tuning mode.
(0001..7fff) (x 0001) Write| 10a| [w1] - 03, 04, 05
Manual Tune Position Step [w1] - Amplitude Counts Read | 10b| - [w1]
The amplitude of the square wave used in | 1..32767 (g: 1)
the position step manual tuning mode.
(0001..7fff) (x 0001) Write| 10c| [w1] - 03, 04, 05
Manual Tune Velocity Period [w1] - Period millisec- Read | 10d| - [w1]
The period of the square wave used inthe | 1..32767 (g: 1) onds
velocity step manual tuning mode.
(0001..7fff) (x 0001) Write| 10e| [w1] - 03, 04, 05
Manual Tune Velocity Step [d1] - Amplitude RPM Read | 10f | - [d1]
The amplitude of the square wave used in | 0.000015..32767.99998 (€: 1.53e-5)
the velocity step manual tuning mode.
(00000001.. 7fffffff) x Write| 110| [d1] - 03, 04, 05
00010000)
Encoder Alignment Offset [s1] - Offset electrical Read | 111| - [s1]
The offset of the motor encoder index pulse| -180..179 (&: 1) degrees
relative to the rotor phase location. This | (ff4c..00b3) (x 0001)
valueis determined automatically in the
Encoder Alignment Operating Mode and
continually updates whilein that mode. It
can also be set when not in the Encoder
Alignment Operating Mode by using the Write | 112 [s1] - 01
write command. (Note: Thevaluein this
parameter does not affect the commuta-
tion. It hasto be set by using the Remove
Alignment Offset command)

A-17

Alternative Operating Mode Commands (Continued)

Parameter (Alternative Operating Mode | Range of Data Values Units Command | Com- Response | Excep-
Com) mand Data tion
Data Responses|
Save Alignment Offset [NoData] (TP: t+ to Rmv) Read | - - -
Corrects the encoder alignment by copying
the Encoder Alignment Offset valueinto an
encoder alignment compensation parameter.
The alignment compensation parameter
valueis used in correcting the motor
encoder input for commutation.
Write| 113 - - 03

Motor Encoder Resolution [w1] - Resolution counts Read | 114| - [w1]
The measured motor encoder counts 0..32767 (e: 1)
between index pulses when in the
Encoder Resol ution Detection Operating (0000..7fff) (x 0001) Write | - - -
Mode.
Master Encoder Resolution [w1] - Resolution counts Read | 115| - [wi1]
The measured master encoder counts 0..32767 (g:1)
between index pulses when in the Encoder
Resolution Detection Operating Mode.

(0000..7fff) (x 0001) Write| - - -
Motor Index Position [w1] - Position counts Read | 116| - [w1]
The |ast recorded position of the motor 0..65535 (e: 1)
encoder index.

(0000..ffff) (x 0001) Write| - - -
Master Index Position [w1] - Position master Read | 117| - [w1]
The |ast recorded position of the master 0..65535 (e: 1) counts
encoder index.

(0000..ffff) (x 0001) Write| - - -

A-18

Runtime Command and Control Commands

Parameter Range of Data Values Units Command | Com- Response | Excep-
mand Data tion
Data Responses|
Reset Drive [NoData] (TP: tto Reset) - Read | - - -
Resets the drive hardware and reboots the
drive’s processors.
Write | 120| - - 06

Software Drive Enable/Disable [b1] - State - Read | 121| - [b1]
If set to Enable Drive and the ENABLE 0 - Disable Drive (TP: Disable)
input is active, thedrive is enabled. If set to
Disable Drive or the ENABLE input is not
active, thedriveis disabled.

1- Enable Drive (TP: Enable) Write | 122| [b1] - 01
Torque Setpoint [s1] - Torque Amps Read | 123| - [s1]
The torque command value used when the | -255.992..255.992 (¢: 7.81e-3)
Drive Mode is Torque, and the Setpoint
Control is Enabled.

(8001..7fff) (x0080) | Write| 124 [s1] - 04
Velocity Setpoint [L1] - Velocity RPM Read | 125] - [L1]
The velocity command value used when the| -32767.99998..32767.99998 (g: 1.53e-5)
Drive Mode is Velocity, and the Setpoint
Control is Enabled.

(80000001.. 7fffffff) (x Write| 126| [L1] - 04

00010000)

Setpoint Acceleration [d1] - Rate RPM/sec | Read | 127| - [d1]
The acceleration value used when the 0..2147483647 (g: 1)
Velocity Setpoint changes, and the Setpoint
Control is Enabled.

(00000000.. 7Fffffff) (x Write | 128| [d1] - 03, 05

00000001)

Setpoint Control [b1] - State - Read | 129| - [b1]
Enables or disables the setpoint control. 0 - Disable Setpoint Control (TP: Normal)

1 - Enable Setpoint Control (TP: CtlPanl) Write | 12a| [b1] - 01
Reset Faults [NoData] (TP: rtoReset) Read | - - -
Resets the fault detection circuitry.

Write| 12b| - -

A-19

Runtime Status Commands

Parameter (Runtime Status Commands)

Range of Data Values

Units

Command

Com-
mand
Data

Response
Data

Excep-
tion
Responses|

Packed Drive Status
The status of various flagsin the drive.
This status is repeatedly updated.

[d1] - Status

Bit O - In-Position

Bit 1 - Within Position Window
Bit 2 - Zero Speed

Bit 3 - Within Speed Window
Bit 4 - Positive ILimit

Bit 5 - Negative ILimit

Bit 6 - At Speed

Bit 7 - Drive Enabled

Bit 8 - DC Bus Charged

Bit 9 - Fault Disable

Bit 10 - Fault Decel/Disable
Bit 11 - Latched Fault Warning
Bit 12 - Unlatched Fault Warning

Bit 14 - Brake Active

Bit 15 - Drive Ready

Bit 16 - Torque Mode

Bit 17- Integrator Inhibit

Bit 18 - Follower Enable
Bit 19 - Forward Clamp

Bit 20 - Reverse Clamp

Bit 21 - Analog Override
Bit 22 - Preset Select Line A
Bit 23 - Preset Select Line B
Bit 24 - Preset Select LineC
Bit 30 - Reset Faults

Bit 31 - Enable Active

Reed | 134

[d1]

Write

Fault Status
Identifies the present state of the possible
fault conditions.

If aspecific Fault Group Mask Is set to
unlatched warning, the appropriate bit is not
latched in this register and may clear when
the condition is removed.

If the specific Fault Group Mask is not set
to unlatched warning, the appropriate bit is
latched in this register and will remain set
until the driveis reset.

[d1] - Status

Bit 0 - +24VDC Fuse Blown

Bit 1 - +5VDC Fuse Blown

Bit 2 - Encoder Power Fuse Blown

Bit 3 - Motor Overtemperature

Bit 4 - IPM Fault (Overtemperature/Overcur-
rent/Short Circuit)

Bit 5 - Channel IM Line Break

Bit 6 - Channel BM Line Break

Bit 7 - Channel AM Line Break

Bit 8 - Bus Undervoltage

Bit 9 - Bus Overvoltage

Bit 10 - lllegal Hall State

Bit 11 - Sub processor Unused Interrupt

Bit 12 - Main processor Unused I nterrupt
Bit 16 - Excessive Average Current

Bit 17 - Overspeed

Bit 18 - Excess Following Error

Bit 19 - Motor Encoder State Error

Bit 20 - Master Encoder State Error

Bit 21 - Motor Thermal Protection

Bit 22 - IPM Thermal Protection

Bit 27 - Enabled with No Motor Selected
Bit 28 - Motor Selection not in Table

Bit 29 - Personality Write Error

Bit 30 - Service Write Error

Bit 31 - CPU Communications Error

Read | 135

[d1]

Write

A-20

Runtime Status Commands (Continued)

Parameter (Runtime Status Commands) | Range of Data Values Units Command | Com- Response | Excep-
mand Data tion
Data Responses|
Run State [c1] - State - Read | 136| - [c1]
Identifies the present state of the drive and | -01 - Drive Enabled
possible fault conditions. The reported 00 - Drive Ready
faultsare only oneswith Fault Mask values| 01 - +24VDC Fuse Blown
set to Disable Drive or Decel, Then Disable| 02 - +5VDC Fuse Blown
Drive. 03 - Encoder Power Fuse Blown
04 - Motor Overtemperature
This command is added to support Touch- gi - IPM Fault (Overtemperature/Overcurrent/
; : ort Circuit)
Pad background status polling operation. 06 - Channel IM Line Break
Thisimplies that other products which use]
the touchpad will need to adhere to the fol- 07 - Channel BM Line Break
lowing format 08 - Channel AM Line Break
) 09 - Bus Undervoltage
10 - Bus Overvoltage
The state values 1..127 are reserved for 11 - Illegal Hall State
fault indications. These valueswill cause
thefault to be shown on the touchpad.
The values 0..-128 are reserved for non- 12 - Sub processor Unused Interrupt Write | - - -
fault state information whichisto beindi- | 13 - Main processor Unused Interrupt
cated, but not shown as afault by the touch-| 17 - Excessive Average Current
pad 18 - Overspeed
19 - Excess Following Error
20 - Motor Encoder State Error
21 - Master Encoder State Error
22 - Motor Thermal Protection
23 - IPM Thermal Protection
28 - Enabled with No Motor Selected
29 - Motor Selection not in Table
30 - Personality Write Error
31 - Service Write Error
32 - CPU Communications Error
Digital Input States [w1] - States - Read | 137| - [w1]
Identifies the present state of the digital Bit 0 - RESET FAULTS Input State
inputs. Bit 1 - ENABLE Input State
Bit 2 - INPUT1 Input State
Bit 3- INPUT2 Input State Write | - - -
Bit 4 - INPUT3 Input State
Bit 5 - INPUT4 Input State
Digital Output States [w1] - States - Read | 138| - [w1]
Identifies the present state of the digital out-| Bit 0 - READY Output State
puts. Bit 1 - BRAKE Output State
Bit 2- OUTPUT1 Output State
Bit 3- OUTPUT2 Output State Write | - - - -
Bit 4 - OUTPUT3 Output State
Bit 5 - OUTPUT4 Output State

A-21

Runtime Data Commands

Parameter (Runtime Data Commands) | Range of Data Values Units Command | Com- Response | Excep-
mand Data tion
Data Responses|
Reset Peaks [NoData] (TP: rtoReset) - Read | - - -
Resets the peak detection firmware for posi-
tive position error peak, negative position
error peak, positive torque current, and neg-
ative current.
Write| 140 - -
COMMAND Input [s1] - Value millivolts | Read | 141| - [s1]
The command input value before scaling | -10000.. 10000 (&: 1)
and offsetting.
(d8f0..2710) (x 0001) Write| - - -
Positive ILimit I nput [s1] - Value Amps Read | 142| - [s1]
The +ILimit input value. -255.992..255.992 (g: 7.81e-3)
(8001..7fff) (x 0080) Write| - - -
Negative ILimit Input [s1] - Value Amps Read | 143| - [s1]
The-ILimit input vaue. -255.992..255.992 (¢: 7.81e-3)
(8001..7fff) (x 0080) Write | - - -
Analog Output [b1] - Number Read | 144| [b1] [s2]
The analog output values. 0 - Output 1
1- Output 2
[s2] - value millivolts | Write| - - -
-10000..10000 (g: 1)
(d8f0..2710) (x 0001)
Motor Position [L1] - Value Counts Read | 145| - [L1]
The vaue of the motor encoder register. -2147483647..2147483647 (g: 1)
(80000001.. 7fffffff) (x Write| - - -
00000001)
Master Position [L1] - Value Master Read | 146/ - [L1]
The vaue of the master input register. -2147483647..2147483647 (g: 1) Counts
(80000001.. 7fffffff) x Write| - - -
00000001)
Position Command [L1] - Value Counts Read | 147| - [L1]
The position command input to the position | -2147483647..2147483647 (g: 1)
loop, which is the master position, after
gearing and slew rate limiting.
(80000001.. 7fffffff) (x Write| - - -
00000001)
Position Error [L1] - Value Counts Read | 148| - [L1]
The difference between the Position Com- | -2147483647..2147483647 (¢: 1)
mand and the Motor Position.
(80000001.. 7fffffff) x Write| - - -
00000001)
Position Positive Peak Error [L1] - Value Counts Read | 149| - [L1]
The maximum amount the Position Com- | 0..2147483647 (g: 1)
mand lead the Motor Position.
(00000000.. 7fffffff) (x Write | - - -
00000001)
Position Negative Peak Error [L1] - Value Counts Read | 14a| - [L1]
The maximum amount the Position Com- | -2147483647..0 (&: 1)
mand lagged the Motor Position.
(80000001..00000000) x Write| - - -
00000001)
Velocity Command [L1] - Value RPM Read | 14b| - [L1]
The command value to the velocity loop. | -32767.99998..32767.99998 (&: 1.53e-5)
(80000001.. 7fffffff) x Write| - - -
00010000)
Motor Velocity [L1] - Value RPM Read | 14c| - [L1]
The feedback value to the velocity loop. -32767.99998..32767.99998 (&: 1.53e-5)
(80000001.. 7fffffff) (x Write| - - -
00010000)

A-22

Runtime Data Commands (Continued)

Parameter (Runtime Data Commands) | Range of Data Values Units Command | Com- Response | Excep-
mand Data tion
Data Responses|

Velocity Error [L1] - Value RPM Read | 14d| - [L1]
The difference between Velocity Command | -32767.99998..32767.99998 (g: 1.53e-5)
and Motor Velocity.

(80000001.. 7fffffff) (x Write - -

00010000)

Current Command [s1] - Value Amps Read | 14e| - [s1]
The command value to the current loop. -255.992..255.992 (¢: 7.81e-3)

(8001..7fff) (x 0080) Write | - - -
Average Current [s1] - Value Amps Read | 14f | - [s1]
The average value of the Current Com- -255.992..255.992 (g: 7.81e-3)
mand(?).

(8001..7fff) (x 0080) Write| - - -
Current Positive Peak [s1] - Value Amps Read | 150| - [s1]
The largest positive value of the Current 0.0..255.992 (e: 7.81e-3)
Command(?).

(0000..7fff) (x 0080) Write| - - -
Current Negative Peak [s1] - Value Amps Read | 151| - [s1]
The largest negative value of the Current | -255.992..0.0 (&: 7.81e-3)
Command(?).

(8001..0000) (x 0080) Write| - - -
Bus Voltage [w1] - Value Volts Read | 152| - [w1]
The measured voltage of the DC bus. 0..32767 (e: 1)

(0000..7fff) (x 0001) Write | - - -
Field Current [s1] - Value Amps Read | 153| - [s1]
The calculated field current for induction | -255.992..255.992 (&: 7.81e-3)
motors.

(8001..7fff) (x 0080) Write | - - -
Torque Current [s1] - Value Amps Read | 154| - [s1]
The calculated torque current. -255.992..255.992 (g: 7.81e-3)

(8001..7fff) (x 0080) Write| - - -
R-Phase Current [s1] - Value Amps Read | 155| - [s1]
The calculated R-Phase current. -255.992..255.992 (¢: 7.81e-3)

(8001..7fff) (x 0080) Write| - - -
T-Phase Current [s1] - Value Amps Read | 156| - [s1]
The calculated T-Phase current. -255.992..255.992 (¢: 7.81e-3)

(8001..7fff) (x 0080) Write | - - -
Field Voltage Command [s1] - Value Volts Read | 157| - [s1]
Thefield voltage command for induction | -255.992..255.992 (g: 7.81e-3)
motors.

(8001..7fff) (x 0080) Write | - - -
Torque Voltage Command [s1] - Value Volts Read | 158| - [s1]
The torque voltage command. -255.992..255.992 (g: 7.81e-3)

(8001..7fff) (x 0080) Write| - - -
Average Motor Current [s1] - Value Amps Read | 159| - [s1]
The average current seen by the motor. 0.0..255.992 (e: 7.81e-3)

(0000..7fff) (x 0080) Write| - - -

A-23

Runtime Data Collection Commands

Parameter (Runtime Data Collection Range of Data Values Units Command | Com- Response | Excep-
Commands) mand Data tion
Data Response
s
Channe 1 Source [b1] - Signal Number Read | 160| - [b1]
The signal values returned in channel 1 of | O - Current Command
Collected Data. 1 - Current Average Command
2 - Current Positive Peak
3 - Current Negative Peak
4 - Positive ILimit
5 - Negative ILimit
6 - Motor Velocity
7 - Velocity Command
8 - Velocity Error
9 - Motor Position
10 - Position Command Slewed
11 - Position Error
12 - Position Peak Positive Error
13 - Position Peak Negative Error
20 - Master Position Write | 161 [b1] 01
21 - Position Loop Output
22 - Velocity Loop Output
23 - Filter Output
24 - Notch Output
25 - R Phase Current
26 - T Phase Current
27 - Torque Current
28 - Field Current
29 - Torque Voltage
30 - Field Voltage
31 - Scaled A/D Command Value
32 - Bus Voltage
Channe 2 Source [b1] - Signal Number Read | 162| - [b1]
The signal values returned in channel 2 of | See Channel 1 Source for selections
Collected Data.
Write | 163| [b1] 01
Trigger Source [b1] - Signal Number Read | 164| - [b1]
The signal used to trigger the datacollec- | See Channel 1 Source for selections
tion depending on the Trigger Mode.
Write | 165| [b1] 01
Timebase [w1] - Value millisec- Read | 166| - [w1]
The time between samples returned in 0.0..13107.0 (e: 0.2) onds
Collected Data.
(0000..ffff) (x 0005) Write | 167| [wi] -
Trigger Mode [b1] - Mode Read | 168| - [b1]
Determines how data s collected when 0 - Trigger immediately
Arm Triggering command is sent.
1 - Trigger on positive transition of trigger Write | 169| [b1] - 01
source
2 - Trigger on negative transition of trigger
source.
Trigger Threshold [s1] - Value Drivelnter-| Read | 16a| - [s1]
The value which must be crossed on the nal Units
Trigger Source when the Trigger Mode is
set to trigger in atransition.
(8001..7fff) (Depen- Write | 16b| [s1] - 04
dent on
selected
trigger
source)
Arm Triggering [No Datal Read | - - -
Armsthe data collection to begin collecting
data when the next trigger event occurs.
Write | 16c| - -
Trigger Status [b1] - Status Read | 16d| - [b1]
The status of the data collection process. 0 - Waiting for Trigger to Occur
1- Triggered, Collecting Data Write | - - -
2 - Data Collection Complete

A-24

Runtime Data Collection Commands (Continued)

Collected Data
The data collected from the last trigger
event.

[b1] - Group

0 - Channel 1, Samples 1 through 16

1 - Channel 1, Samples 17 through 32

2 - Channel 1, Samples 33 through 48
3- Channel 1, Samples 49 through 64

4 - Channel 1, Samples 65 through 80

5 - Channel 1, Samples 81 through 96

6 - Channel 1, Samples 97 through 112
7 - Channel 1, Samples 113 through 128

8 - Channel 2, Samples 1 through 16

9 - Channel 2, Samples 17 through 32
a- Channe 2, Samples 33 through 48

b - Channel 2, Samples 49 through 64

¢ - Channe 2, Samples 65 through 80

d - Channel 2, Samples 81 through 96

e - Channel 2, Samples 97 through 112
f - Channel 2, Samples 113 through 128
[s2]..[s17]

Requested data

Error Code
4 - Data Accepted After Limiting to Minimum.

Read

16e

[b1]

[2].. [s17]

Write

A-25

NOTES

A-26

APPENDIX B Press Transfer ASFBs

Introduction

This set of Application Specific Function Blocks (ASFBs) is designed to generate
aprofilefor aslave axisin apress application. Asthe master axis moves, the dave
axis movesin, dwells, and moves out in one master rotation (i.e., 360 degrees). A
variation that could be supported as well would be for the slave axisto move in
and dwell for each master rotation and that motion is repeated several times before
the slave moves out to itsinitial position.

This profile can have different shapes. It can be triangular (the slave accelerates
and decel erates without achieving a constant velocity) or trapezoidal (the dave
accelerates to a maximum velocity for a portion of its motion before it deceler-
ates). The acceleration and deceleration can also be configured for an ‘ scurve’
where the corners of the motion transitions are smoothed.

To obtain aslave axis profile for two slave moves for one master axis rotation, the
M_PRF2MYV function block is called from the main application ladder. This func-
tion block has a number of inputs to direct the profile generation:

 RR-an array of structures configured in the format required by the
RATIO_RL function block. This set of functions blocksis designed for a
RATIO_RL application. RATIO_RL usage is detailed in the PiCPro func-
tion block reference guide. This structure has the following format:

« MAST_DIS - the distance of the master motion in this segment (in FU).

« SLAV_DIS- the distance of the slave motion in this segment (in FU).

« K1 - the K1 coefficient in the polynomial equation for RATIO_RL.

« K2 - the K2 coefficient in the polynomial equation for RATIO_RL.

« K3 - the K3 coefficient in the polynomial equation for RATIO_RL.

« SPARE - reserved for future use.

« FLAGS- indicate the execution of the polynomial function of RATIO_RL.

This RR input to the function block must be defined as an array of struc-
turesin the calling function (which is usually the main application ladder).
The actual size required for this array will depend upon the type of profile
required; an scurve profile will have more segments than a simpler con-
stant acceleration profile. The number of segments within the profile will
be as follows for each move: acceleration portion (1 for no scurve, 3 with
scurve), constant velocity portion (O or triangular, 1 for trapezoidal), decel-
eration portion (1 for no scurve, 3 with scurve), and dwell portion (1 if a
dwell isrequired). For example, for the application of M_PRF2MYV, the
size of the RR array must be at least 17 to encompass the various combi-
nations because 16 segments will be required.

B-1

The sizing of thisarray isvery important. If the array is sized too small,
run-time errors within the application are likely to occur (because other
variablesin PiC memory will be written during the calculations since the
internal function blocks will assume enough memory has been allocated by
the main application ladder).

MOV 1and MOV2 - an input structure describes each of the two slave
movesrequired. Thisstructure providesthe following information for each
MmoVe:

STRT_ANG - the angle of the master axis at the start of the Slave’s move (in
degrees).

STOP_ANG - the angle of the master axis at the end of the slave’'smove (in
degrees).

SLV_MOVE - the distance of the slave move (specified in input units that
can be scaled).

MAX_V - the maximum velocity that can be allowed for this slave move
(specified as aratio of slave FU to master FU).

PCT_J- the percent of maximum possible jerk to be used for this lave
move (in arange of 0.0 to 100.0). A value of zero means no jerk, and there-
fore, no scurve.

PCT_A - the percent of maximum possible acceleration to be used for this
slave move (in arange of 0.0 to 100.0).

TRI_ONLY - aboolean flag to indicate a triangular profile is desired.

SCURVE - aboolean flag to indicate the smoothed scurve accel/decel is
desired.
MDST - the number of master feedback unitsin one cycle or rotation.

MSCL - the number of master feedback units per input unit in the input
MOV x structure (i.e., the start and stop angles).

SSCL - the number of slave feedback units per input unit in the input
MOV structure (i.e., the slave distance moved between two master
angles).

VLIM - the maximum allowable velocity for this master/slave application
(specified asaratio of slave FU to master FU). Thislimit isone that would
reflect the inherent machine limitations. The individual move structures
specify the maximum velocity that is desired for that specific move; that
velocity for amove cannot exceed thisVLIM value. ThisVLIM value
would be one that is entered once for the application; the velocities for the
individual moves could be specified viathe user interface.

B-2

The input move structure can indicate the intent of atriangular Save move
(TRI_ONLY). However, if the other parameters result in atrapezoidal profile
achieving the required slave motion, this function block will generate the appropri-
ate trapezoidal profile and it will set a boolean output that indicates this change in
behavior. If the main ladder must get atriangular profile then it can take the appro-
priate actions, such as providing the user interface with asignal that the move
parameters must be specified again. If the main ladder will tolerate either triangu-
lar or trapezoidal profile but it prefers the triangular profile then this is supported.

If the combination of parameters prevents the generation of a profile then the func-
tion block returns an appropriate error indicator. The main ladder must make sure
that no errors were detected before trying to apply the generated profile.

The input move structure can direct the profile shape by specifying the percent of
maximum acceleration (PCT_A). 100% of maximum accel eration would approxi-
mate a step function - immediately get to the maximum velocity for the slave's
move (in most cases an unacceptable response for the dave). 0% of maximum
accel eration would obtain the minimum slope for the slave's acceleration and till
achieve therequired slave motion. Vaues within this range obtain an intermediate
behavior.

There is no separate deceleration rate provided as an input, so the deceleration por-
tion of the profile will use the same parameters as the acceleration portion. How-
ever, thereis an internal function block to generate the deceleration portion of the
profile so it could be possible (but not supported at thistime) for the generated pro-
file to contain different accel eration and decel eration configurations.

The input move structure can indicate the intent of smoothed scurve acceleration
and deceleration portions of the slave profile (SCURVE). Thisalso requires a per-
centage of jerk to be specified (PCT_J). Maximum jerk (100%) would obtain no
scurve behavior because there would be only constant acceleration. Minimum jerk
(0.1%) would obtain the smoothest acceleration portion of the profile with no con-
stant acceleration but with the highest peak acceleration rate.

B-3

Thisisthe set of function blocks whose purpose is to generate a slave profile for a
press application.

M_PRF2MYV - this function block generates a slave axis profile for two
slave moves for one master axisrotation. It will inturn call the
M_PRFERR, M_PROFL and M_PRFDWL function blocksfor each of the
two slave axis movesin the profile.

M_PRFIMYV - thisfunction block generates a slave axis profile for one
slave move for one master axis rotation. It will in turn call the
M_PRFERR, M_PROFL and M_PRFDW.L function blocksto generate the
profile. The M_PRFIMYV function block has the same inputs as
M_PRF2MYV except that only one moveis handled in the profile rather
than two.

M_PRFERR - this function block checks the validity of the input move's
parameters.

M_PROFL - thisfunction block generates the portion of the profile when
the slaveis moving. It will inturn call theM_SETVAJ, M_SC_ACC,
M_CNST_V and M_SC_DEC function blocks.

M_PRFDWL - this function block generates the portion of the profile
when the master axisis moving but the slaveisnot. Thisblock isrequired
because the RATIO_RL profile must account for all the master counts so
that the profile can be repeated (i.e., for each master rotation, the slave per-
forms the same profile). Thereforeif the slave ismoving only part of the
time (which will occur in many press applications), then a portion of the
profile contains the master’s motion that has no corresponding slave
motion. Also, because the real to integer calculations being performed dur-
ing the generation of the profile might result in rounding, there could be a
few counts of master or dave axis motion that could not be incorporated
into the main part of the profile. Those remaining counts, if any, can be
accounted for during this portion of the profile.

M_SETVAJ - this function block cal cul ates the accel eration, velocity and
jerk to be used for this move. Thisfunction block also determines whether
the move's parameters can support atriangular profile or whether it must
be atrapezoidal profile.

M_SC_ACC - this function block adds the acceleration portion of the pro-
fileinto the main structure (for aRATIO_RL). Depending on the move's
parameters, the acceleration will be constant acceleration or it will be an
scurve (i.e., smoothed acceleration).

M_CNST _V - this function block adds the constant velocity portion of the
trapezoidal profileinto the main structure (for aRATIO_RL). The constant
velocity portion isthe ‘flat top’ of the profile. A triangular profile does not
have a constant velocity portion.

B-4

M_SC_DEC - thisfunction block adds the deceleration portion of the pro-
fileinto the main structure (for aRATIO_RL). Depending on the move's
parameters, the deceleration will be constant deceleration or it will be an
scurve (i.e., smoothed deceleration).

If aspecific application requires adifferent combination of slave movesfor one (or
more) master moves, these function blocks are the ‘building blocks' for that appli-
cation. TheM_PRF1MYV function block illustrates how to convert adefined move
of aslave axis (i.e., the move structure) into aprofile for RATIO_RL. Its contents
can be merged into your application and then modified to concatenate other slave
moves, each with its own definition specified in a move structure, into the single
profile. Notethat if alonger profileisto be generated you must make sure that the
array of structures for the profile in the application is adequately sized.

The following flow chart shows the relationship of the function blocks to each

other.
M_PRF2MV M_PRF1MV
(for two moves) (for one move)
M_PRFERR M_PROFL M_PRFDWL
(profile error checks for a move) (profile data for a move) (profile dwell)
M_SETVAJ M_SC_ACC M_CNST_V M_SC_DEC
(set velocity, (s curve (constant (s curve
acceleration, acceleration) velocity deceleration)
and jerk) move)
Note: The M_PRF2MV function block contains two each of M_PRFERR,

M_PROFL, and M_PRFDWL. There is one of these function blocks
for each of the two moves.

B-5

M_PRF2MV

2 slave moves for master USER/M_PROFL

I %MEMV_ I nputs: ENOO (BOOL) - enables execution

E&GG o (Typically one-shot)

R ERRT RR (STRUCTURE) - Array of Structures to be used
| I for profile.
AMOV1 TRP1 MOV1 (STRUCTURE) - Structure containing 1st
{MOV2 AMX1 | move's input data.
{MDST VMX1 | MOV2 (STRUCTURE) - Structure containing 2nd
IMscL ERR2L move's input data.
1sscL TrRe2L MDST (DINT) - Master feedback units/cycle.
Jvim amxz L MSCL (REAL) - Master feedback units/input unit.

WIX2 F SSCL (REAL) - Slave feedback units/input unit..

VLIM (REAL) - Maximum allowable velocity.
Outputs. OK (BOOL) - execution completed without error.
ERR1 (BYTE) - Error number for First Move.

TRP1 (BOOL) - Move 1 changed to atrapezoid to
achieve move.

AMX1 (REAL) - Maximum accel eration rate calcu-
lated for move 1.

VMX1 (REAL) - Maximum velocity rate calculated
for move 1.

ERR2 (BYTE) - Error number for Second move.

TRP2 (BOOL) - Move 2 changed to atrapezoid to
achieve move.

AMX2 (REAL) - Maximum accel eration rate calcu-
lated for move 2.

VMX2 (REAL) - Maximum velocity rate cal culated
for move 2.

<<INSTANCE NAME>>:M_PRF2MV (ENOQO := <<BOOL>>, RR := <<MEM-
ORY AREA>> MQOV1 .= <<MEMORY AREA>>, MOV2 := <<MEMORY
AREA>>, MDST := <<DINT>>, MSCL := <<REAL>>, SSCL := <<REAL>>,
VLIM = <<REAL>>, OK => <<BOOL>>, ERR1 => <<BYTE>>, TRP1 =>
<<BOOL>>, AMX1 =><<REAL>>, VMX1 => <<REAL>>, ERR2 =>
<<BYTE>>, TRP2 => <<BOOL>>, AMX2 => <<REAL>>, VMX2 =>
<<REAL>>);

B-6

TheM_PRF2MYV function block sets up 2 slave moves in the master cycle.

Thisfunction block is designed for arotary master axis such asapress. It setsup a
two move Ratio Real profile, with dwell segments after each. The moves can be
different directions or the same, and different directions or the same. Either move
can use smoothed "S-Curve" acceleration by input selection. Either move can be
trapezoidal or triangular, again by input selection (smoothing can be used in either
case).

Thisfunction block controls the setup for the profile. The successful call of this
function block resultsin afilled array of structuresfor a Ratio_Real profile which
isready to be started by acall of RATIO_RL using the array of structures set up
herein. The format for the RATIO REAL structure is shown in Table 2-1.

Table 2-1. Ratio Real Structure

Name Data Type Definition

RR STRUCTURE | Array of Structuresto be used
for profile

.MAST_DIS DINT Master move distancein
feedback units

SLAV_DIS DINT Slave move distance relative to
Master

K1 LREAL VELOCITY co-efficient for
polynomial

K2 LREAL ACCELERATION co-efficient
for polynomial (A/2)

K3 LREAL JERK co-€fficient for polyno-
mial (J/6)

SPARE LREAL Spare. Reserved for possible
future features.

FLAGS DWORD Movetypeflags. Bits2& 3=0
for polynomial

The shape of the profile is determined by the input parameters. There are two sep-
arate movesin this profile, with zero-speed dave dwells after each. The format for
the MOV 1 and MOV 2 structuresis shown in Table 2-2. MOV 2 has the same struc-
ture format as MOV 1.

B-7

Table 2-2. Move Structure

Name Data Type Definition

MOV1 STRUCTURE | Structure containing move's input data
STRT_ANG REAL Angle of master axis at start of ave move
STOP_ANG REAL Angle of master axis at end of slave move
SLV_MOVE REAL Distance of slave move

MAX_V REAL Maximum desired velocity of the slave axis
PCT_J REAL Percent of maximum possible jerk to be used
PCT_A REAL Percent of maximum possible accel to be used
.TRI_ONLY BOOL Triangular profile desired

SCURVE BOOL Smoothed scurve acc/dec desired

Maximum velocity can be limited to allow an automatically adjusting profile
which will be triangular until the maximum velocity is reached. It will then spread
into a trapezoid using the minimum acceleration to achieve the move.

It isalso possible to set up each move as a constant accel/decel triangular move or
atrapezoidal move using operator inputsfor the desired shape. Acceleration can be
adjusted to change the shape from triangular to nearly rectangular by increasing
the accel eration percent.

For any such profile, the acceleration can be "smoothed" by adjusting the jerk per-
cent. Thiswill not change the basic shape of the profile, but will change the accel-
eration and deceleration portions of the move to resemble an "S-Curve".

The percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, thereisno constant accel portion. Thiswill correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by "smoothing" or jerk, nor isthe average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

The first portion of the ASFB checks the input data for any detectable errors. The
bit assignments for ERR1 and ERR2 are shown in Table 2-3. The function
BYT2BOOL is helpful in checking for specific errors.

B-8

Table 2-3. Error Definitions

Fault Bit Number Description

Starting angleis not within -180 to 360 degrees
Ending angle is not within -180 to 360 degrees
Acceleration percent value not within 0.0 to 100.0
Jerk percentage value not within 0.0 to 100.0
Desired velocity limit higher than allowed
Desired velocity limit is zero

Master Move 1 overlaps Master Move 2

Cannot set-up move with input parameters given

N OO WNEFLO

Assuming no errors, the data is separated and scaled for both the Master & Slave
moves. This datais checked, then fed into the appropriate Move or Dwell function
block.

Final error checking is done before returning OK.

Example Profiles

The following four examplesillustrate the effects of jerk on atriangular profile.
As can be seen, the lower the jerk percentage the smoother the profile. If either a
smaller or adightly larger acceleration rate is given, the profile will ook the same
because the slave must still move the same distance for the same master motion.
However if alarge enough acceleration rate is given for the maximum velocity
limits and the respective master and slave distances specified in the input move
structure then the generated profile will become trapezoidal and the output boolean
variable will be set to indicate that change in behavior.

1.Triangular profile with no scurve (and 50% acceleration).
2. Triangular profile with scurve and 5% jerk.

3. Triangular profile with scurve and 50% jerk.

4. Triangular profile with scurve and 95% jerk.

B-9

The following six examples illustrate the effects of acceleration and jerk on atrap-
ezoidal profile. As can be seen, the higher the accel eration percentage the steeper
the acceleration curve. Also, just asfor the triangular profile, the lower the jerk
percentage the smoother the profile.

1. Trapezoidal profile with no scurve and 50% acceleration.

2. Trapezoidal profile with scurve, 50% acceleration and 5% jerk.
3. Trapezoidal profile with scurve, 50% acceleration and 50% jerk.
4. Trapezoidal profile with scurve, 50% acceleration and 95% jerk.
5. Trapezoidal profile with scurve, 10% acceleration and 50% jerk.
6. Trapezoidal profile with scurve, 90% acceleration and 50% jerk.

B-10

output

Figure 2-1. Triangular no scurve, 50% accel

output

- 0 N N O O M O NN ¥ d 0 .U N OO O M O N~ <
© M O ©W M O N~ M O I~ M O N~ M O N~ < O I~
A N N O F < 1D © © ~~ 0 0o o O O «H N «
o H H - -

time

Triangular scurve, 50% accel, 5% jerk

— O NN N O © M O N ¥ 4 0 ;N N OO O M O N~ <
© M O O M O K~ M O K~ M O N~ M O N~ < O N~
A N N O < < D © © ~ 0 0o o O O «+H N
L B B B |

time

B-11

output

output

Triangular scurve, 50% accel, 50%jerk

— n N (o2} © [se} o ~ < - © Yo} N [=)] © o o ~ <
© ™ o © (] o ~ M o N~ o o ~ ™ o ~ < o ~
— N N [32) < < n © © ~ 0 [ee] (o] o o — N o
- - - - -
time
Triangular scurve, 50% accel, 95% jerk
160

- [oe} n N (2] © [se} o ~ < - o] n N [=)] © o™ o ~ <
© o™ o © (3] o ~ 3] o N~ o™ o ~ ™ o ~ < o ~
- N ~N (32 < < Yo} © © ~ @ [ee] (<2} o o — N o~
- - - - -
time

B-12

output

output

Trapezoidal no scurve, 50% accel

120
100 +
80
60
40 +
20 +
0
— n N o9 © M O N~ T — n o O ™M O ~ <
© M O © o« O ~ M O ~ M O I~ M O ~ < O~
- N « o < <t B0 © © ~ 0 o O O «+H N «
- - - - -
time
Trapezoidal scurve, 50% accel 5% jerk
120
100 +
80 +
60 +
40 +
20 +
0 i
- 00 O N O © M O ~ < — 00 WU « o O ™ O ~ <
© M O © M O N~ M O ~ M O ~ | O ~ < O I~
- N « ™ < S n © © ™~ W o o O O —«+H N «
- - - - -
time

B-13

Trapezoidal scuve, 50% accel 50% jerk

120

100 +

80 +

output

40 +
20 +
0
-] n N (2] © [se} o ~ < - oo} n N [=)] © o o ~ <
© (32 o © (] o ~ M o ~ o™ o ~ ™ o ~ < o ~
— N ~N o < < n © © ~ [=°) [ce] (<2} o o — N N
— — — — —
time
S

B-14

output

Trapezoidal scurve, 10% accel 50% jerk

160

5
o
5
o
— o] n N (2] © [se] o ~ < - oo} n N [*)] © o o ~ <
© o o © (32 o ~ M (=] ~ o o ~ [52] o ~ < o ~
— N N o < < n © © ~ o) [ce] (o)) o o — N o
- - - - -
time
Trapezoidal scurve, 90% accel, 50%jerk
90
80 +
70 +
60 +
50 +
40 +
30 +
20 +
10 +
0 i Iy
— ~ ™ (2] n — ~ (3] [e2] n - ~ ™ (2] [Tel - N~ o (o2} n
© o (2] © (3} (2] © N (2] © ~N (<2} n N (2} [Te} N [ce] n
— — N o™ (32 < Yo} Tel © ~ ~) (e} o 8 :‘i :! (:

time

B-15

M_PRF1MV

One slave move for master

USER/M_PROFL

_M_IgéhFAEMV_ Inputs:
4ENOD OK
RR ERR1
MOV1 TRP1
MDST AMX1
MSCL VMX1
4SSCL

{VLIM

Outputs:

ENOO (BOOL) - enables execution (Typically one-
shot)

RR (STRUCTURE) - Array of Structures to be used
for profile.

MOV 1 (STRUCTURE) - Structure containing 1st
move's input data.

MDST (DINT) - Master feedback units/cycle.
MSCL (REAL) - Master feedback units/input unit.
SSCL (REAL) - Slave feedback units/input unit..
VLIM (REAL) - Maximum allowable velocity.
OK (BOOL) - execution completed without error.
ERRL1 (BYTE) - Error number for move.

TRP1 (BOOL) - Move changed to atrapezoid to
achieve move.

AMX1 (REAL) - Maximum accel eration rate calcu-
lated for move.

VMX1 (REAL) - Maximum velocity rate calculated
for move.

<<INSTANCE NAME>>:M_PRF1IMV(ENOO := <<BOOL>>, RR := <<MEM-
ORY AREA>>MOQOV1:=<<MEMORY AREA>>, MDST := <<DINT>>,
MCSL = <<REAL>>, SSCL := <<REAL>>, VLIM := <<REAL>>, OK =>
<<BOOL>>, ERR1 => <<BYTE>>, TRP1 => <<BOOL>>, AMX1 =>
<<REAL>>, VMX1 => <<REAL>>);

The M_PRF1IMV function block sets up a single slave move in the master cycle.

The M_PRFIMYV function block does the same processing asM_PRF2MV except
that it processes only one slave move for the master cycle rather than two slave
moves. Refer to the M_PRF2MYV description for more information.

Note: Fault bit number 6 (Table 2-3: Error Definitions) is not used by

M_PRFIMV.

B-16

Check for profile errors USER/M_PROFL
i MAMEC.T] Inputst ENOO (BOOL) - enables execution (Typically one-
- shot)
{ENoo OK} o
VOVE ERR MOVE (STRUCT) - Structure containing 1st move's
1 I input data.
TVLIM ENCHF VLIM (REAL) - Maximum allowable velocity.
Outputs. OK (BOOL) - execution completed without error.

ERR (BOOL) - Error flag.
ENUM (BYTE) - Error number.

<<INSTANCE NAME>>:M_PRFERR(ENOO := <<BOOL>>, MOVE :=
<<MEMORY AREA>>VLIM := <<REAL>>, OK => <<BOOL>>, ERR =>
<<BOOL>>, ENUM => <<BYTE>>);

The M_PRFERR function block checks the validity of the move's parameters that
have been passed into a function block.

Thisfunction block checks the validity of the move's parameters which have been
passed into a function block. It isoriginally designed specifically for arotary mas-
ter and alinear dave axis. The format for the MOV E structure is shown in

Table 2-4.

B-17

Table 2-4. MOVE Structure

Name Data Type Definition

MOVE STRUCT Structure of input datafor
move

STRT_ANG REAL Angle of master axis at start
of dave move

STOP_ANG REAL Angle of master axis at end
of dave move

SLV_MOVE REAL Distance of slave move

MAX_V REAL Maximum desired velocity
of the slave axis

PCT_J REAL Percent of maximum possi-
ble jerk to be used

PCT_A REAL Percent of maximum possi-
ble accel to be used

.TRI_ONLY BOOL Triangular profile desired

SCURVE BOOL Smoothed scurve acc/dec
desired

If any of the values are invalid, then afault is flagged (ERR). All faults found are
coded into abyte which is passed to the calling ladder. Use BY T2BOOL to decode
faults. Only thefirst 6 bits are set in this function block. The upper 2 bits are used
and set in the calling ladder. The Error Definitions are shown in Table 2-5.

Table 2-5. Error Definitions

Fault Bit Number Description

Starting angle is not within -180 to 360 degrees

Ending angle is not within -180 to 360 degrees

Acceleration percent value not within 0.0 to 100.0

Jerk percentage value not within 0.0 to 100.0

Desired velocity limit higher than allowed

g WINFL O

Desired velocity limit is zero

B-18

M_PROFL

Make profile for 1 move

USER/M_PROFL

ENOO
MDST
SDST
RR

MSCL
SSCL
ACCP
JERK

- NAME —
M_PROFL

MAXV SRND

oK
TRPZ
SEGS
MRND

ERR
AMAX
VMAX
MAST

SLAV

I nputs:

Outputs:

ENOO (BOOL) - enables execution (Typically one-
shot)

MDST (REAL) - Master distance for this move.
SDST (REAL) - Slave distance for this move.

RR (STRUCT) - Array of structuresto be used for
profile.

MAXV (REAL) - Maximum desired velocity.
MSCL (REAL) - Master feedback unitsg/input unit.
SSCL (REAL) - Slave feedback units/input unit.

ACCP (REAL) - Percent of maximum possible accel
to be used.

JERK (REAL) - Percent of maximum possible jerk to
be used

OK (BOOL) - execution completed without error.

TRPZ (BOOL) - Move changed to atrapezoid to
achieve move.

SEGS (USINT) - Total number of structures used for
this move.

MRND (DINT) - Master move rounding error
detected in FUs.

SRND (DINT) - Slave move rounding error detected
in FUs.

ERR (BOOL) - Cannot achieve the move with the
given inputs.

AMAX (REAL) - Maximum acceleration rate calcu-
lated for move.

VMAX (REAL) - Maximum velocity rate calculated
for move.

MAST (DINT) - Number of master feedback units
used in move.

SLAV (DINT) - Number of Master feedback units
used in move.

B-19

<<INSTANCE NAME>>:M_PROFL (ENQO := <<BOOL>>, MDST =
<<REAL>>, SDST := <<REAL>> RR := <<MEMORY AREA>> MAXV =
<<REAL>>, MSCL := <<REAL>>, SSCL := <<REAL>>, ACCP =
<<REAL>>, JERK :=<<REAL>>, OK =><<BOOL >>, TRPZ => <<BOOL >>,
SEGS => <<USINT>>, MRND => <<DINT>>, SRND => <<SRND>>, ERR
=> <<BOOL>> AMAX => <<REAL>>, VMAX => <<REAL>> MAST =>
<<DIST>>, SLAV => <<DINT>>);

The M_PROFL function block sets up one move

Maximum velocity can be limited to allow an automatically adjusting profile
which will be triangular until the maximum velocity is reached. It will then spread
into a trapezoid using the minimum acceleration to achieve the move.

It isalso possible to set up each move as a constant accel/decel triangular move or
atrapezoidal move using operator inputsfor the desired shape. Acceleration can be
adjusted to change the shape from triangular to nearly rectangular by increasing
the acceleration percent.

For any such profile, the acceleration can be "smoothed" by adjusting the jerk per-
cent. Thiswill not change the basic shape of the profile, but will change the accel-
eration and decel eration portions of the move to resemble an "S-Curve". The
percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, thereisno constant accel portion. Thiswill correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by "smoothing" or jerk, nor isthe average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

The format for the RATIO_RL structureis shown in Table 2-1.

B-20

M_PRFDWL

Slave dwell in profile

USER/M_PROFL

{ENG® OK
{MDST SEGS
{MSCL

4RR

- MEXT

4 SEXT

- NAME —
M_PRFDWL

I nputs:

Outputs:

ENOO (BOOL) - enables execution (Typically one-
shot)

MDST (REAL) - Master distance for dwell.
MSCL (REAL) - Master scale factor.

RR (STRUCTURE) - Array of structures used for the
profile.

MEXT (DINT) - Extramaster feedback units.
SEXT (DINT) - Extra slave feedback units.
OK (BOOL) - execution completed without error

SEGS (USINT) - Total number of structures used for
move.

<<INSTANCE NAME>>:M_PRFDWL (ENOQO := <<BOOL>>, MDST :=
<<REAL>>, MSCL := <<REAL>> RR := <<MEMORY AREA>>, MEXT :=
<<DINT>>, SEXT := <<DINT>>, OK =><<BOOL>>, SEGS =>
<<USINT>>);

ThisM_PRFDWL function block takes the array of structures pointer and fills the
next structure with the necessary datafor a Slave dwell in the profile. The Master
distance will be adjusted by any rounding errors detected when the preceding
move was calculated. The only slave motion will be any slave rounding errors
detected. These will be applied at the end of the dwell.

Thereis no acceleration or jerk or initial velocity in a dwell move.

B-21

M_SETVAJ

Set vel, acc, jerk values USER/M_PROFL
i SWE, 71 Inputss ENOO (BOOL) - enables execution (Typically one-
- shot

{ENee OK}) . _ .
VLMT (REAL) - Maximum desired velocity.

{VLMT MAXV _ '

IuosT sl MDST (REAL) - Master distance for this move.

lspsT maxul SDST (REAL) - Save distance for this move.

Iaccp maccl ACCP (REAL) - Percent of maximum possible acccel
to be used.

{JERK TRPZ} _ -
JERK (REAL) - Percent of maximum possible jerk to
be used.

Outputs. OK (BOOL) - execution completed without error.
MAXV (USINT) - Maximum velocity calculated for

move.
MAXA (LREAL) - Maximum acceleration rate calcu-
lated for move.

MAXJ (LREAL) - Maximum jerk calculated for
move.

MACC (LREAL) - Master distance during accelera-
tion (and deceleration).

TRPZ (BOOL) - Move changed to atrapezoid to
achieve move.

<<INSTANCE NAME>>:M_SETVAJ(ENQO := <<BOOL>>, VLMT :=
<<REAL>>, MDST := <<REAL>> SDST := <<REAL>>, ACCP :=
<<REAL>>, JERK := <<REAL>>, OK => <<BOOL>>, MAXV =>
<<USINT>>, MAXJ=><<LREAL>>, MACC => <<LREAL>>, TRPZ =>
<<BOOL>>);

The M_SETVAJ function block calculates the accel eration, maximum velocity,
and jerk to be used for this move.

The M_SETVAJASFB calculates the accel eration, maximum velocity, and jerk to
be used for this move. Separate calls can be used if acceleration and deceleration
are to be different. The distance that the master will move during the acceleration
(and deceleration) isalso calculated. If Accel isnot the same asdecel, care must be
used to avoid invalid setup of the Ratio Real. Use MAXYV for K1 of Decel. Itis
easy to have s-curve on either the accel eration or decel eration rather than both. The
value of thisisto allow the axisto accel or decel faster when inertiaislower, and
allow more time for critical moves (i.e., alarger portion of atriangular move for

B-22

the decel when concerned with aloaded part slipping out of the holding mecha-
nism while the accel has no such concern).

MAXYV is the maximum velocity that the profile will reach, and is the ending
velocity for the accel portion of the move.

MACC isthe distance that the Master axis will move during the accel.

For any such move profile, the acceleration can be "smoothed" by adjusting the
jerk percent. Thiswill change the acceleration (and deceleration) portions of the
move to resemble an "S-Curve".

The percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, thereisno constant accel portion. Thiswill correspond
to the highest acceleration rate. Maximum velocity during amove is not affected
by "smoothing" or jerk, nor isthe average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

B-23

M_SC_ACC

Acceleration segment

USER/M_PROFL

_M_Igl/é%cc_ Inputs:
4ENOD OK
AMAX SDST
VMAX SEGS
JERK SCUR
MDST AERR
RR VERR

Outputs:

ENOO (BOOL) - enables execution (Typically one-
shot)

AMAX (LREAL) - Maximum acceleration rate cal cu-
lated for the move.

VMAX (LREAL) - Maximum velocity calculated for
the move.

JERK (LREAL) - Maximum jerk calculated for this
move.

MDST (LREAL) - Master distance during accelera-
tion.

RR (STRUCTURE) - Array of structuresto be used
for profile.

OK (BOOL) - Execution of function completed with-
out error.

SDST (DINT) - Slave distance during acceleration.

SEGS (USINT) - Total number of segments used for
acceleration.

SCUR (BOOL) - If set, acceleration uses an S curve
move.

AERR (BOOL) - If set, acceleration equals 0.
VERR (BOOL) - If set, velocity equals O..

<<INSTANCE NAME>>:M__ SC_ACC(ENO0O :=<<BOOL>>, AMAX =
<<LREAL>>, VMAX = <<LREAL>> JERK := <<LREAL>>, MDST :=
<<LREAL>>, RR :=<<MEMORY AREA>>, OK =><<BOOL>>, SDST =>
<<DINT>>, SEGS => <<USINT>>, SCUR => <<BOOL>>, AERR =>
<<BOOL>>, VERR => <<BOOQOL >>);

TheM_SC_ACC function block adds the acceleration portion of the move to the

profile.

TheM_SC ACC ASFB adds the necessary segments for the acceleration portion
of the profile. If the JERK input is not equal to zero, there will be three segments
for the acceleration. If the JERK input is zero, there will be one segment required.

B-24

M_CNST V

Constant velocity segment USER/M_PROFL
i MME 71 Inputss ENOO (BOOL) - enables execution (Typically one-
o shot)
{ENO® OK} . .
VDST SEGS MDST (REAL) - Master distance for this move.
RR (STRUCT) - Array of Structuresto be used for
{1RR CVSG|)
profile.
Outputs. OK (BOOL) - Execution of function completed with-
out error.
SEGS (USINT) - Total number of segments used for
profile.
CVSG (BOOL) - A valid Constant Velocity structure
was used flag.

<<INSTANCE NAME>>:M__ CNST_V(ENOO := <<BOOL>>, MDST :=
<<REAL>> RR :=<<MEMORY AREA>> OK =><<BOOL>>, SEGS =>
<<USINT>>, CVSG => <<BOOL>>);

TheM_CNST _V function block fillsaRatio Real structure with the necessary dis-
tances and polynomial co-efficients for a Constant Velocity move. The initial
velocity isfilled by an earlier function call.

A constant velocity move requires the initial velocity, K1 to be non-zero, and the
initial and final values of both acceleration, K2/2, and Jerk, K3/6, to be zero.

The Master Move Distance cannot be zero for aRATIO_RL segment, therefore if
this would be the case, then no constant velocity move is set up.

B-25

M_SC_DEC

Deceleration segment

USER/M_PROFL

‘M_'g'/éﬂE)Ec— Inputs:
4ENOD OK
DMAX SDST
VMAX SEGS
JERK SCUR
MDST DERR
RR VERR

Outputs:

ENOO (BOOL) - enables execution (Typically one-
shot)

DMAX (LREAL) - Maximum acceleration rate cal cu-
lated for the move.

VMAX (LREAL) - Maximum velocity calculated for
the move.

JERK (LREAL) - Maximum jerk calculated for this
move.

MDST (LREAL) - Master distance during accelera-
tion.

RR (STRUCTURE) - Array of structuresto be used
for profile.

OK (BOOL) - Execution of function completed with-
out error.

SDST (DINT) - Slave distance during acceleration.

SEGS (USINT) - Total number of segments used for
acceleration.

SCUR (BOOL) - If set, acceleration uses an S curve
move.

DERR (BOOL) - If set, acceleration equals 0.
VERR (BOOL) - If set, velocity equals 0.

<<INSTANCE NAME>>:M__ SC DEC(ENOQO := <<BOOL>>, DMAX =
<<LREAL>>, VMAX = <<LREAL>> JERK := <<LREAL>>, MDST :=
<<LREAL>>, RR :=<<MEMORY AREA>>, OK =><<BOOL>>, SDST =>
<<DINT>>, SEGS => <<USINT>>, SCUR => <<BOOL>>, DERR =>
<<BOOL>>, VERR => <<BOOQOL >>);

TheM_SC DEC function block adds the deceleration portion of the move to the

profile.

TheM_SC DEC ASFB adds the necessary segments for the deceleration portion
of the profile. If the JERK input is not equal to zero, there will be three segments
for the deceleration. If the JERK input is zero, there will be one segment required.

B-26

Index

A

Acceleration Scale Text A-4
Acceleration Scale Vaue A-4
ADDCKSUM 2-6
Alternative Mode Status A-17
Analog Input Acceleration Limit A-15
Analog Input Acceleration Limits Enable A-
16

Analog Input Deceleration Limit A-15
Analog Offset A-12
Analog Output A-22
Analog Output Configuration Register A-12
Analog Scale A-13
Arm Triggering A-24
ASFB 1-1

using 1-3
At Speed Limit A-6
Autotune Maximum Current A-17
Autotune Maximum Distance A-17
Average Current A-23
Average Motor Current A-23
Average Time Constant A-9

B

Back EMF Constant A-8
Boot Firmware Version A-3
BRAKE Active Delay A-11
BRAKE Inactive Delay A-11
Bus Voltage A-23
BYTE2HEX 2-6

C

Change Direction Flag A-16
Channel 1 Source A-24

Channel 2 Source A-24
CHKCKSUM 2-7

Collected Data A-25
COMMAND Input A-22
Command Source A-15
COMMAND Torque Offset A-12
COMMAND Torque Scale A-12
COMMAND Veéocity Offset A-12
COMMAND Velocity Scale A-12

Commands, Common Product Line A-3
Commutation Type A-9

Continuous Current Limit A-7

Current Command A-23

Current Feedforward A-9

Current Negative Peak A-23

Current Positive Peak A-23

D

Digital Input Configuration Register A-11
Digital Input States A-21

Digital Output Configuration Register A-11
Digital Output States A-21

Digital Output Write Mask A-11

Drive Mode A-15

Drive Name A-4

DWOR2HEX 2-7

E

Encoder Alignment Offset A-17
Encoder Lines A-8
Encoder Output Configuration Register A-15

F

Fault Status A-20

Field Current A-23

Field Voltage Command A-23
Firmware, Main Version A-3

G
Gear Ratio A-5
H

Hall Offset A-9
HEX2BYTE 2-8
HEX2DWORD 2-9
HEX2WORD 2-9

Index Offset A-9
Installation 1-1
Integrator Zone A-5

L

Low Pass Filter Bandwidth A-7
Low Pass Filter Enable A-7

Index-1

M

M_C2M 2-10
M_CHK1 2-32
M_CHK101 2-33
M_CHK 109 2-34
M_CHK49 2-35
M_CHK57 2-36
M_CHK65 2-37
M_CHK732-38
M_CHK9 2-39
M_CLOSL1 2-40
M_CLOS9 2-42
M_CLS101 2-44
M_CLS109 2-46
M_CNST V B-25
M_CRSFIN 2-48
M_DATCAP 2-50
M_DATCPT 2-54
M_DNJOGC 2-58
M_DNPOSC 2-59
M_DNSTAT 2-61
M_DW2BOO 2-68
M_ERROR 2-70
M_FHOME 2-71
M_INCPTR 2-73
M_JOG 2-75
M_LHOME 2-76
M_LINCIR 2-79
M_PRFIMV B-16
M_PRF2MV B-6
M_PRFDWL B-21
M_PRFERR B-17
M_PROFL B-19
M_PRTCAM 2-83
M_PRTREL 2-85
M_PRTSLP 2-87
M_RATREL 2-89
M_RATSLP 2-90
M_RDTUNE 2-92
M_RGSTAT 2-93
M_RSET49 2-95
M_RSET57 2-96
M_RSET65 2-97
M_RSET73 2-98
M_SACC 2-99
M_SC_ACC B-24

Index-2

M_SC DEC B-26

M_SCRVLC 2-101
M_SETVAJB-22

M_SRCMON 2-107

M_SRCPRC 2-109

M_SRCRDL 2-111

M_SRCWT 2-113

M_SRCWTL 2-115
M_STATUS2-121

M_WTTUNE 2-123

Manual Tune Position Period A-17
Manua Tune Position Step A-17
Manual Tune Velocity Period A-17
Manual Tune Velocity Step A-17
Master Encoder Resolution A-18
Master Index Position A-18
Master Position A-22

Maximum Motor Speed A-8
Motor Continuous Current A-8
Motor Encoder Resolution A-18
Motor Forward Direction Flag A-10
Motor ID A-8

Motor Index Position A-18

Motor Peak Current A-8

Motor Position A-22

Motor Table Information A-9
Motor Table Record Size A-9
Motor Table Version A-9

Motor Velocity A-22

N
Negative Current Limit Input A-22
O

Operating Mode A-17

Over Speed Limit A-6
Override Analog Outputs A-13
Override Digital Output A-11

P

Packed Drive Status A-20
Pole Count A-9

Position Command A-22
Position Error A-22
Position Error Limit A-5
Position Error Time A-5

Position Loop Derivative Gain A-5
Position Loop Feedforward Gain A-5
Position Loop Integral Gain A-5
Position Loop Proportional Gain A-5
Position Negative Peak Error A-22
Position Positive Peak Error A-22
Position Scale Text A-4

Position Scale Value A-4

Position Window Size A-5

Position Window Time A-5

Positive Current Limit Input A-22
Powerup Status A-3

Preset Acceleration Limits Enable A-16
Preset Input Acceleration Limit A-15
Preset Input Deceleration Limit A-15
Press Transfer ASFBS Introduction B-1
Product Type A-3

R

Reset Drive A-19
Reset Faults A-19
Reset Peaks A-22
Reset Personality NVRAM A-4
revision
history 1-2
range 1-2
Rotor Inertia A-8
R-Phase Current A-23
Run State A-21

S

S CLOS9 2-127

S CLS101 2-129

S CLS109 2-131

S ERRORC 2-133

S FHOME 2-135

S 10 _C2-138

S LHOME 2-140

Save Alignment Offset A-18
Seria Port Baud Rate A-14
Seria Port Frame Format A-14
Setpoint Acceleration A-19
Setpoint Control A-19

Slew Enable A-5

Slew Rate A-5

Software Drive Enable/Disable A-19
Software Drive ID A-14

Software Negative Current Limit A-7
Software Positive Current Limit A-7
Speed Window Size A-6

T

Thermal Time Constant Enable A-9
Thermostat Flag A-8

Timebase A-24

Torque Constant A-8

Torque Current A-23

Torque Preset A-15

Torque Scale Text A-4

Torque Scale Value A-4

Torgue Setpoint A-19

Torque Voltage Command A-23
T-Phase Current A-23

Trigger Mode A-24

Trigger Source A-24

Trigger Status A-24

Trigger Threshold A-24

Tuning Direction Flag A-15

Vv

Velocity Command A-22

Velocity Error A-23

Velocity Loop Derivative Gain A-6
Velocity Loop Integral Gain A-6
Velocity Loop Proportional Gain A-6
Velocity Loop Update Period A-6
Velocity Preset A-15

Velocity Scale Text A-4

Velocity ScaeVaueA-4

Velocity Setpoint A-19

w

Winding Inductance A-8
Winding Resistance A-8
WORD2HEX 2-143

Z
Zero Speed Limit A-6

Index-3

NOTES

Index-4

	Table of Contents: Motion ASFB Manual
	CHAPTER 1 Application Specific Function Block Guidelines
	Installation
	Revisions
	Network 1
	Network 2
	Network 3

	ASFB Input/Output Descriptions
	Network 4

	Using ASFBs

	CHAPTER 2 Motion ASFBs
	ADDCKSUM
	BYTE2HEX
	CHKCKSUM
	DWOR2HEX
	HEX2BYTE
	HEX2DWOR
	HEX2WORD
	M_C2M
	M_CHK1
	M_CHK101
	M_CHK109
	M_CHK49
	M_CHK57
	M_CHK65
	M_CHK73
	M_CHK9
	M_CLOS1
	M_CLOS9
	M_CLS101
	M_CLS109
	M_CRSFIN
	M_DATCAP
	M_DATCPT
	M_DNJOGC
	M_DNPOSC
	M_DNSTAT
	M_DSMCOM
	RS232 Connections
	RS422/RS485 Connections
	M_DW2BOO
	M_ERROR
	M_FHOME
	M_INCPTR
	M_JOG
	M_LHOME
	M_LINCIR
	M_PRTCAM
	M_PRTREL
	M_PRTSLP
	M_RATREL
	M_RATSLP
	M_RDTUNE
	M_RGSTAT
	M_RSET49
	M_RSET57
	M_RSET65
	M_RSET73
	M_SACC
	M_SCRVLC
	M_SRCMON
	M_SRCPRC
	M_SRCRDL
	M_SRCWT
	M_SRCWTL
	ERR Output
	SERR Output
	BSER Output
	M_STATUS
	M_WTTUNE
	S_CLOS1
	S_CLOS9
	S_CLS101
	S_CLS109
	S_ERRORC
	S_FHOME
	S_IO_C
	S_LHOME
	WORD2HEX

	APPENDIX A M_DSMCOM Commands
	Exception Responses
	Host Command Set
	Common Product Line Commands
	General Commands
	Position Loop Commands
	Velocity Loop Commands
	Torque Current Conditioning Commands
	Motor Commands
	Motor Commands (Continued)
	Motor Commands (Continued)
	Digital I/O Commands
	Analog I/O Commands
	Analog I/O Commands (Continued)
	Serial Port Commands
	Operating Mode Commands
	Operating Mode Commands (Continued)
	Alternative Operating Mode Commands
	Alternative Operating Mode Commands (Continued)
	Runtime Command and Control Commands
	Runtime Status Commands
	Runtime Status Commands (Continued)
	Runtime Data Commands
	Runtime Data Commands (Continued)
	Runtime Data Collection Commands
	Runtime Data Collection Commands (Continued)

	APPENDIX B Press Transfer ASFBs
	M_PRF2MV
	M_PRF1MV
	M_PRFERR
	M_PROFL
	M_PRFDWL
	M_SETVAJ
	M_SC_ACC
	M_CNST_V
	M_SC_DEC

	Index

