PiCPro

Function/Function Block Reference Guide

Part Number M.1300.7114

Version 12.0

Giddings & Lewis

Giddings & Lewis
Controls, Measurement and Sensing

NOTE

Progress is an on going commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change without
notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely
understood. It is the responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921-7100.

M.1300.7114
Release 0201

© 1995, 1996, 1997, 1998, 1999, 2000, 2001 Giddings & Lewis, LLC

IBM is a registered trademark of International Business Machines Corp.

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.

ARCNET® is a registered trademanrk of Datapoint

PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDOMerge, PiCMicroTerm, and PiC Programming Pendant are
registered trademarks of Giddings & Lewis, LLC.

Table of Contents:
Function/Function Block
Reference Guide

CHAPTER 1-
PiCPro FUNCtioN/BIOCKS OVEIVIEW......cueuiirmrirrmnsrennsiremsssenssrenssrnnssssnssssnssenns 1-1
Introduction 1-1
ATItRMEtIC CALEGOTY ..vcicrrericrsaninssancssnnessancssassossasesssasesssssessssssssasssssasssssssessasssssasssses 1-6
ARITH ZrOUP evvieiieeeie ettt ettt e e e e e e ebeeenenee s 1-6
DATETIME SrOUP .ooieiiiiiieeieeeee ettt ettt et 1-7
TRIG GIOUP coeeeeiiee et e e et e e e s e e e e 1-8
Binary CategOory .cccccvicrcseicnseicssanicssancssasesssasesssssessasssssssssssasssssssssssssessssssssasssses 1-9
CoUNLETS CALEZOTY .evveeersarcsssancsssnncssancsssasessasesssasesssssessssssssasssssasssssasesssssessasssssasssssans 1-10
Datatype Categorycccceeeesssancssanscssasccssascssasssssasessens 1-11
BOOL2BYT ZIOUP cocevieiieeiiieiieciteeiteettesiteeteeieeeveeseeeseseesseessseesaessseeseans 1-11
DINTCONY QIOUDP coeeiieiiiieiieeeiee ettt ettt sttt siae e 1-12
DWORDOCNY ZIOUP oviiiiiiiieiieeieeiieereesite e esieeeveesenesseesseessseessaessseesseanns 1-13
D_TCONYV QIOUP eeieiieiieeiieieeeteeie et esereesaeesieeebeeseaesseessaessseesseessseesseans 1-14
INTCONYV SrOUDP ceeieiiieeieeete ettt ettt s 1-15
LINTCONYV ZIOUP .oeoiieiieeiiieiieeteeieeieesereeteeseeeeseesseesseesseessseessnessseesseans 1-16
LREALCNY GIOUP coviieiieiieeieeieeiee et ettt eiveeseeeeveeseeesebaesseeenseensaesnneenns 1-17
LWORDCNY ZIOUP eeiiiiiieiiiieeieesite ettt ettt ettt ettt e s s 1-18
NUM2STR ZIOUDP coieiiieiieiieetiesteite et esieeeteesteeeveeseeesebeesbeessseessneesseesseaans 1-19
REALCONYV ZIOUP coiiiiiiiiieieeeeiteett ettt ettt et sbe et e e ensaesane e 1-20
SINTCONY GIOUDP coeeiieiiiiiiieeieeete ettt ettt ettt et 1-21
SIZEOF IOUP ..oocviieiieeiiieiieete ettt ettt e e eese e saeebaesaeesseenes 1-22
STRCONYV ZIOUP ..veeeiieiiiiiieiieciieiee ettt ereeteeseteebeesaeeeseessaeeseeseessseenees 1-23
UDINTCNYV IOUDP coiiiiiiiieiiieeeteeete ettt ettt s 1-24
UINTCONY GIOUP coevieiieiiieieeseeeiee et esteeeveeteeseveeaeesseesbeesseeesseensaessneenns 1-25
ULINTOCNYV ZIOUP toiitvieiieeiietieeie et ertesiveesaeeseveeveesssesseesssessseesssessseesseaans 1-26
USINTCNV GIOUP .ttt ettt ettt et ettt et e et esaeee s 1-27
WORDCONYV ZIOUP eoiiiiiiiieiieciieeie et site e e sieeeveeseeesbeesseessseessaessseesseaens 1-28
Evaluate Categorycc...... 1-28
Fbinter Categorycccccerveecssanccssascssascssoncsnns 1-30
| I 1753 ol OF: 112711 o /2 1-30
I/0 Category 1-31
ANLGIN ZroUD oottt e e s e e e 1-32
ANLGOUT ZIOUP .c.uttieiiiiiieniieiteesieesieeett ettt sttt ettt sree s s 1-33
BAT_OK7 ZIOUP...cottiiiiiieeiecteeteeteete sttt st 1-34

TOC-1

BIO_PERF IrOUP....ciiiiiiiiiiiiiiiie ettt e e e e
COMM ZIOUP eetiieiiiiieeeeeiitee ettt e ettt e e ettt e e et e e e sttt e e e s sateeeesnnnneeeesnnsaeas
JKTEMP Sroup oot
NETWORK SIOUD oottt ettt e e e s e e
PID SrOUDP oottt et e e
READFDBK Sroup ...ooiiiieiiieeeeeteeeeee ettt
RTDTEMP GrOUD oottt e e s e e e e e
SOCKETS IOUP .eeeieeuiiiieeieiiite ettt ettt e ettt e e st e e s sibteeesssbaeeeesaseeas
STEPPER GrOUD oottt et st e

MOtioN CALEZOTY .eeccerrerersaresssnscssanssssasssssasesssassssasessssssssssssssasssssasssssssssssssessasssssasssses

String Categorycccceeeeenee
TImMers CateZOrYcccccceerrcssrarcssrarcssssscssssesssasesasssssssessanes
D, €6 (176 QO 11:711) TN

DATA GIOUP ceeieiiiiee ettt e e et e e e st e e s e abeeeesnnnee
ERRORS SIOUP .ottt e
IINTT GIOUP eeeeieeeeiieee ettt ettt e et e e e st e e e e sabaeeeennes
MOVE IOUP ceiiiiiiiieeeitte ettt ettt e e et e e sbae e e s s ibaeeeenanee
MOVE_SUP ZIOUP .eoouiiieiiieieiiteeeite ettt ettt ettt et
QUE QIOUP .eeiieiiiiiieeeeieee ettt ettt e e et e e s et e e s st e e e sanbeeessneees
RATIOMOYV GIOUP...ccuiiiiiiiiieiteeiteeee ettt sttt
REF GIOUP oottt ettt e
SERC_SLV IOUP eiiiiiieiieieeeee ettt
SERC_SYS GrOUP ottt et e e

CHAPTER 2-
Function/Block DesSCFHPiONSccccccmmmmmmmmmmmmnmmmnsnnsssssssssssssssssssssssssssnnns

ANLG_OUT ..o
ARTDCHIT ..ot

TOC-2

A IN_MMC ... 2-28

A _INCHIT ... 2-29
A_INCHRD ... 2-32
A_INMDIT ..o 2-36
A _TOD_T .ot 2-37
BAT _OK7 ..o 2-38
BIO_PERF ...t 2-39
BOOLZBYT ... e 2-42
BYT2BOOL ...ttt 2-43
BYTEZDW ..o 2-43
BYTEZLW ..ot 2-44
BYTE2SI ...ttt 2-44
BYTE2USIL....coiiii e 2-45
BYTE2ZWO ..o 2-45
CAM_OUT ..o 2-46
CAPTINIT ..o e 2-49
CAPTSTAT ..o 2-55
CLOCK ...t 2-56
CLOSE ... e 2-57
CLOSLOOP ... 2-58
CLSLOOPY ...t e 2-59
CONCAT ... e s 2-60
CONFIG.....ciiiiiiiie e s 2-61
COORD2ZRL ..ottt 2-63
GO e e 2-67
CTD et s 2-67
CTU e e 2-68
CTUD ..o s 2-68
C_ERRORS ... 2-69
C_RESET ... 2-71
C_STOP ..o 2-71
C_STOPT ..o e 2-72
DATE2ZSTR ..o 2-73
DELETEooiii e 2-74
DELFIL ...ttt e 2-75
DINT2ZDW L.ttt 2-76
DINTZ2INT ..ot s 2-77
DINTZLI ..ottt 2-78
DINT2RE ..ot 2-79
DINT2ST o e 2-80
DINT2UDI ..ottt 2-81
DIRECT ...t 2-82
DISTANCE ...t 2-84
DIV e e 2-85
DT2DATE ..o 2-86
DT2STR ..o s 2-87

TOC-3

DWOR2ZBYT ..o 2-89
DWOR2DLIooiiiiiiiiiiiiiccc e 2-90
DWOR2ZLW ..ot 291
DWOR2RE ..o 2-92
DWOR2ZUDLIcoiiiiiiiiiiiiicccee e 2-93
DWOR2WO ..ottt 2-94
D_TOD2ZDTooiiiiiiiiiieiee et 2-95
EQ e 2-96
EXP e e 2-97
E_ERRORS ... 2-98
E_RESET ..o 2-100
E_STOP ..o 2-101
E_STOPT ...t 2-102
FAST_QUE ..o 2-103
FAST_REF ..o 2-106
FB_CLS e 2-110
FB_OPN....oiiiii e 2-111
FB_RCV e 2-112
FB_SND ..o 2-113
FB_STA . e 2-114
FIND Lo e 2-117
FRESPACE ...ttt 2-118
FU2ZLU L. 2-118
GE e e 2-119
GETDAY .o 2-120
GR_END ...t 2-121
Gl e e 2-122
HOLD ..o e 2-123
HOLD_END ... 2-124
INSERT ..ot 2-125
INT2DINT ..o 2-126
INT2LINT ..o 2-127
INT2SINT ..o 2-128
INT2UINT Lo 2-129
INT2ZWORD.......ooiiiiiiiii e 2-130
IN_POST e 2-131
JO_CEG i 2-132
TPACCEPT ...t 2-135
TPCLOSE ... e 2-136
TPCONN L.t 2-137
TPHOSTID ..cooiiiiiiiiiiicc e 2-138
TPIP2INAM ..o e e 2-139
IPLISTEN ..ot 2-140
IPNAM2IP ..ottt 2-141
TIPREAD ..ot 2-142

TOC-4

IPRECYV Lo 2-143

IPSEND ..ottt sttt 2-144
IPSOCK ..ottt 2-145
IPSTAT ..ttt sttt et 2-146
IPWRITE ..ottt 2-147

Overview of Using the Ethernet -TCP/IP Function Blocks..................... 2-148

Ethernet-TCP/IP EITOTS......cc.ccciiiiiiiiiiniiiiiiiicececeseeee e 2-150
LAD_REF ..ottt 2-152
L et 2-154
LEFT ..ttt ettt sttt ettt 2-155
LEN Lttt sttt ettt 2-156
LIMIT ..ottt 2-157
LINT2DI oottt ettt sttt ettt 2-158
LINT2INT .ottt 2-159
LINTZLR Lottt 2-160
LINTZLW ottt ettt sttt 2-161
LINT2ST ettt sttt et 2-162
LINT2ULL....ooiiiiiiieieeeeeeee ettt 2-163
N ettt ettt sttt ettt 2-164
LIOG .ttt 2-165
LREAZLL ..ottt ettt et st 2-166
LREAZLW ..ottt sttt sttt ettt 2-167
LREAZRE ..ottt sttt 2-168
LREAZ2ULL ..ottt 2-169
LT ettt sttt ettt 2-170
LUZFU Lttt ettt sttt sttt 2-170
LWOR2ZBYT ...ttt 2-171
LWORZDW ...ttt ettt sttt 2-172
LWORZLI...cciiiiiiiiieeeeetet ettt sttt ettt 2-173
LWORZLR ...ttt s 2-174
LWOR2ZULL......ooiiiiiiitieneneetesteee ettt ettt ettt 2-175
LWOR2ZWO ...ttt sttt 2-176
LWR_CASE ..o 2-177
IMLAX ettt sttt ettt 2-178
MEASURE ..ottt 2-179
IMID ...ttt ettt sttt et sttt 2-180
IMIIIN Lttt ettt ettt ettt ae 2-181
IMOD .ttt ettt 2-182
MOVE ..ottt 2-183
IMIUL ..ttt ettt sttt ettt 2-184
IMIUX ettt ettt sttt et 2-185
N E e 2-186
INEG ..ttt sttt 2-187
INETCLS ..ottt ettt 2-188
NETERE ...ttt 2-189
NETMON ..ottt ettt s 2-190

TOC-5

NETRCV e 2-193
NETSND ..ot 2-195
NETSTA Lt 2-197
NEWRATIO ..ot 2-198
NEW_RATE ..o 2-200
INOT e e 2-201
NUM2STR ...t 2-202
OPEN L. 2-203
OPENLOORP........oiiiiiiiiiiiei e 2-205
OR e e 2-206
PART_CLR ..o 2-207
PART _REF ... 2-208
PID oo 2-209
P e 2-220
PLS_EDIT ..o e e 2-223
POSITION ..ot 2-224
P_ERRORScooii e 2-225
P_RESET ... 2-228
QLAVAIL? L e e 2-229
Q_NUMBERccciiiiiiiiiiiii e 2-230
RATIOCAM ... 2-231
RATIOPRO ..o 2-242
RATIOSCL ...t 2-247
RATIOSLP ..o 2-251
RATIOSYN .o 2-264
RATIO_GRu....ooiiiiiiii s 2-274
RATIO_RL ..o 2-277
READ ..o e 2-286
READFEDBKooiiiiiiiii e 2-288
READ_SYV e 2-299
READ_SVE Lo 2-324
REAL2ZDI ...ttt 2-325
REAL2ZDW L. 2-326
REAL2ZLR ..ot 2-327
REAL2Z2UDI ..ottt 2-328
REF_DNE7? ..ot 2-329
REF_END ..o 2-330
REGIST ..o 2-331
RENAME e 2-340
REPLACE ..o 2-341
REP_END ..ot 2-342
RIGHT ..o e 2-343
ROL o 2-344
ROR Lo 2-345
R_PERCEN ..o e 2-346

TOC-6

SC_INIT ... e 2-347

SCA_ACKR e 2-348
SCA_CLOS ..o 2-349
SCA_CTRL ..o e 2-350
SCA_ERST ..o 2-353
SCA_PBIT ..o 2-354
SCA_RCYC ..o 2-356
SCA_RECYV ..o 2-358
SCA_REF ..o 2-360
SCA_RFIT ..o 2-362
SCA_SEND ..o 2-364
SCA_STAT ..o 2-366
SCA_WCYC .o 2-367
SCR_CONT ... 2-368
SCR_ERR ..ot 2-369
SCR_PHAS ... e 2-373
SCS_ACKR ... e 2-374
SCS_CTRL ..o 2-375
SCS_RECV . e 2-377
SCS_REF ... 2-379
SCS_SEND ...ttt 2-381
SCS_STAT ..o 2-383
SERCOS EITOTS ..ottt 2-384
SCURVE ...t 2-387
SEEK e 2-393
SEL e e 2-395
SERVOCLKooiiiiiiiiiiiiiiiiiec e 2-396
SHL ..o e 2-397
SHR .o e 2-398
SIN L e 2-399
SINT2ZBYT ... e 2-400
SINTZDI ..o 2-401
SINT2INT ..ot 2-402
SINTZLI. ..o e 2-403
SINT2UST ..ot e 2-404
SIZEOF ..ot 2-405
SQRT e e 2-407
STATUS e e 2-408
STATUSSYV Lo 2-409
STEPCNTL ..ottt 2-411
STEPINIT ..o 2-415
STEPSTAT ..o e 2-417
STEP_CMD ..ot 2-420
STEP_POS ... e 2-428
STR2D_T ..o 2-429
STRZNUM ..ot e 2-430

TOC-7

STRTSERYV L. 2-432
SUB .. 2-434
SYN_END L. 2-435
S_DT DT e 2-436
S DT T oo 2-437
S DD s 2-438
S_TOD _T .o e e 2-439
S_TOD_TO ..ottt e 2-440
TAN L e 2-441
TIM2UDIN ..ottt 2-442
TIME2STR ..ot 2-443
TME_ERR? oo 2-444
TOD2ZSTR ... e 2-445
TOF ..o 2-446
TON L e 2-447
TP e 2-448
TUNEREAD ..ot 2-449
TUNEWRIT ..ot 2-450
UDIN2DI ..ot 2-453
UDINZDW ..ottt 2-454
UDIN2RE ...t 2-455
UDIN2TIM ..ottt s 2-456
UDINZUI ..ot 2-457
UDIN2ULL.....ooiiiiiiiii ettt 2-458
UDIN2USI ...t s 2-459
UINT2INT ..o 2-460
UINT2UDI ..ottt s 2-461
UINT2ULL ... 2-462
UINT2UST ..ot 2-463
UINT2ZWO Lo 2-464
ULINZLI ..o 2-465
ULINZLR ..o 2-466
ULINZLW Lt 2-467
ULINZ2UDI ..ottt 2-468
ULINZ2UL ittt 2-469
ULINZUST ..ot st 2-470
UPR_CASE ... 2-471
USINZBYT .o 2-472
USIINZST.c e s 2-473
USIN2STR ...t 2-474
USINZUDLI ...t 2-475
USINZ2UT . 2-476
USINZ2ULL ..ot 2-4717
VEL_END ...oooiiiiiiiiiii s 2-478
VEL_STRT ..o s 2-479

TOC-8

WORD2ZBYT ..o 2-480

WORD2ZDW ..ottt ettt 2-481
WORD2ZINT ...ttt ettt ettt ettt 2-482
WORD2ZLW Lottt 2-483
WORD2Z2UIL ..ottt ettt 2-484
WRITE ...ttt e e st e e s aeaeeeeaes 2-485
WRITE_SV Lttt s 2-486
WRIT _SVE Lt 2-487
HOR .ttt 2-488
A.1 --Operator Interface ASFB.........cccccciiiiiiinssmrrinnnssr s A.1-1
OL_SER ..ttt st Al-2
B.1 --OPC Server ASFB........ccoocmrriiiemss s B.1 -1
OPC_ENET ...ttt st B.1-2
OPC_T0 ettt ettt st B.1-5
B 110 IND-1

TOC-9

NOTES

TOC-10

CHAPTER 1

PiCPro Funcition/Blocks Overview

Introduction

Function and function blocks are the programming tools used to perform opera-
tions on data in PiCPro ladder diagram programs. They are similar to the subrou-
tines of other programming languages.

The difference between functions and function blocks is that a function completes
an operation in one scan whereas a function block may take more than one scan to
complete an operation. Therefore, function blocks must have internal storage for
their variables from scan to scan until their operation is complete. You must
declare and assign a name to function blocks in the software declaration table so
that PiCPro can reserve memory for them.

Chapter 1 of this reference manual presents a summary of all the standard func-
tions and function blocks available within PiCPro. This summary will familiarize
you with what is available for programming.

Chapter 2 presents descriptions of all the function/function blocks in alphabetical
order.

NOTE

You must have a math coprocessor (NPX) installed in the control
to perform any functions involving logarithmic, exponential,
trigonometric, and floating point mathematical operations. The
PiC 904x series, PiC94x series, MMC, and MMC for PC CPUs
already have an integrated math coprocessor. To determine if
your control has a math coprocessor, start PiCPro for Windows
and select Online | Status. The CPU line contains an "NPX" if
you have a math coprocessor.

Chapter 1 Function/Function Block Description 1-1

All functions and function blocks for PiCPro are stored in libraries according to
the category of operations they perform.The list of the libraries appears under the
Ladder/Functions menu.

Arith
Binary
Counters
Datatype
Evaluate
Fbinter
Filter
Io
Motion
String
Timers
Xclock

NOTE

When you use the UDFB or TASK feature to create your own
function blocks, another category appears called USER as shown
below. This is not a library, but selecting it will bring up a list of
any library you have created to store UDFBs or TASKs.

Arith
Binary
Counters
Datatype
Evaluate
Fbinter
Filter
Io
Motion
String
Timers
USER
Xclock

When you create a Servo or SERCOS setup file, you create a
library to store the setup function in. This library also shows up
in the above list.

When you access a library one of two things happens.

1-2 Chapter 1 Function/Function Block Description

You are given a list of all the function/blocks available in that library. You select
the function/block you want to insert into a network of your module from this list.

or

You are given a list of groups into which all the function/blocks have been divided.
You select the group that holds the function/block you want. This brings up the list
of function/blocks in that group and now you can select the one you want to insert
into the network of your module.

Chapter 1 Function/Function Block Description

1-3

The table below shows all the lists that appear when a library is selected. Whether
the list represents groups or function/blocks is indicated.

Table 1-1. Library Lists

Arith Binary Counters Datatype Evaluate Fbinter
Groups Functions Function Groups Functions Function
blocks Blocks
BOOL2BYT
ARITH AND CTD BYTECONV EQ FB_CLS
DATETIME NOT CTU DINTCONV GE FB_OPN
TRIG OR CTUD DWORDCNV GT FB_RCV
ROL D_TCONV LE FB_SND
ROR INTCONV LT FB_STA
SHL LINTCONV NE
SHR LREALCNV
XOR LWORDCNV
NUM2STR
REALCONV
SINTCONV
SIZEQF
STRCONV
UDINTCNV
UINTCONV
ULINTCNV
USINTCNV
WORDCONV
Filter Io Motion String Timers (USER)
Functions Groups Groups Functions Function (Librar-
blocks ies)
ANLGIN DATA CONCAT TOF (Contains
'bli)l\gIT éﬁ%(%% Eﬁl}%?RS EEhETE wN library list
MIN BIO:PERF MOVE INSERT when you
MOVE COMM MOVE_SUP LEFT use the
MUX JKTHERM QUE LEN
SEL NETWORK RATIOMOV LWR_CASE UDEFB or
PID REF MID TASK
READFDBK SERC-SLV REPLACE
RTDTEMP SERC_SYS RIGHT features.)
SOCKETS UPR_CASE
STEPPER
Xclock
Functions
CLOCK
GETDAY
SERVOCLK

When you create SERCOS and/or Servo Setup files, a new library named by you is
added alphabetically to the list of libraries.

In Table 1- 2 the function/blocks found under the groups are shown. When there is
no list of function/blocks shown, there is only one function in that group. Access-

1-4 Chapter 1 Function/Function Block Description

ing that name inserts the function in your network. One example is the
BOOL2BYT function in the datatype group.

Arith groups

Table 1-2.
ARITH DATETIME TRIG
ABS ADTT ACOS
ADD ATTOD T ASTN
DIV S ATAN
HOD ST T cos
MUL Sl) EXP
NEG STT00_T [N
SORT SZT00_T0 (05
SUB SIN
TAN
Datatype groups
BOOL2BYT BYTECONV DINTCONV DWORD- D_TCONV INTCONV LINTCONV LREALCNV LWORD-
CNV CNV
BYT2BQ0L DINT2DW DWORZBYT DATE2STR INT2DINT LINT2D1 LREAZLT LWORZBYT
BYTE2DW DINTZINT DWQRZDI DT2DATE INT2LINT LINT2INT [REAZLW LWORZDW
BYTE2LW DINTZL1 DWQRZLW 2STR INT2SINT LINT2LR [REAZRE [WOR2LT
BYTEZSI DINTZRE DWQRZRE DT2TQD INT2UINT LINT2LW (REAZULT LWOR2LR
BYTEZUST DINT2ST DWQRZUDT D_T0D20T INTZWORD LINT2ST [WORZULT
BYTE2ID DINT2UDT DWORZWO TIM2UDIN LINT2ULT LWORZWO
TIME2STR
TOD2STR
NUM2S SIZEOF REALCONV SINTCONV STRCONV UDINTCNV UINTCONV ULINTCNV USINTCNV WORD-
TR CONV
REAL2DI SINTZBYT STR2D T UDINZDI UINT2INT ULIN2LI USINZBYT| [woRD2BYT
REALZDW SINT2DI STR2NOM UDINZDW UINT2UDI ULINZLR USINZSI RDZDW
REALZIR SINTZINT STR2UST UDINZRE UINT2ULT ULINZLW USINZSTR| |WORD2INT
REAL2UDI SINT2LI UDINZTIM UINT2UST ULINZUDI USINZUDI QROZL
SINT2UST UDINZU UINTZW0 ULINZUT USINZUT WORD2UT
UDINZULI OLINZUST USINZULT
UDINZUST
lo groups
ANLGIN ANLGOUT BAT_ BIO_PERF COMM JKTHE NET- P R RTDTE SOCKETS STEPPER
OK? RM WORK I E MP
D A
D
F
D
B
K
AINCHTT| [ANLGINTT BIO PERF| [ASSIGN ATMPCHTT]| [NETCLS ARTDCHIT| [1PACCEPT| [STEPCNTL
ATINCHRD| ~ [ANLG_OUT 10_CFG LOSE ATMPCHRD| [NETFRE ARTOCHRD| | TPCLOSE STEPINIT
ACTNNDIT CONFIG ATMPMDIT| |NETMON ARTONDIT| | ITPCONN STEPSTAT
AZTN M BELFIL NETOPN PHOSTID| |STEP_CMD
DIRECT NETRCV P2 STEPZPOS
FRESPACE NETSND PLISTEN
PEN NETSTA NAIZ T
READ READ
RENAME PRECV
SEEK PSEND
STATUS PSOCK
RITE PSTAT
PIRTTE
Chapter 1 Function/Function Block Description 1-5

ARITH group

Motion groups

DATA ERRORS INIT MOVE MOVE_ QUE RATIO- REF SERC_SLV SERC_SYS
Sup MOV
CAPTINIT C_ERRORS CLOSLOOP DISTANCE ACC_DEC ABRTALL GR_END FAST _REF SCS_ACKR SCR_CONT
CAPTSTAT C_RESET CLSLOOP? POSITION CAM_OUT ABRTMOVE RATIOCAM LAD_REF SCS_CTRL SCR_ERR
COORDZRL C_STOP OPENLOOP VEL_END HOLD FAST QUE RATIOPRO PART_CLR SCS_RECV SCR_PHAS
FUZLU C_STOP? SCA_CLOS VEL_STRT HOLD_END| |Q_AVAIL? RATIOSLP PART_REF SCS_REF SC_INIT
E_ERRORS STRTSERV IN_POS? Q_NUMBER RATIOSYN REF_DNE? SCS_SEND
READ_SV E_RESET MEASURE RATIO_GR REF_END SCS_STAT
READ_SVF E_STOP NEWRATI RATIO RL SCA_ACKR
SCA_CTRL E_STOP? NEW_RATE REP_END SCA_RFIT
SCA_RCYC P_ERRORS PLS SYN_END SCA_REF
SCA_RECV P_RESET PLS_EDIT
SCA_SEND SCA_ERST RATTOSCL
SCA_STAT TME_ERR? REGIST
SCA_WCYC R_PERCEN
STATUSSV SCA PBIT
TUNEREAD SCURVE
TUNEWRIT
WRITE SV
WRIT_SVF

Arithmetic Category

ARITH group

The functions in the ARITH group perform the familiar operations of addition,
subtraction, multiplication, division, modulo (remainder), absolute value, square
root, and negate (opposite) value.

CAUTION

If an underflow or overflow error occurs when one of these arithmetic
functions executes, the output at OK will not energize. The value at
OUT will be unpredictable.

Function | Description Page
ABS Gives the absolute value of a number. 2-3
ADD Adds from 2 to 17 numbers. 2-5
DIV Performs the division operation and returns the quotient. 2-85
MOD Performs the division operation and returns the remainder. 2-182
MUL Multiplies from 2 to 17 numbers. 2-184
NEG Returns the opposite value of a number. 2-187
SQRT Determines the square root of a number. 2-407
SUB Performs the subtraction operation on 2 numbers. 2-434

1-6 Chapter 1 Function/Function Block Description

DATETIME group

DATETIME group

The functions in the DATETIME group are used to add or subtract TIME duration
and/or TIME_OF_DAY type variables or constants. The D#, T#, TOD#, and DT#
characters are part of the result in the output variables, except for STRINGS.

When one of these functions executes, if an error occurs, the output at OK does not
energize, and the value of the variable at OUT will be:

TIME duration: T#0 TIME_OF_DAY: TOD#0:0:0 DATE: D#1988-01-01

DATE_AND_TIME: DT#1988-01-01-00:00:00STRING: null (length 0)

For every output variable, its value cannot exceed the largest value allowed for the
largest time increment, and it cannot be less than zero for the smallest time incre-
ment. Other values "roll over".

For example, if the largest increment is days, the output value must not exceed 49. If the
smallest increment is seconds, the output value must not be less than 0 seconds. However,
24 hours becomes 1 day for a DATE_AND_TIME variable (whose largest increment is

years).

Function Description Page

A_DT_T Adds DATE_AND_TIME to TIME and outputs a 2-27
DATE_AND_TIME sum.

A_TOD_T Adds TIME_OF_DAY to TIME and outputs a 2-37
TIME_OF_DAY sum.

S DT DT Subtracts a DATE_ AND_TIME from a DATE_ AND_TIME 2-436
and outputs a TIME duration value.

S DT T Subtracts TIME from a DATE_AND_TIME and outputs a 2-437
DATE_AND_TIME.

S_D_D Subtracts a DATE from a DATE and outputs a TIME duration | 2-438
value.

S TOD_T Subtracts TIME from TIME_OF_DAY and outputs 2-439
TIME_OF_DAY.

S_TOD_TO | Subtracts TIME_OF_DAY from TIME_OF_DAY and outputs | 2-440
a TIME duration value.

Chapter 1 Function/Function Block Description 1-7

TRIG group

TRIG group

The functions in the TRIG group perform trigonometric or transcendental func-

tions.
Function Description Page
ACOS Calculates the arc cosine. 2-5
ASIN Calculates the arc sine. 2-19
ATAN Calculates the arc tangent. 2-21
COS Calculates the cosine. 2-67
EXP Calculates the exponent. 2-97
LN Calculates the natural log. 2-164
LOG Calculates the log. 2-165
SIN Calculates the sine. 2-399
TAN Calculates the tangent. 2-441

Chapter 1 Function/Function Block Description

TRIG group

Binary Category

The functions in the Binary library perform two types of operations:

1. Logical or Boolean operations
2. Bit shifting and rotating operations

Logic functions

The logic functions evaluate the input values on a bit by bit basis, and place results
for each bit into the corresponding bit of the output variable. In general, bit x of
every input variable is evaluated and a result is put into bit x of the output variable.

Bit shifting and rotating functions

The bit shifting and rotating functions “move” the values of bits. The values are
shifted or rotated to the left or right.

Function | Description Page

AND Performs the boolean AND operation on from 2 to 17 2-6
numbers.

NOT Complements the bits of a number. 2-201

OR Performs the boolean inclusive OR operation on from 2 to | 2-206
17 numbers.

ROL Rotates n bits from left to right (most significant to least 2-344
significant positions).

ROR Rotates n bits from right to left (least significant to most 2-345
significant positions).

SHL Shifts all bits of a number n positions to the left, discard- 2-397
ing n bits on the left (most significant), and inserting n Os
on the right (least significant).

SHR Shifts all bits of a number n positions to the right, discard- | 2-398
ing n bits on the right (least significant), and inserting n Os
on the left (most significant).

XOR Performs the boolean exclusive OR operation on from2 to | 2-488
17 numbers.

Chapter 1 Function/Function Block Description 1-9

TRIG group

Counters Category

The function blocks in the Counter library serve as counters.

Function Description Page

Block

CTD Counts down from a specified value and then energizes 2-67
an output.

CTU Counts up to a specified value and then energizes an out- | 2-68
put.

CTUD Counts up or down from a specified value and then ener- | 2-68

gizes the appropriate output.

1-10

Chapter 1 Function/Function Block Description

BOOL2BYT group

Datatype Category

The Datatype library contains all the functions that convert one data type to

another.

BOOL2BYT group
The BOOL2BYT group converts a boolean data type.

Function Description Page
BOOL2BYT | Changes the data type from boolean to byte. 2-42
BYTECONYV group
The BYTECONYV group converts byte data types.
Function Description Page
BYT2BOOL Changes the data type from byte to boolean 2-43
BYTE2DW Changes the data type from byte to double word. 2-43
BYTE2LW Changes the data type from byte to long word. 2-44
BYTE2SI Changes the data type from byte to short integer. 2-44
BYTE2USI Changes the data type from byte to unsigned short integer. 2-45
BYTE2WO Changes the data type from byte to word. 2-45
Chapter 1 Function/Function Block Description 1-11

DINTCONYV group

DINTCONV group
The DINTCONYV group converts double integer data types.

Function Description Page

DINT2DW Changes the data type from double integer to double 2-76
word.

DINT2INT Changes the data type from double integer to inte- 2-77
ger.

DINT2LI Changes the data type from double integer to long 2-78
integer.

DINT2RE Changes the data type from double integer to real. 2-79

DINT2SI Changes the data type from double integer to short 2-80
integer.

DINT2UDI Changes the data type from double integer to 2-81

unsigned double integer.

1-12

Chapter 1 Function/Function Block Description

DWORDCNY group

DWORDCNYV group
The DWORDCNYV group converts double word data types.

Function Description Page
DWOR2BY Changes the data type from double word to byte. 2-89
T
DWOR2DI Changes the data type from double word to double integer. 2-90,
DWOR2LW | Changes the data type from double word to long word. 2-91
DWOR2RE Changes the data type from double word to real. 2-92
DWOR2UDI | Changes the data type from double word to unsigned double inte- 2-93

ger.
DWOR2WO | Changes the data type from double word to word. 2-94
Chapter 1 Function/Function Block Description 1-13

D_TCONYV group

D_TCONV group
The D_TCONYV group converts date and time data types.

Function Description Page

DATE2STR Changes the DATE value to a STRING value. 2-73

DT2DATE Outputs the DATE from a DATE_AND_TIME value. 2-86

DT2STR Changes the DATE_AND_TIME value to a STRING 2-87
value.

DT2TOD Outputs the TIME_OF_DAY from a DATE_AND_TIME | 2-88
value.

D_TOD2DT Concatenates DATE and TIME_OF_DAY values and 2-88
outputs a DATE_AND_TIME value.

TIM2UDIN Changes the data type from TIME to unsigned double 2-442
integer.

TIME2STR Changes a TIME duration value to a STRING value. 2-443

TOD2STR Changes a TIME_OF_DAY value to a STRING value. 2-445

1-14 Chapter 1 Function/Function Block Description

INTCONV group

INTCONYV group
The INTCONYV group converts integer data types.

Function Description Page
INT2DINT Changes the data type from integer to double integer. 2-126
INT2LINT Changes the data type from integer to long integer. 2-127
INT2SINT Changes the data type from integer to short integer. 2-128
INT2UINT Changes the data type from integer to unsigned integer. 2-129
INT2WORD Changes the data type from integer to word. 2-130
Chapter 1 Function/Function Block Description 1-15

LINTCONYV group

LINTCONYV group
The LINTCONYV group converts long integer data types.

Function Description Page
LINT2DI Changes the data type from long integer to double integer. 2-158
LINT2INT | Changes the data type from long integer to integer. 2-159
LINT2LR Changes the data type from long integer to long real. 2-160
LINT2LW | Changes the data type from long integer to long word. 2-161
LINT2SI Changes the data type from long integer to short integer. 2-162
LINT2ULI | Changes the data type from long integer to unsigned long 2-163
integer.

1-16 Chapter 1 Function/Function Block Description

LREALCNYV group

LREALCNYV group
The LREALCNYV group converts long real data types.

Function Description Page
LREA2LI Changes the data type from long real to long integer. 2-166
LREA2LW Changes the data type from long real to long word. 2-167
LREA2RE Changes the data type from long real to real. 2-168
LREA2ULI Changes the data type from long real to unsigned long 2-169
integer.
Chapter 1 Function/Function Block Description 1-17

LWORDCNYV group

LWORDCNYV group
The LWORDCNYV group converts long word data types.

Function Description Page
LWOR2BYT | Changes the data type from long word to byte. 2-171
LWOR2DW | Changes the data type from long word to double word. 2-172
LWOR2LI Changes the data type from long word to long integer. 2-173
LWOR2LR Changes the data type from long word to long real. 2-174
LWOR2ULI | Changes the data type from long word to unsigned long 2-175
integer.
LWOR2WO | Changes the data type from long word to word. 2-176

1-18 Chapter 1 Function/Function Block Description

NUMZ2STR group

NUMZ2STR group
The NUM2STR group converts a numeric data type.

Function

Description

Page

NUM2STR

Changes the data type from numeric to STRING.

2-202

Chapter 1 Function/Function Block Description

1-19

REALCONY group

REALCONYV group
The REALCONYV group converts real data types.

Function Description Page

REAL2DI Changes the data type from real to double integer. 2-325

REAL2DW Changes the data type from real to double word. 2-326

REAL2LR Changes the data type from real to long real. 2-327

REAL2UDI Changes the data type from real to unsigned double integer. | 2-328
1-20 Chapter 1 Function/Function Block Description

SINTCONYV group

SINTCONYV group
The SINTCONYV group converts short integer data types.

Function Description Page

SINT2BYT | Changes the data type from short integer to byte. 2-400

SINT2DI Changes the data type from short integer to double integer. 2-401

SINT2INT Changes the data type from short integer to integer. 2-402

SINT2LI Changes the data type from short integer to long integer. 2-403

SINT2USI Changes the data type from short integer to unsigned short 2-404
integer.

Chapter 1 Function/Function Block Description 1-21

SIZEOF group

SIZEOF group

The SIZEOF group contains one function.

Function Description Page
SIZEOF Reports the size in bytes of the variable name listed at the IN 2-405
input.
1-22 Chapter 1 Function/Function Block Description

STRCONYV group

STRCONYV group
The STRCONYV group converts string data types.

Function Description Page
STR2D_T Changes the data type from STRING to date and time. 2-429
STR2NUM | Changes the data type from STRING to numeric. 2-430
STR2USI Changes the first character of STRING to unsigned short 2-431
integer (ASCII code).
Chapter 1 Function/Function Block Description 1-23

UDINTCNYV group

UDINTCNYV group
The UDINTCNYV group converts unsigned double integer data types.

Function Description Page

UDIN2DI Changes the data type from unsigned double integer to double | 2-453
integer.

UDIN2DW Changes the data type from unsigned double integer to double | 2-454
word.

UDIN2RE Changes the data type from unsigned double integer to real. 2-455

UDIN2TIM Changes the data type from unsigned double integer to time. 2-456

UDIN2UI Changes the data type from unsigned double integer to 2-457
unsigned integer.

UDIN2ULI Changes the data type from unsigned double integer to 2-458
unsigned long integer.

UDIN2USI Changes the data type from unsigned double integer to 2-459

unsigned short integer.

1-24 Chapter 1 Function/Function Block Description

UINTCONYV group

UINTCONYV group
The UINTCONYV group converts unsigned integer data types.

Function Description Page

UINT2INT Changes the data type from unsigned integer to integer. 2-460

UINT2UDI | Changes the data type from unsigned integer to unsigned 2-461
double integer.

UINT2ULI Changes the data type from unsigned integer to unsigned 2-462
long integer.

UINT2USI Changes the data type from unsigned integer to unsigned 2-463
short integer.

UINT2WO Changes the data type from unsigned integer to word. 2-464

Chapter 1 Function/Function Block Description 1-25

ULINTCNV group

ULINTCNV group
The ULINTCONYV group converts unsigned long integer data types.

Function Description Page

ULIN2LI Changes the data type from unsigned long integer to long 2-465
integer.

ULIN2LR Changes the data type from unsigned long integer to long 2-466
real.

ULIN2LW | Changes the data type from unsigned long integer to long 2-467
word.

ULIN2UDI | Changes the data type from unsigned long integer to 2-468
unsigned double integer

ULIN2UI Changes the data type from unsigned long integer to 2-469
unsigned integer

ULIN2USI | Changes the data type from unsigned long integer to 2-470

unsigned short integer

1-26 Chapter 1 Function/Function Block Description

USINTCNYV group

USINTCNV group
The USINTCNYV group converts unsigned short integer data types.

Function Description Page

USIN2BYT | Changes the data type from unsigned short integer to byte. 2-472

USIN2SI Changes the data type from unsigned short integer to short 2-473
integer.

USIN2STR | Changes the data type from unsigned short integer (ASCII 2-474
code) to the first character in STRING.

USIN2UDI | Changes the data type from unsigned short integer to unsigned | 2-475
double integer.

USIN2UI Changes the data type from unsigned short integer to unsigned | 2-476
integer.

USIN2ULI | Changes the data type from unsigned short integer to unsigned | 2-477
long integer.

Chapter 1 Function/Function Block Description 1-27

WORDCONYV group

WORDCONYV group
The WORDCONYV group converts word data types.

Function Description Page
WORD2BYT Changes the data type from word to byte. 2-480
WORD2DW Changes the data type from word to double word. 2-481
WORD2INT Changes the data type from word to integer. 2-482
WORD2LW Changes the data type from word to long word. 2-483
WORD2UI Changes the data type from word to unsigned integer. 2-484

Evaluate Category

The functions in the Evaluate library compare numbers. The comparisons are:

equal to = greater than > greater than or equal to =
not equal to # less than < less than or equal to <
Function Description Page
EQ Compares from 2 to 17 numbers and energizes an outputifall | 2-96
numbers are equal to each other.
GE Compares from 2 to 17 numbers and energizes an outputifall | 2-119
numbers are greater than or equal to successive numbers.
GT Compares from 2 to 17 numbers and energizes an outputif all | 2-122
numbers are greater than successive numbers.
LE Compares from 2 to 17 numbers and energizes an outputifall | 2-154
numbers are less than or equal to successive numbers.
LT Compares from 2 to 17 numbers and energizes an outputifall | 2-170
numbers are less than successive numbers.
NE Compares 2 numbers and energizes an output if they are not 2-186
equal to each other.
1-28 Chapter 1 Function/Function Block Description

WORDCONYV group

NOTES ON STRING EVALUATIONS

If String 1=129
and String2=1234

then String 1 > String 2

If two strings have different lengths and the characters in the shorter
string match the characters in the longer string, then the shorter string
is less than the longer one.

If String 1 =123
and String2=1234

then String 1 < String 2

Another example is shown below. String 1 is less than String 2 be-
cause the ASCII value of upper case letters is less than the value of
lower case letters.

If String 1 = TIME

and String 2 = Time

then String 1 < String 2

Chapter 1 Function/Function Block Description

1-29

WORDCONYV group

Fbinter Category

The function/function blocks in the Fbinter library allow you to interface with field
bus communications via the DeviceNet hardware module.

Function Description Page

FB_CLS Closes communications with the field bus. 2-110

FB_OPN Opens communications with the field bus placing the 2-111
DeviceNet module in the RUN mode.

FB_RCV Receives all data from the configurator file indicated by Tag 2-112
names.

FB_SND Sends data indicated by Tag names in the configurator file. 2-113

FB_STA Allows you to check if the DeviceNet module is communicating | 2-114
with the nodes and to check field bus information.

Filter Category

The functions in the Filter library act as filters or sorters. They move the value of
one of the inputs into an output variable.

Func- Description Page
tion

LIMIT Evaluates a number and outputs the number if it is within specified | 2-157
limits, or outputs the upper or lower limit if the number is greater
than or less than the limit, respectively.

MAX Compares from 2 to 17 numbers and outputs the largest number. 2-178

MIN Compares from 2 to 17 numbers and outputs the smallest number. 2-181

MOVE Places from 1 to 17 numbers into output variables of the same 2-183
type(s).

MUX Evaluates from 2 to 17 numbers and outputs one of the numbers 2-185
based on the value of an independent number.

SEL Evaluates 2 numbers and outputs one of them based on the state of | 2-395

a boolean input.

1-30 Chapter 1 Function/Function Block Description

WORDCONYV group

1/0 Category

The functions in the I/O library initialize and send/receive data to/from:
¢ Analog input module
e Analog and 4-20mA output modules
e Controls, ports, files, devices, serial communications module
¢ J-K thermocouple module
e PID loops
¢ Encoder module (background read)
e RTD module
e Sockets

e Stepper module

Chapter 1 Function/Function Block Description 1-31

ANLGIN group

ANLGIN group

The ANLGIN group contains functions that work with the analog input module.

Function Description Page

A_INCHIT Initializes a channel on an analog input module. 2-29

A_INCHRD | Reads or samples the voltage or current occurring at a channel | 2-32
on an analog input module.

A_INMDIT Initializes an analog input module. 2-36

A_IN_MMC | Outputs the digital value of an analog input for the MMC. 2-28

1-32 Chapter 1 Function/Function Block Description

ANLGOUT group

ANLGOUT group

The ANLGOUT group contains functions that work with the analog or 4-20mA
output module.

Function Description Page
ANLGINIT Initializes an analog or 4-20mA output module. 2-7

ANLG_OUT | Sends a value (to be converted to voltage or current) to a chan- | 2-10
nel on an analog or 4-20mA output module.

Chapter 1 Function/Function Block Description 1-33

BAT_OK? group

BAT OK? group

The BAT_OK? group has one function that allows you to check the battery of the
control from the ladder.

Function Description Page

BAT OK? Checks the battery from the ladder. 2-38

1-34 Chapter 1 Function/Function Block Description

BIO_PERF group

The BIO_PERF group has two function/function blocks: one that allows you to
check the performance of the block I/O modules in your system and one that ini-
tializes the configuration of the block system.

Function Description Page
BIO_PERF Checks the performance of block I/O modules. 2-39
10_CFG Initializes the block I/Oconfiguration, checks the status, and 2-132
inhibits the block system when blocks are added or removed.
Chapter 1 Function/Function Block Description 1-35

COMM group

COMM group

The function blocks in the COMM group are used to transfer (read/write) data
between any of the following:

User Port on the PiC900

PiC RAMDISK Files

PiC FLASHDISK Files Strings, Arrays, Structures
DOS Workstation Files

Serial Communications Module

Function | Description Page

Block

ASSIGN Sets up the channels on the serial communications module to work | 2-19
like the User Port for communications.

CLOSE Closes the communication channel between the LDO and a DOS 2-57
file, RAMDISK file, FLASHDISK file, User Port, or a serial com-
munications channel.

CONFIG | Establishes protocol between the LDO and User Port or a serial 2-61
communications channel. Must execute after OPEN and before
READ, WRITE, or STATUS.

DELFIL Deletes files from the Pi1C900 RAMDISK or PiCPro. 2-75

DIRECT Reads PiC RAMDISK or FLASHDISK directory information. 2-82

FRESPA Checks amount of available disk space there is on the PiC RAM- 2-118

CE DISK or FLASHDISK.

OPEN Opens the communication channel between the LDO and a DOS 2-203
file, RAMDISK file, FLASHDISK file, User Port, or a serial com-
munications channel. Must execute before CONFIGURE, READ,

WRITE, STATUS, or SEEK.

READ Reads data from a DOS, RAMDISK, or FLASHDISK file, User 2-286
Port, or a serial communications channel and places it into a
STRING, Array, Structure, Array Element, or Structure member.

RENAM Renames a file on the PiC RAMDISK or PiCPro. 2-340

E

SEEK Positions a pointer in a RAMDISK or FLASHDISK file before a 2-393
read/write is performed.

STATUS Outputs the number of bytes in the input buffer of User Port or a 2-408
serial communications channel.

WRITE Writes data from a memory area to a DOS file, RAMDISK file, 2-485
User Port, or a serial communications channel.

1-36 Chapter 1 Function/Function Block Description

JKTEMP group

OPEN

USER yes

PORT 27 »| CONFIG
STATUS

SEEK

CLOSE

JKTEMP group

The JKTEMP group contains functions that work with the JK thermocouple mod-

ule.
Function Description Page
ATMPCHIT Initializes a channel on a J-K thermocouple module. 2-22
ATMPCHRD | Reads or senses the temperature or voltage occurring at a 2-24
channel on a J-K thermocouple module.
ATMPMDIT | Initializes a J-K thermocouple module. 2-26
Chapter 1 Function/Function Block Description 1-37

NETWORK group

NETWORK group

The function blocks in the NETWORK group are used to perform communication
operations among NEXNET networked PiC900s.

Function Description Page
NETCLS Closes the communication channel between the PiC900 in 2-188
which it is executed and all other networked PiC900s.

NETFRE Used after data from a transaction has been received (NETRCV) | 2-189
to clear the input buffer.

NETMON Monitors network activity for diagnostic purposes. 2-190
NETOPN Opens the communication channel between the PiC900 in 2-191
which it is executed and all other networked PiC900s.
NETRCV Receives or reads data that was sent by another PiC900. 2-193
NETSND Sends data to another PiC900 or all PiC900s in the network. 2-195
NETSTA Tells how many bytes are in the input buffer to be received by 2-197
one or more NETRCVs.
FiC1 PiC2
Fic1 added to netwaork PiZ2 added ta netwark
METOFM MNETOFN
FiCtlooks for | g 22 1 pien corge dars
received data
NETSTA R NETSND
I I
Fi1 reads data Sian LD
METRCY
| I

Fitc1 gets ready to
accapt more dats,
METFRE

Scan LD & yse
received daka,

1-38 Chapter 1 Function/Function Block Description

PID group

The PID group has one function block that performs PID control.

Function Description Page
PID Performs proportional, integral, and derivative control. 2-209
Chapter 1 Function/Function Block Description 1-39

READFDBK group

READFDBK

The READFDBK group has one function that reads an encoder or 12 channel
resolver module on a scan time basis (background).

Function Description Page
READFDBK | Performs background read on encoder or 12 channel resolver 2-288
module.
1-40 Chapter 1 Function/Function Block Description

RTDTEMP group

RTDTEMP group
The RTDTEMP group contains functions that work with the RTD module.

Function Description Page
ARTDCHIT Initializes a channel on a RTD module. 2-14
ARTDCHRD Reads or senses the temperature occurring at a channel 2-16
on a RTD module.
ARTDMDIT Initializes a RTD module. 2-18
Chapter 1 Function/Function Block Description 1-41

SOCKETS group

SOCKETS group

The socket function blocks are used to communicate from application to application using
Giddings & Lewis’s implementation of the BSD socket interface.

Function Description Page

IPACCEPT | Used by the TCP server to accept incoming connect requests. 2-135

IPCLOSE Used by an application to terminate a communication session 2-136
for the socket specified at HNDL.

IPCONN Used by a client application to connect to a remote server by 2-137
specifying the remote endpoint address for a socket.

IPHOSTID | Optional and not required to be used. 2-138

IPIP2NAM | Allows the application to obtain the host name when you supply | 2-139
the IP address.

IPLISTEN Used to make a socket passive. 2-140

IPNAM2IP | Allows the application to obtain an IP address when you supply | 2-141
the host name.

IPREAD Allows you to read input data sent between a client function and | 2-142
a remote server.

IPRECV Used to get a packet of data sent between a client function and a | 2-143
remote server.

IPSEND Used to send data between client function and remote servers. 2-144

IPSOCK Used to obtain a data structure and assign it to a specific com- 2-145
munication resource.

IPSTAT Called on a periodic basis with the RES input not energized 2-146
whenever it is desired to know the status of the resources pro-
vided by the Windows NT operating system.

IPWRITE Used to send data between client function and remote servers. 2-147

1-42 Chapter 1 Function/Function Block Description

STEPPER group

STEPPER group

The STEPPER group contains functions that work with the stepper module.

Function Description Page

STEPCNTL Sends a control word to the stepper motion control module 2-411
(SMCM).

STEPINIT Initializes an axis as a stepper axis. 2-415

STEPSTAT Reads the data on the status of the stepper axis. 2-417

STEP_CMD Sends a profile command and its related data to the command 2-420
queue of the SMCM to run a step profile.

STEP_POS Reads the position of a stepper axis. 2-428

Motion Category

The motion functions are available with PiCServoPro. They allow you to perform

motion control tasks.

In addition to the standard motion functions, there are two servo functions made by
you with the Servo setup program and the PiC Profile program. Refer to those

chapters for additional information.

IMPORTANT

For parameters in these functions such as feedrates, accelerations, de-
celerations, position, distance, etc., you must enter ladder units (LU).
Ladder units were defined by you for your application in the scaling
data section of setup.

When you have ladder units equal to feedback units (FU) in setup,
then you are entering feedback units in the ladder.

Often a range of values in FU is listed with function inputs. (See in-
dividual functions in Chapter 2.) If ladder units # to feedback units,
be sure to convert LU to FU to check that you are in range.

Chapter 1 Function/Function Block Description

1-43

DATA group

DATA group

The data functions allow you to read, write, or check the status of certain variables
and characteristics.

Function Description Page

CAPTINIT Initializes what data is to be captured each servo interrupt and 2-49
where it is to be stored.

CAPTSTAT Provides the ability to start and stop the capturing of data from | 2-55
the ladder.

COORD2RL Calculates profile segments used for circular/linear interpola- 2-63
tion. Used with the RATIO_RL function.

READ_SV Allows you to read the following variables in your ladder: 2-299
(read servo) 1 actual position 28 TTL feedback

2 move type 29 reference switch position

3 command position 30 filter time constant

4 position error 31 filter error limit

5 filter error 32 velocity compensation flag

6 command velocity 33 filter lag

7 position change 34 position change (sev intrpts)

8 feedback last 35 part reference offset

9 fast input position 36 software upper limit

10 regist/ref position change37 software lower limit

11 consecutive bad marks 38 commanded position

12 rollover on position (before slow speed filter is applied)

13 slave offset incremental 39 following error limit

14 master offset incremental40) in-position band

15 slave offset absolute 41 current segment number

16 master offset absolute 42 slave distance into segment

20 fast input distance 43 master distance into segment

21 reversal not allowed 44 set iteration command

22 fast input position (SW) 45 user iteration command

23 position (SW) w fastin 46 set PID command

24 registration switch 47 user PID command

25 fast queuing 48 disable servo software

26 synchronized slave start 50 override endlimit check

27 backlash compensation 51 SERCOS command position
55 Queued move type

FU2LU Converts feedback units to ladder units. 2-118
LU2FU Converts ladder units to feedback units. 2-170
READ_SVF Allows you to read any of the READ_SV variables faster. All 2-324
(read servo values that involve velocity or distance are in feedback units

fast) and updates rather than ladder units and minutes.

SCA_CTRL Writes control bits to the MDT for a servo axis. 2-350

1-44 Chapter 1 Function/Function Block Description

DATA group

SCA_RCYC

Reads cyclic data from the AT for a servo axis.

2-356

SCA_RECV

Allows you to receive information from the service channel
section of SERCOS communication for a servo axis.

2-358

SCA_SEND

Allows you to send information to the service channel section
of SERCOS communication for a servo axis.

2-364

SCA_STAT

Monitors the ready-to-operate drive mode, diagnostic trouble-
shooting, or two real-time status bits returned from the drive.

2-366

SCA_WCYC

Writes cyclic data to the MDT for a servo axis.

2-367

STATUSSV
(status servo)

Allows you to check the status of the following characteristics
from the word output of the STATUSSV function:

move started

fast input occurred

fast input on

good mark detected

bad mark detected

DIST + TOLR exceeded
fast input rising

2-409

TUNEREAD

Provides the ability to read tuning parameters from the ladder.
(See TUNEWRIT for list of parameters.)

2-449

TUNEWRIT

Provides the ability to write the following tuning parameters
from the ladder.

Proportional Gain
Integral Gain
Derivative Gain
Offset

Slow Speed Filter
Feed Forward Percent

2-450

Chapter 1 Function/Function Block Description

1-45

DATA group

(write servo
fast)

All values that involve velocity or distance are in feedback
units and updates rather than ladder units and minutes.

WRITE_SV Allows you to write the following variables from your ladder: 2-486
(write servo) 1 actual position (Time axis only)
6 command velocity (Time axis only)

11 consecutive bad marks

12 rollover on position

13 slave offset incremental

14 master offset incremental

15 slave offset absolute

16 master offset absolute

17 slave offset filter

18 master offset filter

19 fast input direction

21 reversal not allowed

23 position (SW) w fast in

24 registration switch

25 fast queuing

26 synchronized slave start

27 backlash compensation

28 TTL feedback

30 filter time constant

31 filter error limit

32 velocity compensation flag

34 position change over several interrupts

36 software upper limit

37 software lower limit

39 following error limit

40 in-position band

44 set iteration command

45 user iteration command

46 set PID command

47 user PID command

48 Disable servo software

50 Override endlimit check
WRIT_SVF Allows you to write any of the WRITE_SV variables faster. 2-487

1-46

Chapter 1 Function/Function Block Description

ERRORS group

There are three types of errors that affect an axis as described below.

1. C-stop (controlled-stop) errors
When a C-stop occurs, the following happens:

e The axis remains in servo lock and the axis is brought to a controlled stop at the
rate specified by the controlled stop ramp in setup.

e The active and next queues are cleared.

e The FAST_QUE mode is canceled when the C-stop is reset.
2. E-stop (Emergency-stop) errors

When an E-stop occurs, the following happens:

The system is out of servo lock.

zero voltage is sent to the analog outputs.

The active and next queues are cleared.
The FAST_QUE mode is canceled when the E-stop is reset.

If it is a loss of feedback E-stop error, then the machine reference must be
redone.

In most respects, you are in a condition immediately following initialization
with the exception of the queue number. The queue number does not start over
but continues from where it left off when the E-stop occurred.

Remember that the queue number is assigned by the software from 1 to 255.
When 255 is reached, it rolls over to 1.

3. Programming errors
These errors occur during master/slave moves or a FAST_QUE call. They may

prevent the move from being placed in the queue (or if the move is in the queue,
abort the move) or they may prevent the OK on the function from being set.

There is a fourth type of error connected to the entire system called a timing error. It is moni-
tored by the TME_ERR? function.

4. Timing error

All the servo calculations for one interrupt must be completed in the time frame
selected by you in setup before the next interrupt can perform its calculations. If
they are not, this timing error occurs and the ERR output of the TME_ERR?
function is set.

Chapter 1 Function/Function Block Description 1-47

ERRORS group

IMPORTANT

Always set an E-stop on all axes when a timing error occurs.

NOTE

The C-stop, E-stop, and Programming errors can all be viewed in the
tune section of the Servo setup program. See Appendix C in the Soft-
ware Manual for more information.

Function Description Page
C_STOP Sets a controlled stop on the axis. 2-71
(controlled stop)

C_ERRORS Indicates what C-errors have occurred at the 2-69
(controlled stop word output.

errors)

C_RESET Resets a C-stop error. 2-71
(controlled stop reset)

C_STOP? Asks if there is a C-stop in effect for designated | 2-72
(controlled stop?) axis.

E_STOP Sets an emergency stop on the axis. 2-101
(emergency stop)

E_ERRORS Indicates what E_errors have occurred at the 2-98
(emergency stop word output.

errors)

E_RESET Resets an E-stop error. 2-100
(emergency stop

reset)

E_STOP? Asks if there is an E-stop in effect for designated | 2-102
(emergency stop?) axis.

P_ERRORS Indicates what programming errors have 2-225
(programming occurred at the word output.

errors)

P_RESET Resets a programming error. 2-228
(programming error

reset)

SCA_ERST Resets internal E-errors for a SERCOS system. 2-353
TME_ERR? Asks if the time required to carry out the servo 2-444

(timing error)

calculations exceeds the allotted interrupt time.

Chapter 1 Function/Function Block Description

INIT group

INIT group

The functions in the INIT group allow you to initialize the servos and be ready for
motion commands from the ladder.

Function Description Page

CLOSLOORP (close loop) Closes the position loop for the designated 2-58
axis.

CLSLOOP? (close loop?) Asks if the position loop for the desig- 2-59
nated axis is closed.

OPENLOOP (open loop) Opens the position loop for the designated 2-205
axis.

SCA_CLOS Closes the position loop in a SERCOS 2-349
system.

STRTSERYV (start servo) Used with the user-defined setup function 2-432

to initialize setup data.

Chapter 1 Function/Function Block Description

1-49

MOVE group

MOVE group

The functions in the MOVE group cause motion to begin or end. The moves are
not master/slave moves.

The other functions that can cause motion are found in the RATIOMOYV and REF
groups. They are the master/slave moves and the fast input (FAST_REF) and lad-
der (LAD_REF) reference functions used to perform a machine reference.

Function Description Page
POSITION Moves an axis at a specified feedrate to an endpoint. 2-224
(position)

DISTANCE Moves an axis a specified distance at a specified feedrate. 2-84
(distance)

VEL_STRT Moves an axis at a specified feedrate and direction. 2-479
(velocity start)

VEL_END Ends a velocity start move. 2-478
(velocity end)

1-50

Chapter 1 Function/Function Block Description

MOVE_SUP group

MOVE_SUP group

The functions in the MOVE_SUP group allow you to make adjustments to the

moves.
Function Description Page
ACC_DEC Allows you to change the acc/dec rates entered in setup 2-4
(acceleration/ from the ladder.
deceleration)
CAM_OUT Allows you to turn on discrete I/O points for a specified | 2-46
(cam output) distance during the rollover on position cycle.
HOLD Stops the iteration of the current move. 2-123
(feedhold)
HOLD_END Resumes the move that was halted with the HOLD func- | 2-124
(feedhold end) tion.
IN_POS? Asks the question “Is the active move in position?” 2-131
(in position?)
MEASURE Enables the fast input response when not using registra- | 2-179
(measure) tion or referencing.
NEWRATIO Allows you to change the ratio of a RATIO_GR or 2-198
RATIOSYN move or the default ratio of the RATIOSLP
move.
NEW_RATE Allows you to change the feedrate of the moves in the 2-200
(new feedrate) queue.
PLS Used to turn on a discrete output for specified ranges of | 2-220
axis positions.
PLS_EDIT Used to edit an ON/OFF pair of values used by a PLS 2-223
function while PLS is active.
RATIOSCL Allows you to scale the slave and/or master axis in 2-247
RATIOCAM, RATIOSLP, and the master axis in
RATIO_RL moves.
REGIST Sets the axis position to a defined value when a fast input | 2-331
(registration) occurs.
R_PERCEN Allows you to change the feedrate by a percentage for all | 2-346
(feedrate percent) | moves connected to an axis.
SCA_PBIT Initializes the SERCOS fast input. 2-354
SCURVE Allows a master time axis to follow an s-curve velocity 2-387
profile minimizing the amount of jerk that can occur in a
trapezoidal velocity profile.
Chapter 1 Function/Function Block Description 1-51

QUE group

QUE group

There are two queues used by the servo software to manage moves for an axis. One
is the active queue which holds the move that is currently active. The other is the
next queue which is the move that is ready and waiting to proceed when the active
queue move is completed. The functions in this group affect the moves in the

queues.

The servo software assigns a queue number to any motion function which has a
QUE output. The numbers are assigned sequentially from 1 to 255. When 255 is
reached, the number rolls over to 1.

Function Description Page
ABRTMOVE Aborts the move identified by the number entered in its | 2-2
(abort move) QUE input.

ABRTALL Aborts the moves in both queues. 2-2
(abort all)

FAST_QUE Manages the queues based on the occurrence of a fast 2-103
(fast input queue) input.

Q_NUMBER Gives the number of the move that is in the active queue. | 2-230
(queue number)

Q_AVAIL? Asks the question “Is a queue available for the specified | 2-229
(queue available?) | axis?”

1-52

Chapter 1 Function/Function Block Description

RATIOMOV group

RATIOMOYV group

The functions in this group cause motion to begin or end. They involve master/
slave ratio moves. The RATIOPRO function requires another function (or func-
tions) made by you with the PiC Profile program that defines the ratio profile you

want to use.

NOTE: The RATIOPRO function can be used in PiCPro for Windows but it can
only be edited in PiCPro for DOS. The profile editor is not included in PiCPro for

Windows.

The other functions that can cause motion are found in the MOVE and REF group.

Function Description Page
GR_END Ends a ratio gear (or ratio syn) move. 2-121
(gear end)
RATIOCAM A master/slave move where each segment of the | 2-231
(ratio cam profile) profile has a constant ratio.
RATIOPRO A master/slave move where the slave axis will 2-241
(ratio profile) follow the master axis at a varied ratio and a

positional relationship is established.
RATIOSLP A master/slave move where the ratio in each 2-251
(ratio slope) segment of the profile can vary linearly.
RATIOSYN A master/slave move where the slave axis will 2-264
(ratio synchronization) follow the master axis at a constant ratio and a

positional relationship between the master and

slave axes is established.
RATIO_GR A master/slave move where the slave axis will 2-274
(ratio gear) follow the master axis at a constant ratio.
RATIO_RL A master/slave move where the slave axis will 2-277
(ratio real) follow the master axis in a profile that can be a

trigonometric function or a polynomial using

floating point variables.
REP_END Ends profiles set up to repeat in the RATIOPRO | 2-342
(repeat end) function.
SYN_END Ends a ratio syn (or ratio gear) move by specify- | 2-435
(synchronization end) ing a drop point for the slave axis.

Chapter 1 Function/Function Block Description 1-53

REF group

The functions in the reference group allow you to do machine or part referencing.
A machine reference provides position information to the PiC900 with respect to
the machine. It is a fixed dimensional reference used to establish a repeatable point
of reference between servo initializations. The PiC900 bases its position calcula-
tions on this position information. Motion may occur when performing a machine
reference.

A part reference is a floating dimensional reference. It establishes a position based
on the location of a part, not the machine. No motion occurs when performing a
part reference. The axis has been moved into position before the reference occurs.

Function Description Page

FAST_REF Performs a machine reference based on a fast input. 2-106

(fast input reference)

LAD_REF Performs a machine reference from the ladder. 2-152

(ladder reference)

PART_CLR Cancels the part reference dimension supplied by the | 2-207

(part reference clear) PART_REF function.

PART_REF Performs a part reference on the designated axis. 2-208

(part reference)

REF_DNE? Asks the question “Is the machine reference cycle 2-329

(reference done?) complete?”

REF_END Ends the ladder machine reference. 2-330

(ladder reference end)

SCA_ACKR Acknowledges the reference cycle for a servo SER- 2-348
COS axis.

SCA_REF Runs a reference cycle on a servo SERCOS axis. 2-360

SCA_RFIT Initializes the fast input on a SERCOS drive and 2-362
monitors the reference switch or index mark position.

1-54 Chapter 1 Function/Function Block Description

SERC_SLV group

SERC_SLV group

The functions in the SERCOS slave group allow you to work with the SERCOS
slave function/function blocks.

Function Description Page
SCS_ACKR Acknowledges the SERCOS reference cycle. 2-379
(SERCOS

slave

acknowledge

reference)

SCS_CTRL Controls the bits in the MDT control word. 2-375
(SERCOS

slave control)

SCS_RECV Receives information from the service channel sec- 2-377
(SERCOS tion of the SERCOS communication.

slave receive)

SCS_REF Runs a reference cycle on the SERCOS slave axis. 2-379
(SERCOS

slave refer-

ence)

SCS_SEND Sends information to the service channel section of 2-381
(SERCOS the SERCOS communication.

slave send)

SCS_STAT Monitors the ready-to-operate drive mode, diagnostic 2-383
(SERCOS troubleshooting, or two real-time data bits returned

slave status) from the drive.

Chapter 1 Function/Function Block Description 1-55

SERC_SYS group

SERC_SYS group

The functions in the SERCOS system group allow you to work with SERCOS
rings and to start the SERCOS system.

Function Description Page
SCR_CONT Allows you to continue through SERCOS phases if you have | 2-368
(SERCOS halted after phase 2 to send additional IDNs.

ring continue)

SCR_ERR Identifies ring errors that can occur during the transfer of 2-369
(SERCOS IDNS.

ring error)

SCR_PHAS Identifies the current SERCOS phase. 2-373
(SERCOS

ring phase)

SC_INIT Copies the initialization data into all interface boards. 2-347
(SERCOS

start)

String Category

The functions in this group operate on variables which have a STRING data type.
Most of these functions return a STRING as an output. The variable assigned to
receive this output STRING must be specified as an input variable - on the left
side. Assigning the variable on the right side is optional, but if used, it must be the
same variable as the input variable. This characteristic is unique to all functions
which have a STRING as an output, including functions not in this group.

The output at OK will not energize and the output STRING will be null (have
length zero) if an error occurs. A list of errors is in Appendix B of the software

manual.

Function Description Page

CONCAT Concatenates 2 STRINGs. 2-60

DELETE Deletes characters from a STRING. 2-74

FIND Searches for a STRING within another STRING and if 2-117
found, outputs its location.

INSERT Inserts a STRING into another STRING. 2-125

LEFT Places a specified number of characters from the left side 2-155
of a STRING into a variable.

1-56 Chapter 1 Function/Function Block Description

SERC_SYS group

LEN Returns the length of a STRING. 2-156

LWR_CASE | Converts all the characters in a string to lower case charac- | 2-177
ters.

MID Places a specified number of characters from the middle of | 2-180
a STRING into a variable.

REPLACE Places a STRING within another STRING, replacing one 2-341
or more characters.

RIGHT Places a specified number of characters from the right side | 2-343
of a STRING into a variable.

UPR_CASE | Converts all the characters in a string to upper case charac- | 2-471
ters.

Timers Category

The function blocks in the Timer library are used to energize and de-energize out-
puts (coils and control relays) after a duration of time. The time, as it elapses, can
be viewed on the monitor with real time animation. The elapsed time value can be
used (elsewhere) in the module but its value cannot be reset.

Function Block | Description Page
TOF De-energizes an output after a duration of time. 2-446
TON Energizes an output after a duration of time. 2-447
TP Energizes an output for a duration of time. 2-448

Xclock Category

The two functions in the Xclock library are used for clock or calendar functions.

Function Description Page

CLOCK Outputs from the PiC900 the current time and date, or sets the 2-56
PiC900s time and date.

GETDAY | Outputs the number of the day of the week or day of the year. 2-120

SERVO- Allows a task to run on the servo clock when no servos are run- | 2-396

CLK ning.

Chapter 1 Function/Function Block Description 1-57

SERC_SYS group

NOTES

1-58 Chapter 1 Function/Function Block Description

CHAPTER 2
Function/Block Descriptions

Chapter 2 describes all the functions available with PiCPro/PiCServoPro in alpha-
betical order. Each heading contains:

e The name of the function as it appears in PiCPro
e The title of the function (underneath the name)

e The name of the function menu group (in right-hand corner) to which each
function belongs.

Below the heading is an illustration of each function. To the right are listed the
inputs and outputs for the function with data types in parentheses. The description
of each function is beneath this information.

PROGRAMMING NOTE

Functions with an EN input are usually enabled either by a transitional
(one-shot) contact if the function should execute one time or by logic
that will hold the function on if it should execute every scan.

Typically, one-shot any function in the Motion library that affects or
causes motion.

Also, one-shot any function that has a request (REQ) instead of an en-
able (EN) input. REQ inputs are found on function blocks. A function
block may not complete its operation in one scan.

The EN or REQ inputs that are typically transitioned are labeled "Typ-
ically one-shot" and those that should always be transitioned are la-
beled "One-shot" in the descriptions that follow.

NOTE

You must have a math coprocessor installed on your PiC900//90 CPU
module to perform any functions involving any 64 bit registers, loga-
rithmic, exponential, trigonometric, and floating point mathematical
operations.

NOTE ON ALPHABETICAL ORDER

When an underscore character (_) occurs within the name of a func-
tion, that function is placed after those without an underscore. For ex-
ample, RATIO_GR will be found affer RATIOSYN.

Chapter 2 Function/Function Block Description 2-1

ABRTALL

ABRTALL

Abort All

Motion/QUE

agrTALL | Imputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oKL AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The ABRTALL function aborts the moves in both queues for the specified axis.

It is also used to ensure that no move can begin unexpectedly when a programming
error occurs with the FAST_QUE function. See also the FAST_QUE entry.

ABRTMOVE

Abort Move

Motion/QUE

ABRTMOVE Inputs: EN (BOOL) - enables execution (Typically one-shot)

1N ok L AXIS (USINT) - identifies axis (servo)
JAXIS QUE (USINT) - number of move to abort from queue
JQUE Outputs: OK (BOOL) - execution completed without error

The ABRTMOVE function aborts the move identified by the number at QUE.

If the move to be aborted is in the active queue, it will be removed freeing that
queue for another move. If there is a move in the next queue, it will begin execut-
ing immediately. If there is no move in the next queue, the axis will decel to a stop
at the rate specified in servo setup. If the move to be aborted is in the next queue,
it will be removed freeing that queue for another move. If the move is not in either
queue, it cannot be aborted.

IMPORTANT

When aborting a move, it is important to note that the aborted move
is abandoned at the point it is at and the next move is entered imme-
diately. This is different than ending a move such as velocity start
(VEL_STRT) with a velocity end (VEL_END) as illustrated in Figure
2-1.

Chapter 2 Function/Function Block Description

ABS

Figure 2-1. Comparing velocity end and abort move functions

f= uelociy sdarim o In e acdve quene.
B = Aprdon mouein fieney quene.

Exarmple 1-Sequencing moves witha Exarmple 2 - Sequencing moves with
velocity ennd function an aboart rove function

b b

£ £ |

£l oai E E & i E

! : Thme
Hocr i m e
uncion
atwe
RRRARRREERERASRARRARRARRRE R RARRRRRGARREERT |

I exarnple 1, awvelocity start rmove In E_}c:a:np!e _2, El.'-.-'Ellill?:it':.-' start rove
[&)izin the active queue. ‘Whenthe [4)i3 again in the active queue.
welociby end functionis called in the Whentheabort move function iz
ladder, rove &will decelatthe calledinthe ladder, move &will be
specified rate. The position move al:ng:n_rted_. The position move [I_E!]
[B] waitingin the next queue waltinginthe next queue begins
beqgins. irrer e diak ely.

=] =]

AR
ABS
Absolute Value Arith/ARITH

ABS Inputs: EN (BOOL) - enables execution
iEEN 0K |- IN (NUMERIC) - number to find absolute value of
1IN ouT|le Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - absolute value of number

The ABS function places the absolute value (non-negative value) of the variable or
constant at IN into the variable at OUT. For example,

If IN=-5, then OUT =5
If IN =10, then OUT =10
The absolute value Ix| of a number, x, is:

x ifx =20
x ifx <O

IxI
x|

Chapter 2 Function/Function Block Description 2-3

ACC_DEC

ACC DEC
Acceleration/Deceleration Motion/MOVE_SUP

ACC DEC Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS ACCL (UDINT) - acceleration rate for axis (entered in
IaccL LU/MIN/SEC)
1pecL DECL (UDINT) - deceleration rate for axis (entered in
LU/MIN/SEC)

Outputs: OK (BOOL) - execution complete

The ACC_DEC function allows the acc/dec rates for the specified axis to be
changed. When used in your ladder program, the acc/dec values in this function
override those entered in setup. If the STRTSERYV function is called again reini-
tializing the servo data, then the system will default to the setup values.

This function does not affect the move in progress. It only applies to moves that
have not been queued.

IMPORTANT

If you are only changing one of the rates (acceleration or deceleration)
and want to maintain the setup rate for the other, you must enter the
setup value for the rate you do not want to change at the ACCL or
DECL input of the function.

There are some limits on setting the acc/dec rates so that invalid data is not
entered.

e The acc/dec rate is limited to 32,000 FU/iteration/iteration. If a larger num-
ber is entered, the default is 32,000 FU/iteration/iteration.

e The acc/dec rate cannot be set to 0. If a O is entered, the default is to 1 FU/
iteration/iteration.

e The acc rate cannot be more than 10 times the dec rate. If this is attempted,
the dec rate is increased to 1/10 the acc rate.

¢ The resolution of the internal conversion of LU/MIN/SEC is 1 FU/ITER/
ITER. This resolution is adequate for most applications. However, if your
application requires long accel or decel rates, you may notice some inaccu-
racies in the rates due to this resolution.

Chapter 2 Function/Function Block Description

ADD

Acos A

Arc Cosine Arith/TRIG

ACOS Inputs: EN (BOOL) - enables execution

1N ok L COS (REAL/LREAL) - cosine value

cos ANGLE Outputs: OK (BOOL) - execution completed without error
ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at COS and ANGL
must match, i.e. if COS is REAL, then ANGL must be
REAL.

The ACOS function calculates the arc cosine of the cosine entered at COS. The
result is the angle at ANGL.

ADD
Addition Arith/ARITH

ADD Inputs: EN (BOOL) - enables execution
1N oK = INT (NUMERIC or TIME duration) - addend
JINT SUML IN2 (same type as IN1) - addend
J1IN? Outputs: OK (BOOL) - execution completed without error

SUM (same type as IN1) - sum of addends

The ADD function adds the value of the variable or constant at IN2 to the value of
the variable or constant at IN1, and places the result in the variable at SUM. This
is an extensible function that can add up to 17 numbers.

X IN1
+Y + IN2
Z SUM

Chapter 2 Function/Function Block Description 2-5

AND

AND
And Binary/AND
AND Inputs: EN (BOOL) - enables execution
1N 0K = IN1 (BITWISE) - number to be ANDed
JINT OoUTH IN2 (same type as IN1) - number to be ANDed
J1IN? Outputs: OK (BOOL) - execution completed without error
S OUT (same type as IN1) - ANDed number
The AND function ands the variable or constant at IN1 with the variable or con-
stant at IN2, and places the results in the variable at OUT. This is an extensible
function which can AND up to 17 inputs.
The AND function places a one in bit x of the output variable when bit x of all
input variables (first variable and second variable and, etc.) equals 1. In all other
cases (bit x of one or more operands equals 0), a 0 is placed in bit x of the output
variable.
Example of AND function (on three inputs)
11000011 value at IN1
11111111 value at IN2
10001111 value at IN3
10000011 value at OUT
2-6 Chapter 2 Function/Function Block Description

ANLGINIT

ANLGINIT “

Analog Initialization lo/ANLGOUT

aginiT| Imputs: EN (BOOL) - enables execution (One-shot)
1N 0K = RACK (USINT) - identifies rack where the module resides

RACK ERR | SLOT (USINT) - identifies slot where the module resides
or identifies the MMC for PC ASIU number

Outputs: OK (BOOL) - execution completed without error
ERR (USINT) - # 0 if and only if error occurs

4SLOT

The ANLGINIT function is used to initialize either a £10 VDC output module, a
4-20 mA output module, a block 4-20 mA output module, or a block +10 VDC
output module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog output module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog output module, RACK must be set to 100.
For the MMC, RACK must be set to 0.
For an MMC for PC analog output, RACK must be set to 200.

For the standard analog output module, the input value at SLOT (3 up to 13) spec-
ifies in which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the
CPU or /0 driver module.

Chapter 2 Function/Function Block Description 2-7

ANLGINIT

For block analog output modules, the input value at SLOT (1 - 77) is set to 1 for
the module connected to the PiC CPU, 2 for the module connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

For an MMC for PC ASIU, the slot must be the ASIU number. The valid range is
(1-8).

If an error occurs the output at OK is not energized and the output at ERR equals
1-4:

ERR | Description

The input at RACK is out of range
The input at SLOT is out of range
Not used

The module at the location specified is not an analog output module or
the MMC for PC ASIU does not exist

B W N -

2-8 Chapter 2 Function/Function Block Description

ANLGINIT

Output +10 VDC Module
If the channels on the output 10 VDC module will be used for open loop control “

only, then it is necessary to initialize the module with the ANLGINIT function. It
is not necessary to enter a user-defined setup function containing all the setup data
needed for closed loop control or input only axes.

If some of the channels are used for closed loop control or input only and some for
output only, then the servo initialization procedure is followed and the ANLGINIT
function is not used.

Output 4-20 mA Module

The ANLGINIT function must always be called to initialize the 4-20mA module
and the block 4-20 mA output module.

Chapter 2 Function/Function Block Description 2-9

ANLG_OUT

ANLG OUT
Analog Output lo/ANLGOUT

ANLG_OUT Inputs: EN (BOOL) - enables execution

1EN oK - RACK (USINT) - identifies rack where the module
resides

SLOT (USINT) - identifies slot where the module

4{RACK OPEN|—

15L0T resides or identifies the MMC for PC number
4{ CHAN
VALL CHAN (USINT) - identifies channel

VALU (INT) - output value (entered in output units as
defined below)

Outputs: OK (BOOL) - execution completed without error

OPEN (BOOL) - set if the current loop is opened
(applies to 4-20mA module only)

The ANLG_OUT function identifies the rack and slot locations of the +10 VDC
output module and the channel (1 - 8), the 4-20 mA output module and the channel
(1 - 6), the block 4-20 mA output module and the channel (1 - 4), or the £10 VDC
output block module to be used.

The input value at RACK specifies the rack in which the module resides. For a
standard analog output module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog output module, RACK must be set to 100.
For the MMC, RACK must be set to 0.
For an MMC for PC analog output, RACK must be set to 200.

For the standard analog output module, the input value at SLOT (3 up to 13) spec-
ifies in which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the
CPU or I/O driver module.

2-10

Chapter 2 Function/Function Block Description

ANLG_oOUT

For block analog output modules, the input value at SLOT (1 - 77) is set to 1 for
the module connected to the PiC CPU, 2 for the module connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

For the MMC for PC ASIU, the SLOT must be the ASIU number. Valid range is
(1-8).

The input value at CHAN (1 - 8 for the output £10 VDC module, 1 - 6 for the 4-
20 mA module, and 1 - 4 for the block 4-20 mA module and for the MMC and the
MMC for PC ASIU) specifies the number of the channel to write.

Chapter 2 Function/Function Block Description 2-11

ANLG_OUT

Output 10V DC Module

The analog output value at VALU is entered in £10V DC output units according to
the chart below:

Enter +10VDC output units to get Output volts
+32767 +11V
+29790 +10V
+14894 +5V

0 ov
-14894 -5V
-29790 -10V
-32767 -11vV

There are 2979 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between +11 volts.

The OPEN output is never set with an analog output module.

MMC, MMC for PC ASIU and Block Output =10 VDC Module

The analog output value at VALU is entered in £10 VDC output units according to
the chart below:

Enter +10VDC output units to get Output volts
+32767 +10V
+16384 +5V

0 +0V
-16384 -5V
-32767 -10V

There are 3276.7 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between =10 volts.

The OPEN output is never set with an analog output module.

2-12 Chapter 2 Function/Function Block Description

ANLG_oOUT

Output 4-20 mA Module
The analog output value at VALU is entered in 4-20mA output units according to “

the chart below:

Enter 4-20ma output units to get Output mA
+32767 +20mA
+22527 +15mA
+12288 +10mA

0 to -32768 4mA

There are 2048 output units per mA. Use this number to calculate the number of
output units you need for any current not listed above between 4 and 20 mA.

The OPEN output is set with a 4-20mA module whenever the current loop is
opened. This will occur when the load impedance exceeds the resistance calcu-
lated as follows:

For the Block 4-20 mA Output Module:

Vexr—2.5V
20mA - Keoa
For the 4-20 mA Module:
Vexr— 3.6V
20mA = Rioap

Chapter 2 Function/Function Block Description 2-13

ARTDCHIT

ARTDCHIT
Analog RTD Channel Initialization lo/RTDTEMP

ArtocHrT| Imputs: EN (BOOL) - enables execution (One-shot)
1N 0K = RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
dsLoT CHAN (USINT) - channel to initialize
4 CHAN RNGE (USINT) - temperature range
4 RNGE Outputs:OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if error occurs

The ARTDCHIT function initializes a channel on the analog input RTD (resistance
temperature detector) module. It establishes the sensitivity of the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.
The input at RNGE (1 - 3) specifies the temperature range at this channel.

Value to enter 50 Ohm RTD 100 Ohm RTD
at RNGE
1 N/A -200°C to 50°C
(-328°F to1562°F)

2 -200°C to 850°C -200°C to 266°C
(-328°t01562°F) (-328°F to 510.85°F)

3 -200 to 266°C -200°C to 0°C
(-328°F to 510.8°F) (-328°F to 32°F)

2-14 Chapter 2 Function/Function Block Description

ARTDCHIT

The output at OK is not energized and the value at ERR equals 1- 6, or 9 if an error

occurs.
ERR | Description
1 The input at RACK is out of range.
2 A rack hardware fault occurred.
3 The input at SLOT is out of range.
4 The module at the location specified is not an RTD mod-

ule.

5 The input at CHAN is out of range.
6 | There is a module hardware fault.
9 | The input at RNGE is invalid.

NOTE: This function works in conjunction with the ARTDMDIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once (the input at EN should be a one-
shot) after the ARTDMDIT function is executed, and before the ARTDCHRD

function is executed.

Chapter 2 Function/Function Block Description

2-15

ARTDCHRD

ARTDCHRD
Analog RTD Channel Read lo/RTDTEMP
wgcﬁ Inputs: EN (BOOL) - enables execution
1N 0K = RACK (USINT) - rack where module resides
JRACK VALU - SLOT (USINT) - slot where module resides
1S10T ERRL CHAN (USINT) - channel to read
4 CHAN FAHR (BOOL) - Fahrenheit or Celsius
4 FAHR TYPE (USINT) - 50 Ohm or 100 Ohm RTD
1TYPE Outputs:OK (BOOL) -energized if and only if ERR =0

VALU (INT) - temperature
ERR (USINT) - # 0 if and only if error occurs

The ARTDCHRD function block must be declared in the software declaration
table. You assign a name (NAME) to it at that time. This function block outputs
the temperature sensed at a channel of the RTD module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.

The input at FAHR specifies degrees Fahrenheit if it is enabled. If it is not enabled
then the output will be in degrees Celsius. (F =1.8C + 32)

The input at TYPE (0 - 1) specifies the type of RTD you are using.
0 50 Ohm RTD
1 100 Ohm RTD
The output at VALU holds the temperature in the degrees * 10 specified.

2-16 Chapter 2 Function/Function Block Description

ARTDCHRD

The output at OK is not energized, the value at VALU is unpredictable, and the

output at ERR equals 1 - 8, 11, or 12 if an error occurs.

NOTE: Values outside the temperature limits (defined by ARTDCHIT) may be

read but should not be used for control purposes.

ERR | Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an RTD module.

The input at CHAN is out of range.

There is a module hardware fault.

N QAN | AW N -

error can occur if you continually initialize a channel.

The channel is being initialized. Try again later. NOTE: This

8 A linearization error occurred.

11 A temperature underflow occurred.

12 A temperature overflow occurred.

NOTE: This function works in conjunction with the ARTDCHIT and ARTDM-

DIT functions.

The ARTDCHIT function must be executed once after the ARTDMDIT function is

executed, and before the ARTDCHRD function block is executed.

Chapter 2 Function/Function Block Description

2-17

ARTDMDIT

ARTDMDIT
Analog RTD Module Initialization lo/RTDTEMP

ARTONDLT Inputs: EN (BOOL) - enables execution (One-shot)

1N oK = RACK (USINT) - rack where module resides
RACK ERRI— SLOT (USINT) - slot where module resides
Isio7 USEC (UINT) - frequency of read

4 uSEC Outputs: OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - # 0 if and only if an error occurs

The ARTDMDIT function initializes an RTD module. It establishes the frequency
at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input at uSEC (2000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 10°/uSEC.)

If an error occurs the output at OK is not energized and the value at ERR equals 1 -
4, or 10.

ERR Description

The input at RACK is out of range.
A rack hardware fault occurred.
The input at SLOT is out of range.

The module at the location specified is not an RTD mod-
ule.

10 The input at uSEC is out of range.

W N -

NOTE: This function works in conjunction with the ARTDCHIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once after the ARTDMDIT function is
executed, and before the ARTDCHRD function block is executed.

2-18

Chapter 2 Function/Function Block Description

ASSIGN

N

Arc Sine Arith/TRIG

ASIN Inputs: EN (BOOL) - enables execution

1N ok L SIN (REAL/LREAL) - sine value

SIN ANGLE Outputs: OK (BOOL) - execution completed without error
ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at SIN and ANGL must
match, i.e. if SIN is REAL, then ANGL must be
REAL.

The ASIN function calculates the arc sine of the sine entered at SIN. The result is

the angle at ANGL.
ASSIGN
Assignment lo/COMM
Aslgl/i'\'\éll%l Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N oK = COMN (STRUCT) - common to the ASSIGN function
COWN FALL blocks. Used by the software to count the number of
1 B assignments made by the function block. The structure
{NAMZ ERR — has one member with data type INT (the default).
1RACK NAMZ (STRING) - name of device
1SL0T RACK (USINT) - master rack where serial communi-
4 CHAN cation module resides (0)

SLOT (USINT) - slot where module resides (3-13)
CHAN (USINT) - channel on the module (1-4)
Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - energized if ERR= 1-7; deenergized if
ERR =0

ERR (INT) - 0 if no errors occur; 1-7 if an error occurs

The ASSIGN function block is designed to work with the two or four channel
serial communications module. It assigns the name at the NAMZ input to a serial
communication device at the location designated at RACK, SLOT, and CHAN.

Chapter 2 Function/Function Block Description 2-19

ASSIGN

The name you place in the string at NAMZ can have up to eight characters and is
entered in the following format. For the example, the device is called Channell.

CHANNEL1:$00

This name is then used at the NAMZ input of the OPEN function block to assign a
handle to the device. The remaining I/O communication function blocks use this
handle to identify the device.

The important note below provides a list of names that cannot be used at NAMZ
input.

IMPORTANT

The following device names are reserved and may not be used in the
ASSIGN function block at the NAMZ input.

USER, RAMDISK, ERR, AUXCOM, CO, PRN, PICPRO,
FMDISK, AUX, MONCON, CI

The input value at RACK (0) specifies the rack in which the module resides. The
master or CPU rack is #0. The serial communications module is always located in
the master rack.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 4) specifies the number of the channel on the mod-
ule to read.

After the ASSIGN function block is called, each channel on the serial communica-
tions module functions like the USER port on the CPU module.

The COMN input is a structure declared in the software declarations table with one
member (INT data type). This is used by the software to count the occurrences of
the ASSIGN function block. If you exceed the number allowed by the serial com-
munications module, an error will occur.

The errors that can occur at the ERR output are listed below.

ERR | Description
No error

Attempted to assign more than four devices

Name length either equals zero characters or has more than
10 characters including the two characters ":" and "$00"

3 Device creation error, operating system could not create
this device

N - O

2-20

Chapter 2 Function/Function Block Description

ATAN

4 Vector not initialized;

the system EPROM does not support the ASSIGN func-
tion.

5 Hardware already assigned

6 Not enough channels;

attempted to assign channel 3 or 4 to a two channel mod-
ule.

7 No module at assigned location

ATAN

Arc Tangent Arith/TRIG

ATAN Inputs: EN (BOOL) - enables execution

1N ok L TAN (REAL/LREAL) - tangent value

AN ANGLE Outputs: OK (BOOL) - execution completed without error
ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at TAN and ANGL
must match, i.e. if TAN is REAL, then ANGL must be
REAL.

The ATAN function calculates the arc tangent of the tangent entered at TAN. The
result is the angle at ANGL. The range of ANGL is:

S
IA
o
2
Q
~
IA

ST

Chapter 2 Function/Function Block Description 2-21

ATMPCHIT

ATMPCHIT
Analog Temperature Channel Initialization lo/JKTHERM

atvpcrrt| Imputs: EN (BOOL) - enables execution (One-shot)
1N 0K = RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
Isio7 CHAN (USINT) - channel on the module
4 CHAN RNGE (USINT) - range of temperatures or channel sensi-
{RNGE tivity
Outputs: OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if an error occurs

The ATMPCHIT function initializes a channel on a J-K Thermocouple module. It
establishes the sensitivity for the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 -12) specifies the number of the channel to read.
The input at RNGE (1 - 4) specifies the temperature or voltage range that can be

read, where:

Value to Range of values for J | Range of values for K

enter type thermocouple* type thermocouple*

1 -10° Cto280° C -35° Cto415° C
14° Fto536° F -31° Fto779° F

2 -35° Ct0620° C -80° Cto820° C
-31° Fto1148° F -112° Fto1508° F

3 -150° Cto1200° C -200° Cto1300° C
-238° Fto2192° F -328° Fto2372° F

4 + 100 mV

*The temperature ranges apply over the temperature rating of the module. Tem-
perature values outside the specified range should not be used for control purposes.

2-22 Chapter 2 Function/Function Block Description

ATMPCHIT

The output at OK is not energized and the value at ERR equals 1- 6, or 9 if an error
occurs.

ERR

Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog temperature module.

The input at CHAN is out of range.

There is a module hardware fault.

O AN B W N -

The input at RNGE is out of range.

NOTE: This function works in conjunction with the ATMPMDIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once (the input at EN should be a one-

shot) after the ATMPMDIT function is executed, and before the ATMPCHRD

function block is executed.

Chapter 2 Function/Function Block Description

2-23

ATMPCHRD

ATMPCHRD
Analog Temperature Channel Read lo/JKTHERM
_AWEHRE Inputs: EN (BOOL) - enables execution
1N 0K = RACK (USINT) - rack where module resides
JRACK VALU - SLOT (USINT) - slot where module resides
1S10T ERRL CHAN (USINT) - channel on the module
4 CHAN FAHR (BOOL) - Fahrenheit or Celsius
4 FAHR TYPE (USINT) - type of thermocouple or mV
1TYPE Outputs: OK (BOOL) - energized if and only if ERR =0
VALU (INT) - temperature or digital value of
mV
ERR (USINT) - # 0 if and only if an error
occurs

The ATMPCHRD function block must be declared in the software declaration
table. You assign a name (NAME) to it at that time. This function block outputs the
temperature or the voltage range sensed at a channel of the J-K Thermocouple
module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 12) specifies the channel to be sampled or read.

The input at FAHR specifies degrees Fahrenheit if it is enabled. If it is not enabled
then the output will be in degrees Celsius. (F =1.8C + 32)

The input at TYPE (0 - 2) specifies the type of thermocouple or specifies milli-
volts.

0 = Jtype
I = Ktype
2 = mV

If J or K type has been selected, then the VALU output holds the temperature (in
tenth of degrees) in either F or C.

2-24

Chapter 2 Function/Function Block Description

ATMPCHRD

If mV is selected, the VALU output holds the interpolated digital value (-2048 to

2047) of the analog signal (-100 to +100mV).

Counts | mV | The following formula can be used to calculate the
at mV (n) value from the counts at the VALU output.
VALU 100 — (100
For example, if the value at VALU was 1023 counts, then the
mV are calculated as follows:
n 200
n = [1023 +2048] x 1005 ™ 100
. or
+2047 +100 n =+49.98 mV

The output at OK is not energized, the value at VALU is unpredictable, and the

output at ERR equals 1 - 8, 11, or 12 if an error occurs.

NOTE: Values outside the temperature limits (defined by ATMPCHIT) can be

read but should not be used for control purposes.

ERR | Description

1 | The input at RACK is out of range.

2 | Arack hardware fault occurred.

3 | The input at SLOT is out of range.

4 | The module at the location specified is not an analog temperature mod-
ule.

5 | The input at CHAN is out of range.

6 | There is a module hardware fault.

7 | The channel is being initialized. Try again later.
NOTE: This error can occur if you continually initialize a channel.

8 | A linearization error occurred.

11 | A temperature underflow occurred. Indicates an open thermocouple.
NOTE: There is no open indication for grounded thermocouples.

12 | A temperature overflow occurred.

NOTE: This function works in conjunction with the ATMPCHIT and ATMPM-

DIT functions.

The ATMPCHIT function must be executed once after the ATMPMDIT function is

executed, and before the ATMPCHRD function block is executed.

Chapter 2 Function/Function Block Description

2-25

ATMPMDIT

ATMPMDIT
Analog Temperature Module Initialization lo/JKTHERM

atvevprT| Imputs: EN (BOOL) - enables execution (One-shot)
1N 0K = RACK (USINT) - rack where module resides
1RACK ERRL SLOT (USINT) - slot where module resides
Isio7 uSEC (UINT) - frequency of read
4 uSEC Outputs: OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if an error occurs

The ATMPDIT function initializes a J-K Thermocouple module. It establishes the
frequency at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input at uSEC (5000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 10°uSEC).

If an error occurs the output at OK is not energized and the value at ERR equals 1 -
4, or 10.

ERR | Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

W N -

The module at the location specified is not an analog temperature mod-
ule.

The input at uSEC is out of range.

NOTE: This function works in conjunction with the ATMPCHIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once after the ATMPMDIT function is
executed, and before the ATMPCHRD function block is executed.

2-26

Chapter 2 Function/Function Block Description

A DT T

ADTT
Add date and time to time Arith/DATETIME
ADT T Inputs: EN (BOOL) - enables execution
1N ok |- IN1 (DATE_AND_TIME) - addend
JINT ouTk IN2 (TIME duration) - addend
J1IN? Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - result of add

The A_DT _T function adds the value of the constant or variable at IN1 to the
value of the constant or variable at IN2. The result is a DATE_AND_TIME value
that is put in the variable at OUT.

Table 2-1. Examples of Add DATE_and_TIME to TIME

Value at IN1 Value at IN2 Value at OUT
DT#1990-09-25-00:00:00 T#239s DT#1990-09-25-00:03:59
DT#1991-07-04-14:14:23 T#23d10h22m | DT#1991-07-28-00:36:23

Chapter 2 Function/Function Block Description 2-27

A_IN_MMC

A_IN_ MMC
Analog input for the MMC lo/ANLGIN

A IN wic| Inputs: EN (BOOL) - enables execution
JEN ok | Outputs: OK (BOOL) - execution completed
VALUE VALU (INT) - digital value of analog input

NOTE: This function can only be used with the MMC, not a PiC CPU. The OK
will not be set if a PiC CPU is selected.

The A_IN_MMC function outputs the digital value of an analog input for the
MMC. The VALU output contains the counts of the analog input. You can con-
vert these counts to a voltage value using the formula shown below.

Countsat| V

VALU

+2047 +10 | The following formula can be used to calcu-
late the voltage value from the counts at the
VALU output.

+1024 +5

0 0 10V
Voltage = VALU(2—048 Counts)
-1024 +5
-2048 -10

2-28 Chapter 2 Function/Function Block Description

A_INCHIT

A_INCHIT “

Analog Input Channel Initialize lo/ANLGIN

A IncHiT| Inputs: EN (BOOL) - enables execution (One-shot)
i EN_ oK = RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
dsLoT CHAN (USINT) - channel to initialize
4 CHAN RNGE (USINT) - voltage range
4 RNGE BIPO (BOOQOL) - bipolar or unipolar
4BIPO 4mAO (BOOL) - 4/20 mA offset
14mA0 10ms (BOOL) - noise filter
110ms 100ms (BOOL) - noise filter
1100ms Outputs: OK (BOOL) - energized if and only if ERR = 0

ERR (USINT) - # 0 if and only if error occurs

The A_INCHIT function initializes a channel on an analog input module. It estab-
lishes the range of voltage or current to be sampled and the amount of hardware
filter to be applied.

This function is not required when using the MMC Analog Input or an MMC for
PC ASIU analog input.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the

PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU

or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

The input value at CHAN (1 - 8 for the standard analog input module and 1 - 4 for
the block analog input module) specifies the number of the channel to read.

Chapter 2 Function/Function Block Description 2-29

A_INCHIT

The input at RNGE (1 - 8 for the standard analog input module and 1 - 2 for the
block analog input module) specifies the input voltage range at this channel as
shown below.

Enter | Unipolar Range Bipolar Range
1 0- 10V -10- 10V
2 0- 5V -5-5V
3 0- 2.5V -2.5- 2.5V
4 0-1.25V -1.25-1.25V
5 0-1V -1- 1V
6 0-.5vV -5-.5V
7 0-.25V -.25-.25V
8 0-.125V -.125-.125V

The input at BIPO specifies bipolar if enabled. It specifies unipolar if it is not
enabled.

The input at 4mAOQO specifies that current is to be sampled. To read current (instead
of voltage) it is required that:

1. A jumper be connected from the (-) input to the 250 ohm resistor input, as
described in the Hardware Manual.

2. The input at RNGE equal 2 and the input at BIPO be a normally open con-
tact that is never set.

The input at 4mAO should have a wire or short connected to it for 4 to 20mA. The
input at 4mAO should not be enabled for O to 20 mA. These inputs are pictured

below.
4 -20 mA 0-20 mA
2 “»—{ RHGE 2 — RHGE
HEVERSET ' HEVERSET
— —BIPO — }——BIPO
' HEVERSET
{4mao — b——4mao

The inputs at 10ms and 100ms specify the amount of noise filter. If neither input
is enabled then the default filter of 1 millisecond is applied. If the input at 10ms is
enabled then a 10ms filter is applied. If the input at 100ms is enabled then a 100ms
filter is applied. If both inputs are enabled then a 110ms filter is applied.

Note: The 10, 100, and 110 ms filters are not available for the block analog input
modules.

2-30 Chapter 2 Function/Function Block Description

A_INCHIT

If an error occurs the output at OK is not energized and the output at ERR equals 1 “
-7

ERR | Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog input module.

The input at CHAN is out of range.

There is a channel hardware fault.

N QAN AW -

The input at RANG is out of range.

Note: This function works in conjunction with the A_INMDIT (module initial-
ize) and A_INCHRD (channel read) functions.

The A_INMDIT and the A_INCHIT functions must execute one time
(the input at EN should be a one-shot), in either order, before the
A_INCHRD function block executes.

Chapter 2 Function/Function Block Description 2-31

A_INCHRD

A INCHRD
Analog Input Channel Read lo/ANLGIN
A\L_JIV IEIC% Inputs: EN (BOOL) - enables execution
1N 0K = RACK (USINT) - rack where module resides
JRACK VALU L SLOT (USINT) - slot where module resides or the MMC
lstoT emRle for PC ASIU number
enan CHAN (USINT) - channel to read
Outputs: OK (BOOL) -energized if and only if ERR =0

VALU (INT) - digital value of analog input
ERR (USINT) - # 0 if and only if error occurs

The A_INCHRD function block outputs the digital value of an analog input to a
channel on the analog input module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.
For the MMC analog input, RACK must be set to 0.
For an MMC for PC ASIU analog input, RACK must be set to 200.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the

PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU

or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

For the MMC analog input, SLOT must be set to 1.

For the MMC for PC ASIU, SLOT must be the ASIU number. The valid range is
(1-28).

The input value at CHAN (1 - 8 for a standard analog input module, 1 - 4 for a
block analog input module, 1 for an MMC for PC and 1 for the MMC for PC
ASIU) specifies the number of the channel to read.

2-32 Chapter 2 Function/Function Block Description

A_INCHRD

The output at VALU holds the digital value of the signal occurring when this func-
tion block is enabled. The range of values is shown below:

Analog Input Module Unipolar Bipolar
12-bit resolution 0 to 4095 -2048 to 2047
14-bit resolution 0to 16383 -8192 to 8191

This value is interpolated for the voltage or current range specified by the
A_INCHIT function.

Note: The analog input on the MMC is a -10V to +10V, 12-bit resolution, bipolar
input. The MMC has 1 analog input.

Note: The analog input on the MMC for PC ASIU is a -10V to +10V, 12-bit reso-
lution, bipolar input. There is 1 analog input per ASIU.

If an error occurs the output at OK is not energized and the output at ERR =1 - 7.

ERR | Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog input module.

The input at CHAN is out of range.

QN RA| W N -

Either there is a channel hardware problem, the module was not initial-
ized, or the module is being continually initialized.

Initialization is not complete.

NOTE: This function works in conjunction with the A_INMDIT (module initial-
ize) and A_INCHIT (channel initialize) functions.

The A_INMDIT and A_INCHIT functions must execute one time, in either order,
before the A_INCHRD function block executes.

Chapter 2 Function/Function Block Description 2-33

A_INCHRD

Examples

The information below will help you to calculate the device signal if you know the
value at VALU or to calculate the VALU if you know the device signal.

Input Range Resolution Device Signal VALU=
4-20mA 12 bits [=16mA (VALU/4095) + 4mA | (I-4mA) 4095/16mA
4-20mA 14 bits | [= 16mA (VALU/16383) + 4mA | (I-4mA) 16383/16mA

0-20mA 12 bits I =20mA (VALU/4095) 1(4095/20mA)

0-20mA 14 bits I =20mA (VALU/16383) 1(16383/20mA)
Any voltage | 12 bits V = Range* (VALU/4095) V (4095/Range*)

range™ 14 bits V = Range* (VALU/16383) V (16383/Range*)

*The voltage ranges for unipolar and bipolar inputs are listed below.

Unipolar Input Range Bipolar Input Range
0to 10V 10V -10to 10 V 20V
Oto5V 5V Stos5V 10V
0to2.5V 25V 251025V 5V
0to1.25V 1.25V -1.25t01.25V 25V
OtolV 1V -lto1V 2V
0to05V 05V -05t00.5V IRY
0t00.25V 025V -0.25t0 0.25 0.5V
0t00.125V 0.125V -0.125t0 0.125 V 025V

2-34 Chapter 2 Function/Function Block Description

A_INCHRD

For a 12-bit unipolar example, if the value at VALU was 2948 counts and the range is .125 (0

to .125), then the voltage is calculated as follows:
= 0.09V n

For a 14-bit unipolar example, if the value at VALU was 11796 counts and the range is .125 (0
to .125), then the voltage is calculated as follows:

y = 0:125x2948
T 4095

0.125x 11796

v 16383

0.09v

For the 12-bit bipolar example, if the value at VALU was -1228 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:

_10x-1228

V= 4095 -3V

For the 14-bit bipolar example, if the value at VALU was -4915 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:

10X -4915

V= 16383 -3V

For a 4-20 mA example, if the value at VALU was 2047 counts, then the current is calculated
as follows:

I = 16mA (2047 +4095) + 4mA= 12mA

Chapter 2 Function/Function Block Description 2-35

A_INMDIT

A_INMDIT
Analog Input Module Initialization lo/ANLGIN
A_INVDIT Inputs: EN (BOOL) - enables execution (One-shot)
iEEN 0K |- RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
4SLOT uSEC (UINT) - frequency of read
{uSEC Outputs: OK (BOOL) -energized if and only if ERR =0

ERR (USINT) - # 0 if and only if an error occurs

The A_INMDIT function initializes an analog input module when using a PiC
CPU. It establishes how frequently the module samples or reads voltage or current
input. NOTE: This function is not required when using an MMC or MMC for PC.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the

PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU

or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

The input at uSEC (800 - 65535) specifies in microseconds how frequently the
module reads or samples the input. The sample frequency in hertz equals 10%
uSEC.

Note: When using the Servo Module Encoder with Analog Input or the block
analog input module the range is 800 - 32767.

2-36

Chapter 2 Function/Function Block Description

A TOD_ T

If an error occurs the output at OK is not energized and the value at

ERR equals 1 - 5:

ERR | Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog input module.

N AW N -

The input at uSEC is out of range.

NOTE: This function works in conjunction with the A_INCHIT (channel initial-
ize) and A_INCHRD (channel read) functions.

A_INMDIT and A_INCHIT must execute one time (the input at EN should be a
one-shot), in either order, before A_INCHRD executes.

A TOD T

Add time of day to time

Arith/DATETIME

ATODT Inputs:
4{EN OK —
{INT OUTR
4IN2 Outputs:

EN (BOOL) - enables execution

IN1 (TIME_OF_DAY) - addend

IN2 (TIME duration) - addend

OK (BOOL) - execution complete
OUT (TIME_OF_DAY) - result of add

The A_TOD_T function adds the value of the constant or variable at IN1 to the

value of the constant or variable at IN2. The result is a TIME_OF_ DAY value that
is put in the variable at OUT. The number of days in the TIME value at IN2 must

equal O or an error occurs. Any value for milliseconds is truncated.

Examples of add TIME_OF_DAY to TIME

Value at IN1 Value at IN2 Value at OUT
TOD#11:43:12 T#0d4h10m36ms TOD#15:53:12
TOD#23:59:54 T#3s TOD#23:59:57

Chapter 2 Function/Function Block Description

2-37

BAT_OK?

BAT OK?
Battery OK? lo/BAT OK?

AT ok? | Imputs: EN (BOOL) - enables execution
1N ok = Outputs: OK (BOOL) - execution completed without error

The BAT_OK? function tests the condition of the battery during the ladder scan.
When there is power flow to the EN and the battery is good, the OK will be set.

2-38 Chapter 2 Function/Function Block Description

BIO_PERF

Block I/O Performance lo/BIlO_PERF “

E’(\)W\F/JERF— Inputs: EN (BOOL) - enables execution
- STRT (BOOL) -starts the capture of performance

{EN 0K~ information
4 STRT STOP (BOOL) -stops the capture of performance
lstop information

PTR - a pointer to an array of structures holding per-

1FTR formance information for up to 77 block modules
1RETR RETR (BOOL) - enables the retry quantity
Jary QTY (USINT) - number of retries for the system to use

when attempting to communicate with each block
Outputs:
OK (BOOL) - execution completed

The BIO_PERF function block assists you in troubleshooting a block I/O system.
The function block monitors the number of good read/writes versus the number of
bad read/writes to the block modules. It also allows you to change the default num-
ber of four times that the system attempts to read/write a given block module
before a failure occurs.

As an example of troubleshooting, if one block module in your system has several
more retries than the others, check to see if the module is wired correctly or is
located near a source of excessive noise.

NOTE: You can decrease the effect of transient noise by increasing the retry
count. However, remember that excessive retries can result in system degradation.

Chapter 2 Function/Function Block Description 2-39

BIO_PERF

Data Structure Members

The members of the structure required for the array of structures at the PTR
input are described below.

IMPORTANT

The structure entered in the software declarations table for the PTR
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each
member of the structure must be as shown in order for the software to
recognize the information.

Member Type Description

TOTREAD UDINT The number of reads attempted for this block module
(Total Reads)

BADREAD UDINT The number of retries made while reading from this
(Bad Reads) block module

TOTWRITE UDINT The number of writes attempted for this block module
(Total Writes)

BADWRITE UDINT The number of retries made while writing to this block
(Bad Writes) module

The following ladder example illustrates how the BIO_PERF function block can
be incorporated into your ladder. Note that the retry quantity (QTY) is enabled
after the performance monitor has been enabled and consequently will take effect
during the second scan of the ladder.

2-40 Chapter 2 Function/Function Block Description

BIO_PERF

Figure 2-2. Network Example using BIO_PERF Function Block

EMABLE
(s)
E]Hetwork #2
-BIOPERF ——
BIO_PERF
oK
- EH OK - (51—
EMABLE
| p | - STRT
DISABLE
| p | - STOP

DATA(D) }— PTR

RETRY
P | - RETR
QTY 7 OTY
ElMetwork #3
RETRY
(s

Chapter 2 Function/Function Block Description 2-41

BOOL2BYT

BOOL2BYT

Boolean to Byte

Datatype/BOOL2BYT

HEN

- IND
4 IN1
4 IN2
4 IN3
- IN4
4 IN5
- ING
4 IN7

BOOL2BYT Inputs: EN (BOOL) - enables execution

0K = INO to IN7 (BOOL) - bits to convert
ouT I Outputs:OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The BOOL2BYT function transfers the values of the 8 bits at INO through IN7 into
the byte variable at OUT. The value at INO becomes the least significant (right-
most) bit of the output variable.

Example

IN7 [IN6 | INS | IN4 | IN3 | IN2 |IN1 |INO| OUT
0]07]0]0O0 1 1 1 1 |00001111

2-42

Chapter 2 Function/Function Block Description

BYTE2DW

BYT2BOOL
Byte to Boolean Datatype/BYTECONV

ByT200L| Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (BYTE) - byte to convert
1IN ouTe|=Outputs: OK (BOOL) - execution completed without error
ouT1 = OUTO to OUT7 (BOOL) - converted values
OUT2 —
OUT3 —
OUT4 —
OUT5

0uT6
OuT7

The BYT2BOOL function transfers the 8-bit value of the input at IN into the 8
boolean variables specified at OUTO through OUT7. The least significant (right-
most) bit becomes OUTO.

Example

IN OuUT7|0OUT6 | OUTS | OUT4 | OUT3 | OUT2 | OUT1 | OUTO

11110000 1 1 1 1 0 0 0 0
BYTE2DW
Byte to Double Word Datatype/BYTECONV

BYTEZDW Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (BYTE) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The BYTE2DW function changes the data type of the value at IN from a byte to a
double word. The leftmost 24 bits of the double word are filled with zeros. The
result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-43

BYTE2LW

BYTE2LW
Byte to Long Word Datatype/BYTECONV

BYTEZLW Inputs: EN (BOOL) - enables execution

JEN oKL IN (BYTE) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The BYTE2LW function converts a byte into a long word. The leftmost 56 bits of
the long word are filled with zeros. The result is placed in a variable at OUT.

BYTE2SI
Byte to Short Integer Datatype/BYTECONV

BYTEZSI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (BYTE) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The BYTE2SI function changes the data type of the value at IN from a byte to a
short integer. The result is placed in the variable at OUT.

2-44 Chapter 2 Function/Function Block Description

BYTE2WO

BYTE2USI
Byte to Unsigned Short Integer Datatype/BYTECONV
BYTE2USI Inputs: EN (BOOL) - enables execution
1EN oK - IN (BYTE) - value to convert

1IN ouTl=Outputs: OK (BOOL) - execution complete
OUT (USINT) - converted value

The BYTE2USI function changes the data type of the value at IN from a byte to an
unsigned short integer. The result is placed in the variable at OUT.

BYTE2WO
Byte to Word Datatype/BYTECONV

BYTEZWO Inputs: EN (BOOL) - enables execution
JEN 0K = IN (BYTE) - value to convert

1IN ouT e Outputs: OK (BOOL) - execution complete
OUT (WORD) - converted value

The BYTE2WO function changes the data type of the value at IN from a byte to a
word. The leftmost eight bits of the word are filled with zeros. The result is
placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-45

CAM_ouTt

CAM OUT
Cam Output (Programmable Logic Switch) Motion/MOVE_SUP

CAM OUT Inputs: EN (BOOL) - enables execution
1N oKk AXIS (USINT) - identifies axis (servo, digitizing, or
time)
1ax1s outh
ON (DINT) - value the output is to turn on at (entered
~{ON .
in LU)
10FF If ON is outside the range of -536,870,912 to
4SLOT 536,870,911 FU, the OK will not be set.
4 PNT OFF (DINT) - value the output is to turn off at (entered
{DABL in LU)

If OFF is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

SLOT (USINT) - identifies output module slot or
MMC for PC ASIU number

PNT (USINT) - identifies output point (1 - 16 or 1 - 32)
on the output module or ASIU specified by SLOT
NOTE: When calling CAM_OUT more than once for
the same slot, be sure the point number is unique.
Never enter a point number more than once for the
same slot.

DABL (BOOL) - disables the cam output when set
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - gives the logic status of the output

The CAM_OUT function is used to turn on a discrete output point for a specified
distance during the rollover on position cycle for the axis. It performs like a pro-
grammable logic switch (PLS). The outputs are updated on an interrupt basis.

With a PiC CPU, the following conditions must be met in order to turn an output
on using the CAM_OUT function. The CAM_OUT function can also be used
with the MMC CPU and the MMC for PC Analog CPU. Even though the outputs
can be shared, they cannot be used in more than one place.

e 16 or 32 point output module must be in the PiC location identified in
SLOT.
NOTE: If you have a PiC CPU with firmware prior to version 10.2, the out-
puts on these modules can be used for cam outputs only. Choose “Empty”

2-46 Chapter 2 Function/Function Block Description

CAM_ouTt

as the output module used with the CAM_OUT function in the hardware

declarations table. This ensures that the outputs will not be turned off at the

end of each scan.

Note: Do not declare the CAM_OUT output point (specified by SLOT and
PNT) in the software declarations.

e SLOT must be a valid slot number for your PiC900/90 or MMC configura-
tion. (For a PiC900/90 rack, from 3 up to 13 depending on the size of the
rack you have. For the MMC, SLOT must be 2. For the MMC for PC SLOT
must be 1 through 8, specifying the ASIU number.)
NOTE: The CAM_OUT function works on output modules only. It does
not work on input/output modules.

o [If SLOT equals zero, no physical output will be used.
¢ Rollover on position must be on for the axis identified in AXIS.

e The ON and OFF values must be less than the rollover on position value.
ON must not equal OFF.

e A zero must be entered in DABL.

Note: The CAM_OUT function does not support controlling expansion
rack outputs, block outputs, DeviceNet outputs, or SERCOS drive
outputs.

When using 32 points with the CAM_OUT, the table below shows the values to
enter at PNT.

32 pt 2-16pt
module modules
Enterak PNT | Enterat PNT
ForSLOT=0 1 1 1
2 2 2
32 T
RRAI S 065

You can use less than 32 or 16 points on any module.

Three possible combinations for the CAM_OUT function inputs are shown in the
table that follows. The first combination is what is required to turn both the func-
tion and module output on.

The second combination will turn the function output on but not the module output
because SLOT = 0.

The third combination with DABL set to “1” disables the output from both the
function and the module and also removes it from any foreground calculations.
This is the recommended way to disable a cam output since it saves CPU time.
AXIS, SLOT, and PNT must have valid data entered before a cam output can be
disabled.

Chapter 2 Function/Function Block Description 2-47

CAM_ouTt

Each of these combinations assume that ON # OFF. If ON = OFF, then there
would be no function or module output but CPU time would be used.

NOTE

Once a point is assigned to an axis it cannot be reassigned to a differ-
ent axis unless the servos are reinitialized.

Table 2-2. Cam input combinations and results

If these Cam function | Then the function OUT, module
inputs are: output, and CPU time use are:
Function | Module Use
SLOT DABL ouT Output | CPU time
SLOT=#0 | DABL=0 YES YES YES
SLOT=0 | DABL=0 YES NO YES
* DABL =1 NO NO NO

An * means that any valid data may be entered at the designated input.
Outputs are updated on an interrupt basis.

From 1 to 32 outputs (identified at PNT) can be turned on by calling the
CAM_OUT function once for each output desired. The distance during which
each output remains on can vary by changing the values in ON and OFF in each
function.

Examples of turning on an output for varying distances is illustrated in Figure 2-
3. If the rollover on position cycle equals 1,000 LU and the value entered in ON is
100 and the value entered in OFF is 200, then the output will remain on during 100
units of travel as shown on the left.

If the value entered in ON is 200 and the value entered in OFF is 100, then the out-
put will remain on for 900 units as shown on the right.

Figure 2-3. Cam ON/OFF representation

Off On

On Off
100 200 100 200

Enclosed area represents
distance the output is on

2-48

Chapter 2 Function/Function Block Description

CAPTINIT

CAPTINIT

Data Capture Initialization Motion/DATA

capTINGT | Inputs: EN (BOOL) - enables execution (One-shot)

1N ok L SRCE (ARRAY OF STRUCT) - an array of structures
to define what data is to be captured.

4{SRCE ERR}

QTY (USINT) - the number of variables (from 1 to 8)
101y

to be captured. (Same as the number of array elements
4 DEST

in SRCE or the number of structure members in
{SIZE DEST.)

DEST (ARRAY OF STRUCT) - an array of structures
to store the captured data.

SIZE (UINT) - the number of array elements in DEST
which represents the number of data samples to take.

Outputs: OK (BOOL) - set if no errors in structure data

ERR (USINT) - no error if ERR = 0; error if ERR # 0.
Errors are listed below.

This section contains information on how to capture data in the PiC ladder so that
it can be displayed on the workstation screen. If you are capturing data directly
from the ladder once per scan, then the variables can be put into an array of struc-
tures using the READ_SV function. If you are capturing data from servo inter-
rupts, then you use the two functions, CAPTINIT and CAPTSTAT, to get the
variables into an array of structures, as shown in Figure 2-4.

The communication function blocks are used to create a binary file that can be sent
to the PiC RAMDISK or the workstation.

Chapter 2 Function/Function Block Description 2-49

CAPTINIT

Figure 2-4. Tasks for data capture

Data from servo interrupts
[use CAPTINIT and CAPTSTAT functions)

CAPTINIT CAPTSTAT

M ok b | okt

J{5RCE BR} {5TRT ELBM

{ary {OHCE

JOEST

J5IZE

U=e the communication
Stare ik ah funcFin:un I:nlu_:n:ks ko create 2
el R RANDISK o
watkstakion.
F Y

b Fica0n
RARDISE

4.' Yarkstation

Daka from varables in the LD

[use READ SV function]

READ =

JARTS RAL
{IYR

4B ok F

Tk

BRI E-30C

2-50

Chapter 2 Function/Function Block Description

CAPTINIT

The CAPTINIT function defines the data you want to capture each servo interrupt
and where the data will be stored.

CAUTION
Itis very important that the values entered at QTY and SIZE equal the

number of variables you are capturing and the number of samples you
are taking respectively. If not, the results are unpredictable.

ERR # | Description
No error

1 The CAPTSTAT function has not stopped capturing data from a
previous data capture initialization.

2 An axis number in the structure is invalid.

3 The limit of eight variables in the array of structures has been
exceeded.

4 Parameter number in the structure is out of range.

5 The CAPTINIT function was called before the STRTSERV
function was called.

The SRCE input array of structures

An array of structures is used at the SRCE input of the CAPTINIT function. There
is one array element for each variable to capture. Each array element is a structure
with two members; AXIS which identifies the servo or digitizing axis the variable
applies to and VAR which identifies the variable you want to capture. A maximum
of eight variables can be captured within one array of structures. The variables are
described in the table below.

Chapter 2 Function/Function Block Description 2-51

CAPTINIT

Table 2-3. Data Capture

Var Name Type
1 Actual position
The actual position of the device with reference reset applied. DINT
Units are feedback units.
(Variable 1 in READ_SV.)
2 Fast input occurred
On for one interrupt. Bit 00001000 of this byte. BYTE
(Same as bit 00000010 out of STATUSSV.)
3 Commanded position
The commanded position sent to the servo upgrade. Units are DINT
feedback units.
(Variable 3 in READ_SV.)
NOTE: This is the same as actual for a digitizing axis.
4 Position error
The error between the filtered output and the actual. Units are DINT
feedback units.
(Variable 4 in READ_SV.)
NOTE: With a SERCOS axis, this value will differ from servo
variable 4 by the number of feedback units traveled in four servo
updates. For an exact reading of position error with a SERCOS
axis, read Following Distance IDN 189 from the drive.
5 Slow Velocity Filter error
The accumulated value in the slow velocity filter. Units are DINT
feedback units.
(Variable 5 in READ_SV.)
6 Command change
The command delta for this interrupt after filter. Units are feed- | [NT
back units per upgrade.
(Variable 6 in READ_SV.)
7 Position change
The change in actual position for this upgrade. Units are feed- INT
back units per upgrade. (Variable 7 in READ_SV.)
8 Feedback position
The 24 bit counter from the hardware. Top byte is always O. DINT
Units are feedback units.
(Variable 8 in READ_SV.)
9 Prefilter commanded position
The commanded position prior to the filter. Units are feedback | DINT
units.
NOTE: This is the same as actual for a digitizing axis.
10 | Prefilter command change
The command delta for this interrupt before filter. Units are INT

feedback units.

2-52

Chapter 2 Function/Function Block Description

CAPTINIT

11

Remaining master offset
The accumulated master offset. Units are feedback units.

DINT

12

Remaining slave offset
The accumulated slave offset. Units are feedback units.

DINT

13

Command change

The command delta for this interrupt after filter. Units are feed-
back units per upgrade.

(Variable 6 in READ_SV.)

DINT

14

Position change
The change in actual position for this upgrade. Units are feed-
back units per upgrade. (Variable 7 in READ_SV.)

DINT

15

Prefilter command change
The command delta for this interrupt before filter. Units are
feedback units.

DINT

IMPORTANT

The structure you enter in the software declarations table for the
SRCE input must have the members entered in the order shown be-
low. The data type for each member of the structure must be as shown

in the Type column in order for the software to recognize the
mation.

infor-

In the example shown below, there are three variables to be read; the actual posi-
tion of Axis 1 (1), the position change of Axis 1 (7), and the actual position of Axis
49 (1).

e Tvp T Pt Init. Mal.=n
SOURCE(A) SOURCE(T) SOURCE(Z)
E STRLCTA. .2)
RIS LENT i 1 49
¥R LSINT 1 7 1
B0 _STRCT
b

RA]

Chapter 2 Function/Function Block Description

2-53

CAPTINIT

The DEST input array of structures

DEST is the array of structures which is the destination of the captured data. There
is one array element for each data sample. A data sample occurs each interrupt and
will capture as many variables as indicated at SRCE. Each structure contains one
member for each variable captured. In the above example, there are three vari-
ables and therefore there needs to be three structure members. Each structure
member must be the correct type to accommodate the variable captured. The type
of each variable is listed under the Type column in the variable table above.

In the example, the array of structures could look like this:

Hame Type A, | WO Point | h
DESTIM STRUCTCD..89)
POz DiIrT
DELTA IMT
POS48 DIMT
EMD_STRUCT

This array of structures accommodates 100 data samples. Captured data is stored
sequentially into the array until the end is reached (element 99 in the example).
Then the data will wrap around and begin to fill the array again unless ONCE has
been set in the CAPTSTAT function. Use the ELEM output of the CAPTSTAT
function to find out the next element in the array that will be written to.

2-54

Chapter 2 Function/Function Block Description

CAPTSTAT

CAPTSTAT

Data Capture Status

Motion/DATA

CAPTSTAT | Imputs:

HEN oKk
4 STRT ELEM}
- ONCE

Outputs:

EN (BOOL) - enables execution
STRT (BOOL) - a positive transition will start the
data capture process. A zero will stop the data cap-

ture process.

ONCE (BOOL) - set to fill the array of structures
one time.

OK (BOOL) - set if no errors in structure data

ELEM (UINT) - the number of the next array ele-
ment that will be written to. (O is the first element
in an array.)

NOTE: If the CAPTINIT function is not called before this function, the OK will
not be set and ELEM will = 0.

The CAPTSTAT function provides the ability to start and stop the capturing of data

from the ladder.

Chapter 2 Function/Function Block Description 2-55

CLOCK

CLOCK
Clock Xclock /CLOCK

CLOCK Inputs: EN (BOOL) - enables execution
1N 0K = IN (DATE_AND_TIME) - clock set value
N ouTk SET (BOOL) - causes set or extract
JSET Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - value extracted

The CLOCK function is used to get the current date and time from the PiC, or to
enter a date and time into the PiC.

If power flow exists at SET, then the PiC clock is set with the value of the variable
at IN. The value at IN is also placed into the variable at OUT.

If power flow does not exist at SET, then the (current) PiC date and time are
extracted from the PiC clock and placed in the variable at OUT.

Typically, the CLOCK function is used in a read only mode. The example below
shows how to set this up. Put the same variable name on IN and OUT. Place a
Normally Open contact that is never set at the SET input.

Example

CLOCK
READ

——PFH——EN oK |-

VALUE N OUT | VALUE
HEVER
— ——sET

2-56 Chapter 2 Function/Function Block Description

CLOSE

CLOSE
Close lo/COMM
%VI%EE Inputs: REQ (BOOL) - enables execution (One-shot)
JREQ DONE |- HNDL (INT) - output from OPEN function block
1uNDL FAIL = Outputs: DONE (BOOL) - energized if ERR =0
ERR |~ not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0

not energized if ERR =0

ERR (INT) - 0 if data transferred successfully;
0 if data transfer unsuccessful

See Appendix B in the software manual for ERR codes.

The CLOSE function block closes the communication channel between the LDO
and either a workstation file, a PiC RAMDISK file, a PiC FMSDISK file, or User

Port.

The device or file at HNDL is closed, terminating the transfer of data from/to the
file/device. Execution of this function block frees a mode (or 2 modes for read and
write or append). It also empties the read and write buffers.

CLOSE is used in conjunction with the CONFIG, OPEN, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

Chapter 2 Function/Function Block Description 2-57

CLOSLOOP

CLOSLOOP
Close Loop Motion/INIT

cLostoop | Inmputs: EN (BOOL) - enables execution (One-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The position loop for the designated axis is closed when the CLOSLOOP function
is activated. The commanded position of the axis will be compared to the actual
position of the axis. The difference between the two is the following error. The
PID calculations will respond to the error by telling the analog output to send a
corrective voltage signal to the drive. The drive will move the axis toward the
commanded position. Any further disturbance in axis position will initiate a simi-
lar corrective response. This function must be included in any closed loop servo
application.

See also OPENLOOP.

2-58

Chapter 2 Function/Function Block Description

CLSLOOP?

CLSLOOP?
Close Loop? Motion/INIT

CLSLOOP? Inputs: EN (BOOL) - enables execution
JEN oK AXIS (USINT) - identifies axis (servo)

AXIS cLspl Outputs: OK (BOOL) - set if axis is closed loop and initialized

CLSD (BOOL) - set if the axis loop is closed, cleared
if the axis loop is open or the OK is not set

The CLSLOOP? function allows you to inquire whether or not the loop for an axis
is closed. The axis you are inquiring about is identified at the AXIS input. The
CLSD output indicates whether the axis loop is closed or not.

The axis will be closed only if you have previously called the CLOSLOOP func-

tion for this axis. The axis will be open if you have called the OPENLOOQOP func-
tion or an E-stop error is in effect. This function may be called at any time and in
any task.

NOTE: If using this function with a SERCOS system, the CLSD output is report-
ing the state of the SERCOS drive rather than the internal state of motion.lib.

Chapter 2 Function/Function Block Description 2-59

CONCAT

CONCAT
Concatenate String/CONCAT
CONCAT Inputs: EN (BOOL) - enables execution
1N 0K |- OUT (STRING) - concatenated STRING
10UT---0uT = IN1 (STRING) - STRING input
1IN IN2 (STRING) - STRING input
4{IN2 Outputs: OK (BOOL) - execution completed without error

The CONCAT function merges two STRING variables together. The variable at
IN2 is placed directly after the variable at IN1 and the resulting STRING is placed

OUT (same variable as OUT input)

in the variable at OUT.

This is an extensible function which can concatenate up to 17 STRINGs. The
STRING at IN17 is placed after the STRING at IN16, which is placed after the
STRING at IN15, etc. The variables at IN2 through IN17 must be unique from the

variable at OUT.

An error occurs:

If the length of IN1 > length of OUT
If the length of IN2 > length of OUT

If the length of IN1 + length of IN2 > length of
ouT

If IN2, or IN3, ... or IN17 = OUT

Example of Concatenate Function

Var at IN1

Value at IN2

Value at IN3

Var at OUT

string1

string2

string3

string 1 string2string3

2-60

Chapter 2 Function/Function Block Description

CONFIG

CONFIG

Configure lo/COMM
%'\I\AIFIG Inputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEL- HNDL (INT) - output from OPEN function block
JHNDL FAIL CFGZ (STRING) - configuration data
1CFGZ ERR|— Outputs: DONE (BOOL) - energized if ERR =0

not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0

not energized if ERR =0

ERR (INT) - 0 if data transferred successfully;
0 if data transfer unsuccessful

The CONFIG function block establishes the communication parameters for the
PiC User Port (only) and the handle specified by the input at HNDL. To configure
User Port, create a STRING variable and connect it at the CFGZ input. Enter the
parameters in the order shown. Each parameter value must be separated by a com-
mand.

Baud rate

Parity

Data bits

Stop bits

Synch mode

Terminator

9600,

8,

1,

N

$00

String = 9600,N,8,1,N$00

NOTE: To use all default values, create a string variable of length 0 with no initial
value. To use one or more (but not all default values), insert a comma for each
value that is omitted as shown below.

Baud rate | Parity | Data bits | Stop bits | Synch mode | Terminator
b} N9 D) D) N $00
String = ,N,,,N$00
Chapter 2 Function/Function Block Description 2-61

CONFIG

Table 2-4. Parameters for CONFIG string

Parameter Acceptable Default Description
values value
Baud Rate (110, 300, 600, Number of bits per second that are transferred - a
1200, 2400, 9600 baud rate above 9600 requires hardware sync
4800, 9600, mode
19200
Parity E - if # of 1s in lower 7 bits is odd, then bit 8 is
E - Even set to 1
O -Odd N O - if # of 1s in lower 7 bits is even, then bit 8 is
N - None set to 1
N - no parity checking
Data Bits (7 or 8 3 Number of bits that are to be interpreted as data
Stop Bits 2(for 110 |[After the transmission of every byte, pause for
1 or 2 baud) the time it takes to send 1 or 2 bits before trans-
L(for other [Mitting the next byte
bauds)
Synch Mode R - the PiC will stop sending if <CTRL-S> or
XOFF is received and resume sending when
N - None <CTRL-Q> or XON is received.
S - Send S - the PiC will send a <CTRL-S> when input
R - Receive N needs to be suspended and a <CTRL-Q>
B-BothS & R when input is to resume.
H - Hardware H - clear to send (CTS) and request to send
(RTS) are connected between the devices to
prevent overruns.
RS422/485 T -When using RS422/485 communications
Mode and the 2- or 4-channel serial communications
module, including a "T" in the CFGZ string as
shown below disables the transmitter when
T - Transmitter ., there are no characters to transmit.
Disabled String = 9600,N,8,1,N,T$00
This allows implementation of a two-wire
party line configuration with RS485 commu-
nication links.
Terminator $00 None Characters that signal end of data.

CONFIG is used in conjunction with the CLOSE, OPEN, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

2-62

Chapter 2 Function/Function Block Description

COORD2RL

COORD2RL

Coordinate to Real

Motion/DATA

coorozRL | Imputs:
len ok}
{oNFG ERR}

{vove

1acTv

1561

Outputs:

EN (BOOL) - enables execution
CNFG (STRUCTURE) - provides setup data for move

MOVE (STRUCTURE) - provides part program data for

move

ACTYV (WORD) - identifies axis for each segment output

SEGI - (STRUCTURE) - provides segment output for
the first axis. Function can be extended for 15 additional
axes SEG outputs.

OK (BOOL) - execution completed without error
ERR (INT) - # 0 if and only if an error occurs.

The COORD2RL function is a math conversion function requiring servo initializa-
tion and a math coprocessor on the PiC CPU. It is an extensible function that cal-
culates a profile segment (output SEG1 through SEG16) for up to 16 axes from the
information provided in the CNFG and MOVE inputs.

NOTE: Of the 32 servo axes available, only servo axes numbered 1 through 16
can be used with this function.

The CNFG input is a structure holding setup data. The MOVE input is a structure
containing part program information such as endpoints, velocities, move times,

circle centerpoints, etc.

The COORD2RL math conversion function is used with the RATIO RL function.

IMPORTANT

The structures entered in the software declarations table for CNFG,
MOVE, and SEG1 must have the members entered in the order listed
in the tables that follow. The data type entered in the Type column
for each member of the structure must be as shown in order for the
software to recognize the information.

Chapter 2 Function/Function Block Description

2-63

COORD2RL

Table 2-5. COORD2RL structure memebers at the CNFG input

Member Type Description
TMAXRT DINT Enter the time axis rate. 1000 units/sec is recom-
(time axis rate) mended for most applications.
TOLR DINT Enter in ladder units the limit on the circle endpoint
(tolerance) your application will accept before an error is
reported.
FLAGS WORD Bit O is the only bit currently in use.
(flags)

iz 109 &7 6 54 3 2

1
HEEEEEEEEEEEEEE

o 0 =no velocity check
| 1 =velocity check

All remaining bits (1-15) should

be set to zero.
AR EIE:

Table 2-6. COORD2RL structure memebers at the MOVE input

Member Type Description
LINEAR WORD Identify from 1 to 16 axes that will be used for linear
(linear axes) moves.
CIRCLE WORD Identify two axes that will be used for circular moves.
(circular axes)
DEPART WORD Identify from 1 to 16 axes that will be used for third axis
(departure axes) departure moves.

NOTE: Third axis departure is accomplished by slaving
the third axis to the same time axis as the two axes doing

the circle.
RTTM BYTE Selects rate or time.
(rate or time) 00 = rate 80 (hex) = time
DIR BYTE Selects the direction a circular move will take.
(direction) 00 = CW 80 (hex) = CCW
VALUE DINT Define the rate or time (based on what was selected at
(rate or time value) RTTM above).

Rate is entered in LU/min.
Time is entered in msec.

AX1CP DINT Enter the centerpoint for the first axis (lowest number)
(First axis center- entered in CIRCLE.
point)
AX2CP DINT Enter the centerpoint for the second axis (highest number)
(Second axis center- entered in CIRCLE.
point)
ENDPTS DINT (0-15) Enter in an array the endpoints for all axes being used.

(1-16 endpoints)

2-64 Chapter 2 Function/Function Block Description

COORD2RL

Table 2-7. COORD2RL structure members at the SEG ouput

Member Type Description
MASTER DINT The segment master distance
(master distance)
SLAVE DINT The segment slave distance
(slave distance)
LEN LREAL The length of the cycle
(cycle length/K71)
AMPL LREAL The amplitude of the wave
(amplitude/K7)
STANGL LREAL The starting angle of the wave
(starting angle/K3)
SPARE LREAL Declare this in your structure since it may be used in the
(unused) future for additional features.
FLAGS DWORD Bits 0 through 4 are currently being used.
(flags) (See explanation at the REAL input of RATIO_RL.)

Chapter 2 Function/Function Block Description

2-65

COORD2RL

The table below defines the outputs that can appear at the ERR output of the
COORD2RL function.

Table 2-8. COORD2RL ERRs

ERR Output
0 No error
1 No bits were set in the LINEAR, CIRCLE, or DEPART members of the
MOVE structure.
2 The same bit was set in the LINEAR and CIRCLE members of the MOVE
structure. An axis cannot be linear and circular at the same time.
3 The same bit was set in the DEPART and CIRCLE members of the MOVE
structure. An axis cannot be departure and circular at the same time.
4 The same bit was set in the LINEAR and DEPART members of the MOVE
structure. An axis cannot be linear and departure at the same time.
5 Set if other than O or 2 bits were set in CIRCLE. Two bits must always be set
in order to do a circular move.
6 The ACTYV input indicated a fewer number of axes than the number connected
to the inputs labeled at SEG.
7 A bit is set in LINEAR, CIRCLE, or DEPART that does not have a corre-
sponding bit in ACTV.
8 The time or rate value is negative. These must be positive numbers only.
9 The time or rate value is zero.
10 | The rate was too high or the time was too low to calculate.
11 The rate was too low or the time was too high to calculate.
12 | An axis that was selected was not initialized by the user function.
13 | The STRTSERV function was not called. No axes have been initialized.
14 | The circle endpoint limit you entered in the CNFG structure for TOLR has
been exceeded.
I1xx | Distance calculated using scaling was too positive to fit in the 32 bit value.
xX is the axis number.
2xx | Distance calculated using scaling was too negative to fit in the 32 bit value.
xx is the axis number.
3xx | Velocity exceeded the maximum feedrate defined in servo setup.
NOTE: Valid profile data is still produced if this error occurs.
2-66 Chapter 2 Function/Function Block Description

CTD

COS
Cosine Arith/TRIG
C0S Inputs: EN (BOOL) - enables execution
1N ok L ANGL (REAL/LREAL) - angle value (in radians)
IANGL cost Outputs: OK (BOOL) - execution completed without error
COS (REAL/LREAL) - cosine calculated
NOTE: The data types entered at ANGL and COS must
match, i.e. if ANGL is REAL, then COS must be REAL.
The COS function calculates the cosine of the angle entered at ANGL. The result
is placed at COS.
CTD
Count Down Counters/CTD
B '[\:'%'SE 7| Inputs: CD (BOOL) - initiate count down
i) ol LD (BOOL) - load PV to CV
11D oV = PV (INT) - preset value
lpy Outputs: Q (BOOL) - execution completed for count down to 0

CV (INT) - count value

The CTD function block counts down to -32768 from the preset value in the vari-
able or constant at PV. The count value at CV is decremented by one whenever a 0
to 1 transition occurs at CD.

Whenever the count is < zero, the output at Q is energized.

The value at PV is loaded into the value at CV when power flow occurs at LD.

Chapter 2 Function/Function Block Description 2-67

cTu

CTU
Count Up Counters/CTU
B %ME 71 Imputs: CU (BOOL) - initiate count up
{cu ol R (BOOL) - reset counter to zero
1R oV PV (INT) - preset value
dpv Outputs: Q (BOOL) - execution complete for count up to preset
value
CV (INT) - count value
The CTU function block counts up from zero to +32767. The count value at CV is
incremented by one whenever a 0 to 1 transition occurs at CU.
Whenever the count is = the preset value at PV, the output at Q is energized.
The value at CV is reset to zero when power flow occurs at R.
CTUD
Count Up/Count Down Counters/CTUD

B WE] Imputs: CU (BOOL) - initiate count up

lcu lk CD (BOOL) - initiate count down

e ok R (BOOL) - reset counter to zero

1R oV LD (BOOL) - load PV to CV

4LD PV (INT) - preset value

4PV Outputs: QU (BOOL) - execution complete for count up

QD (BOOL) - execution complete for count down
CV (INT) - count value
The CTUD function block counts between +32767 and -32768.

The count value at CV increments by one whenever a transition occurs at CU. The
count value at CV decrements by one whenever a 0 to 1 transition occurs at CD.

Whenever CV is = PV, QU is energized; whenever CV is <0, QD is energized.

When power flow occurs at R, the value at CV resets to zero and QD is energized.
When power flow occurs at LD, the value at PV is loaded into CV and QU is ener-
gized.

Note: Only one boolean input at a time should be energized.

2-68 Chapter 2 Function/Function Block Description

C_ERRORS

C ERRORS
Controlled Stop Errors Motion/ERRORS

C trroRs | Imputs: EN (BOOL) - enables execution

| E& oKL AXIS (USINT) - identifies axis (servo)
AXIS ERRSL Outputs: OK (BOOL) - execution complete
ERRS (WORD) - indicates errors

The ERRS output on the C_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error. The low byte of the word is where the individual errors are
located.

High byte Low byte
The table that follows gives the C-stop errors and their locations.

NOTE: The C_ERRORS can also be viewed from the tune section of the Servo
setup program. The “E” is what appears on the tune screen in Servo setup.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

Chapter 2 Function/Function Block Description 2-69

C_ERRORS

Table 2-9. Controlled stop errors

Bit Location Hex
Error Description (low byte) Value
(Decimal)*
7 6/ 5 4 3 2/ 1] (in LDO)

Part reference Move was in progress when a part 8080
error reference or a part clear function (32896)

was called.
Part reference When the dimension for the part H 8040
dimension reference was converted to feedback (32832)
error units, it was too big to fit into 29

bits.
Distance or When the dimension for the move E 8020
position move was converted to feedback units, it (32800)
dimension was too big to fit into 31 bits.
error
Feedrate When the feedrate for the move was H 8010
error** converted to feedback units per (32784)

servo up-grade, it was too big to fit

into 32 bits or it exceeds the veloc-

ity limit entered in setup.
Machine refer- | When the dimension for the H 8008
encedimension | machine reference was converted to (32776)
error feedback units, it was too big to fit

into 29 bits.
User-defined When this bit is set, a user-defined H 8004
C-stop C-stop has occurred. (32772)
Negative The command position exceeded E 8002
software limit the user-defined negative software (327170)
exceeded end limit.
Positive The command position exceeded E 8001
software limit the user defined positive software (32769)
exceeded end limit.

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

**This error can occur with feedrate override, new feedrate, position, distance,
velocity, or machine reference moves.

2-70

Chapter 2 Function/Function Block Description

C_STOP

Controlled Stop Reset

Motion/ERRORS

¢ reseT | Imputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The C_RESET function resets the controlled stop condition and the errors that
caused it. You must always reset any C-stop error that occurs.

C_STOP
Controlled Stop Motion/ERRORS
C STOP Inputs: EN (BOOL) - enables execution
iEEN ok L AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The C_STOP function will bring the specified axis to a controlled stop based on
the controlled stop ramp entered in setup. Any further movement by the axis will
be prevented until the C-stop condition is reset.

Chapter 2 Function/Function Block Description 2-71

C_STOP?

C _STOP?
Controlled Stop? Motion/ERRORS

c stop? | Imputs: EN (BOOL) - enables execution

lv ol AXIS (USINT) - identifies axis (servo)

AXIS csTPL Outputs: OK (BOOL) - execution completed without error
CSTP (BOOL) - indicates a C-stop is active when set

The C_STOP? function asks if there is a C-stop in effect for this axis.

2-72 Chapter 2 Function/Function Block Description

DATE2STR

DATE2STR
Date to String Datatype/D TCONV

DaTezsr| Imputs: EN (BOOL) - enables execution
JEN 0K |- OUT (STRING) - output STRING
JouT---0uT IN (DATE) - value to be converted “
JIN Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The DATE2STR function converts the value in the variable or constant at IN to a
STRING and places the result in the variable at OUT.

Example of DATE to STRING

Var at IN Value at OUT
D#1995-11-01 1995-11-01

Chapter 2 Function/Function Block Description 2-73

DELETE

DELETE
Delete String/DELETE
DELETE Inputs: EN (BOOL) - enables execution
{EN 0K = OUT (STRING) - output STRING
10UT---0uT = IN (STRING) - input STRING
JIN L (INT) - length
HL P (INT) - position (cannot equal 0)
1P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The DELETE function is used to delete characters from a STRING. It deletes
characters from the variable at IN. The input at L specifies how many characters
to delete, starting at the position specified by the input at P. The resulting (left-
over) STRING is placed into the variable at OUT.

An error occurs if any of the following is true:
P=20

P > 255

P > length of IN

L > 255
Length of IN - L > length of OUT

Example of delete function

Var at IN Value at L Value at P Var at OUT
stringlong 4 7 string

2-74 Chapter 2 Function/Function Block Description

DELFIL

DELFIL
Delete File lo/COMM

I B‘é"{'EIL 71 Imputs: REQ (BOOL) - enables execution (One-shot)

REQ DONEL NAMZ (STRING) - a string containing the complete
NAMZ FAIL}
Outputs: DONE (BOOL) - energized if ERR =0

Ry not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transferred successfully
0 if data transfer unsuccessful

See Appendix B in the software manual for error
codes.

The DELFIL function block allows you to delete a file from the RAMDISK or
from PiCPro.

At the NAMZ input, enter the complete pathname to delete a file in PiCPro.

With a subdirectory, Without a subdirectory,
PICPRO:c:\sub\filename.ext$00 °T PICPRO:c:filename.ext$00

Or enter the following to delete a file on the RAMDISK.

With a Without a subdirectory,
subdirectory, Of RAMDISK:filename.ext$00
RAMDISK :sub\filename.ext$00
An empty subdirectory can be deleted with the DELFIL function also.
NOTE: The DELFIL function block cannot be used with the FMSDISK.

Chapter 2 Function/Function Block Description 2-75

DINT2DW

DINT2DW
Double Integer to Double Word Datatype/DINTCONV

DINTZDW Inputs: EN (BOOL) - enables execution
1EN oK |- IN (DINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The DINT2DW function changes the data type of the value at IN from a double
integer to a double word. The result is placed in the variable at OUT.

2-76 Chapter 2 Function/Function Block Description

DINT2INT

DINT2INT
Double Integer to Integer Datatype/DINTCONV

pintziny] Imputs: EN (BOOL) - enables execution

1N 0K |- IN (DINT) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (INT) - converted value

The DINT2INT function changes the data type of the value at IN from a double
integer to an integer. The leftmost 16 bits of the double integer are truncated. The
result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-77

DINT2LI

DINT2LI
Double Integer to Long Integer Datatype/DINTCONV

DiNT2L | Inputs: EN (BOOL) - enables execution

1N 0K = IN (DINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The DINT2LI function converts a double integer into a long integer. The sign bit
of the DINT is extended into the leftmost 32 bits of the long integer. The result is
placed in a variable at OUT.

2-78

Chapter 2 Function/Function Block Description

DINT2RE

DINT2RE
Double Integer to Real Datatype/DINTCONV

pintzre | Imputs: EN (BOOL) - enables execution

JEN 0K |- IN (DINT) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (LINT) - converted value

The DINT2RE function converts a double integer into a real. The result is placed
in a variable at OUT.

Chapter 2 Function/Function Block Description 2-79

DINT2SI

DINT2SI1
Double Integer to Short Integer Datatype/DINTCONV

DINTZSI Inputs: EN (BOOL) - enables execution
1EN oK |- IN (DINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The DINT2SI function changes the data type of the value at IN from a double inte-
ger to a short integer. The leftmost 24 bits of the double integer are truncated. The
result is placed in the variable at OUT.

2-80 Chapter 2 Function/Function Block Description

DINT2UDI

DINT2UDI
Double Integer to Unsigned Double Integer Datatype/DINTCONV

DINT2UDI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (DINT) - value to convert
1IN ouTl Outputs: OK (BOOL) - execution complete “

OUT (UDINT) - converted value

The DINT2UDI function changes the data type of the value at IN from a double
integer to an unsigned double integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-81

DIRECT

DIRECT
Directory lo/COMM
[D'}IQI\EAET] Imputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEL BEG (BOOL) - enable to start at beginning of direc-
tory. Disable to step through directory.
{1BEG FAILf
loin emal DIR (STRING) - a string containing the directory
name
- NAME - NAME
NAME (STRING) - (see below)
4{DTST-DTST ¢
S17t DTST (STRING) - (see below)
SDIR Outputs: DONE (BOOL) - energized if ERR =0
1 I not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transferred successfully
0 if data transfer unsuccessful

NAME (STRING) -

a string containing the filename

DTST (STRING) - a string containing the date/time

string

SIZE (DINT) - gives the size of the file
SDIR (BOOL) - set if NAME output is a subdirectory

See Appendix B in the software manual for error codes.

The DIRECT function block allows you to read RAMDISK or FMSDISK file
directory information from the ladder.

The directory name is entered at DIR using one of the formats shown below.

To list contents of a |To list the contents [When the main directory is not the
subdirectory, enter the [of the current di- |current directory and you want to list
name of the subdirecto-|rectory, enter the |the contents of the main directory ,
'When ry at sub in the following: enter the following:
using: following:
RAM- | RAMDISK:sub\$00 | RAMDISK:$00 RAMDISK:*.%#$00
DISK
FMSDISK| FMSDISK:sub\$00 [FMSDISK:$00 FMSDISK:*.%#$00
Set the BEG input in order to start at the beginning of the directory.
2-82 Chapter 2 Function/Function Block Description

DIRECT

Transition the REQ input. This places the first file in NAME, the date/time in
DTST, and the file size in SIZE. (SDIR is set when the name at the NAME output
is a subdirectory.)

Turn the BEG off to step through the remaining files in the directory. When the
last file is reached, you can go back to the beginning by setting BEG again.

Chapter 2 Function/Function Block Description 2-83

DISTANCE

DISTANCE

Distance

Motion/MOVE

pistance | Imputs: EN (BOOL) - enables execution (One-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or time)
IAXIS QUEL RATE (UDINT) - feedrate at which motion occurs
1raTE (entered in LU/MIN)
p1st DIST (DINT) - indicates incremental move distance
(entered in LU)

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of distance move for queue

The DISTANCE function moves an axis a specified distance at a specified fee-
drate. When the distance move is used with a time axis, the S_CURVE function
must be called first.

2-84

Chapter 2 Function/Function Block Description

DIv

DIV
Divide Arith/ARITH

DIV Inputs: EN (BOOL) - enables execution
JEN 0K = DVND (NUMERIC or TIME duration) - dividend

DVND QUOT = DVSR (same type as DVND if DVND is numeric;
DINT if DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error
QUOT (same type as DVND) - quotient

- DVSR

The DIV function divides the value of the variable or constant at DVND by the
value of the variable or constant at DVSR, and places the result in the variable at
QUOT. If there is a remainder it is not returned. See the MOD function.

X DVND
+Y DVSR
Z QUOT

Chapter 2 Function/Function Block Description 2-85

DT2DATE

DT2DATE

Date and Time to Date

Datatype/D TCONV

DT2DATE
HEN oK
1IN out

Inputs: EN (BOOL) - enables execution
IN (DATE_AND_TIME) - value to extract from

| Outputs: OK (BOOL) - execution completed without error

OUT (DATE) - extracted date

The DT2DATE function extracts the DATE from the DATE_ AND_TIME value
in the variable or constant at IN, and places it into the variable at OUT. Any time
values (hours, minutes, seconds) are truncated.

Example of DATE_AND_TIME to DATE

Var at IN Value at OUT
DT#1993-05-13:00:37:44| D#1993-05-13

2-86

Chapter 2 Function/Function Block Description

DT2STR

DT2STR
Date and Time to String Datatype/D TCONV
DT2STR Inputs: EN (BOOL) - enables execution
1N 0K = OUT (STRING) - STRING output
JouT---0UuT = IN (DATE_AND_TIME) - value to extract from
JIN Outputs: OK (BOOL) - execution completed without error “

OUT (same variable as OUT input)

The DT2STR function converts the value in the variable or constant at IN into a
STRING, and places the result in the variable at OUT.

Example of DATE_AND_TIME to STRING

Var at IN Value at OUT
DT#1993-05-13:00:37:44 | 1993-05-13:00:37:44

Chapter 2 Function/Function Block Description 2-87

DT2TOD

DT2TOD
Date and Time to Time of Day Datatype/D TCONV

DT270D Inputs: EN (BOOL) - enables execution

1N oK = IN (DATE_AND_TIME) - value to extract from
JIN out Outputs: OK (BOOL) - execution completed without error
OUT (TIME_OF_DAY) - extracted value

The DT2TOD function extracts the TIME_OF_DAY from the variable or constant
at IN, and places the result in the variable at OUT. Any date values (year, month,
day) are truncated.

Example of DATE_AND_TIME to TIME_OF_DAY

Var at IN Value at OUT
DT#1993-05-13:00:37:44 TOD#00:37:44

2-88 Chapter 2 Function/Function Block Description

DWOR2BYT

DWOR2BYT
Double Word to Byte Datatype/DWORDCNV

oworzeyt] Imputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error “

OUT (BYTE) - converted value

The DWOR2BYT function changes the data type of the value at IN from a double
word to a byte. The leftmost 24 bits of the double word are truncated. The result
is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-89

DWOR2DI

DWOR2DI
Double Word to Double Integer Datatype/DWORDCNV

DWORZDI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (DWORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The DWOR2DI function changes the data type of the value at IN from a double
word to a double integer. The result is placed in the variable at OUT.

2-90 Chapter 2 Function/Function Block Description

DWOR2LW

DWOR2LW
Double Word to Long Word Datatype/DWORDCNV

DWOR2LW Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (LWORD) - converted value

The DWORD2LW function converts a double word into a long word. The left-

most 32 bits of the long word are filled with zeros. The result is placed in a vari-
able at OUT.

Chapter 2 Function/Function Block Description 2-91

DWOR2RE

DWOR2RE
Double Word to Real Datatype/DWORDCNV

DWORZRE Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (REAL) - converted value

The DWORD2RE function converts a double word into a real. The result is placed
in a variable at OUT.

2-92 Chapter 2 Function/Function Block Description

DWOR2UDI

DWOR2UDI
Double Word to Unsigned Double Integer Datatype/DWORDCNV

oworzupz] Imputs: EN (BOOL) - enables execution
1N 0K = IN (DWORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error “
OUT (UDINT) - converted value

The DWOR2UDI function changes the data type of the value at IN from a double
word to an unsigned double integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-93

DWOR2WO

DWOR2WO
Double Word to Word Datatype/DWORDCNV

DWORZWO Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert
1IN ouTl Outputs:OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The DWOR2WO function changes the data type of the value at IN from a double
word to a word. The leftmost 16 bits of the double word are truncated. The result
is placed in the variable at OUT.

2-94

Chapter 2 Function/Function Block Description

D_TOD2DT

D _ TOD2DT

Concatenate Date and Time of Day

Datatype/D TCONV

D 7002071 Inputs: EN (BOOL) - enables execution
] EN_ 0K |- IN1 (DATE) - value to be combined
JINT OUTR IN2 (TIME_OF_DAY) - value to be combined
4{IN2 Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - concatenated value

The D_TOD2DT function concatenates (combines) the value of the variable or
constant at IN1 with the value of the variable or constant at IN2. The resultis a
DATE_AND_TIME value that is placed in the variable at OUT.

Example of concatenate DATE and TIME_OF_DAY

Var at IN

Value at IN2

Value at OUT

D#1995-01-02

TOD#03:04:05

DT#1995-01-02-03:04:05

Chapter 2 Function/Function Block Description

2-95

EQ

EQ

Equal To

Evaluate/EQ

FQ Inputs: EN (BOOL) - enables execution

1N 0K |- IN1 (ANY except BOOL or STRUCT) - value to be com-
pared

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are equal

The EQ function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

If all input values are equal, the coil at OUT is energized. If one or more values
are not equal, the coil at OUT is not energized.

2-96

Chapter 2 Function/Function Block Description

EXP

EXP
Exponential Arith/TRIG

EXP Inputs: EN (BOOL) - enables execution
1N ok L LN (REAL/LREAL) - natural log value
1IN Numl Outputs: OK (BOOL) - execution completed without error

NUM (REAL/LREAL) - the number whose natural log
is entered at LN

NOTE: The data types entered at LN and NUM must
match, i.e. if LN is REAL, then NUM must be REAL.

The EXP function is the inverse of the LN function which calculates the natural
log of a number.

Chapter 2 Function/Function Block Description 2-97

E_ERRORS

E_ERRORS
Emergency Errors Motion/ERRORS

E errors | Imputs: EN (BOOL) - enables execution

. E& oK} AXIS (USINT) - identifies axis (servo or digitizing)
AXIS ERRSL Outputs: OK (BOOL) - execution completed without error
ERRS (WORD) - identifies errors

The ERRS output on the E_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error. The low byte of the word is where the individual errors are
located.

High byte Low byte

NOTE: The E_ERRORS can also be viewed from the View List section of the
Servo setup program.

The table that follows gives the E-stop errors and their locations.

In this table, Bit Location column indicates which bit is set in the low or high byte
of the word connected to each error. The “E” is what appears on the View List in
Servo setup.

In this table, the Hex Value column represents the form the error is returned in
while monitoring the ERRS output of the function in your ladder program. The
error identified at the LSB position is loss of feedback. This is the only E-stop
condition for a digitizing axis. Use the E-STOP? and the E_RESET functions to
indicate and reset the E-stop condition.

2-98

Chapter 2 Function/Function Block Description

E_ERRORS

Table 2-10. Emergency Stop Errors.

Bit Location Hex *
Error Description (low byte) 'Value
(Decimal)
8171654 32 |1 |(inLDO)

(not used)
(not used)
SERCOS |Cyclic data synchronization error E 8020
error (32800)
SERCOS [SERCOS drive E-stop - Status word bit E 8010
error 13=1. (32784)
User-set |An E-stop defined by you with the E-stop E 8008

function has occurred. (32776)
Overflow |A slave delta overflow during runtime has E 8004
error occurred. This problem is most likely to (32772)

occur if you are moving at a high rate of

speed and/or the slave distance is very

large compared to the master distance.

There are two conditions that can set this

bit.

1. In FU, if the master moved position

times the slave distgnge enfered iscgggater

than 31 bits. MDIS

2. In FU, if the mastermoved X _SDIS

MDIS

is greater than 16 bits.
Excess 'When an excess following error has E | 8002
error occurred, the axis has exceeded the limit (32770)

entered in the Servo setup program as the

following error limit. This represents the

maximum distance the commanded axis

position can be from the actual axis posi-

tion.
Loss of A loss of feedback from the feedback E 8001
feedback |device has occurred. Available for servo (32769)

and digitizing axes.

NOTE: If an E-stop error occurs using the stepper axis module, the command to
the stepper will be zeroed. There is no loss of feedback or excess error with the
stepper axis.

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

Chapter 2 Function/Function Block Description 2-99

E_RESET

E_RESET
Emergency Stop Reset Motion/ERRORS

E RESET Inputs:EN (BOOL) - enables execution (Typically one-shot)
1N oKL AXIS (USINT) - identifies axis (servo or digitizing)
JAXIS Outputs:OK (BOOL) - execution completed without error

The E_RESET function resets the E-stop condition and all the errors that caused it.
After an E-stop error occurs, you must always reset it. When the E_RESET func-
tion resets the E-stop condition, it also clears both the active and next queues for
the servo axis.

NOTE: The E_RESET function will close the loop if a CLOSLOOP function is
executed before the E_STOP.

2-100 Chapter 2 Function/Function Block Description

E_STOP

E_STOP
Emergency Stop Motion/ERRORS

E STOP Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The E_STOP function will open the servo loop and zero the analog output.

Chapter 2 Function/Function Block Description 2-101

E _STOP?

E_STOP?
Emergency Stop? Motion/ERRORS

E stop? | Imputs: EN (BOOL) - enables execution

1N oKL AXIS (USINT) - identifies axis (servo or digitizing)
AXIS ESTPL Outputs: OK (BOOL) - execution completed without error
ESTP (BOOL) - indicates an E-stop is active when set

The E_STOP? function asks if there is a E-stop in effect for this axis.

2-102 Chapter 2 Function/Function Block Description

FAST_QUE

FAST QUE
Fast Input Queue Motion/QUE

FAST QUE Inputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies axis to be affected by the fast
input (servo)

TARIS This can either be the same axis as FAST or a second axis.
ST FAST (USINT) - identifies axis with fast input
1{DIST NOTE: Fast input on axis feedback required.
NOTE: Entering a zero will cancel the FAST_QUE’s
holding mode

DIST (DINT) - the distance the fast input axis must travel
after the fast input occurs (entered in LU)

Range of + 4,194,303 FU (A “0” may be entered if no dis-
tance needs to be covered by the fast input axis.)

NOTE: A programming error will be generated if the axis
moves more than 65,535 FU in the opposite direction of

The FAST_QUE function allows you to manage the queues based on the occur-
rence of a fast input to the feedback module for an axis.

SERCOS NOTE: The function block SCA_PBIT must be called and com-
pleted successfully prior to calling the FAST_QUE function
with a SERCOS axis.

This function can be used to:

1. Start a move

2. Go from one move to another
If the first move completes before the fast input occurs, the second move will
begin just as if the FAST_QUE function had not been called.

3. End a move
If the fast input does not occur, the move will end in the normal way.

Using the fast input to trigger one of the above provides a faster response time than
is possible when managing the queues from the ladder.

The update rate entered in setup for the axis identified at AXIS and the axis identi-
fied at FAST must be the same.

NOTE: An internal bit remains on for eight updates after a fast input event occurs.
If the FAST_QUE is called during those eight updates, the bit is ignored until it
changes state again. Therefore, to ensure that you do not miss a fast input event,
there should always be nine or more updates between events. (One iteration equals
eight updates.)

Chapter 2 Function/Function Block Description 2-103

FAST_QUE

When the FAST_QUE is called, a “holding” mode for any of the three actions is in
effect until the following two conditions are met:

e The fast input on the axis identified at FAST occurs.
o The FAST axis has moved the designated distance entered at DIST.

The holding mode is cleared when both of these conditions are met and it is then
possible to manipulate the moves in the queue(s) in one of the following ways.

TO START A MOVE:
Step 1.Call the FAST_QUE function.

Step 2.Put the move to occur on the fast input in the active queue.

The move will start after the fast input occurs and the FAST axis has
moved the specified distance. If the fast input occurs before the
FAST_QUE is called, it will be ignored. You must call the FAST_QUE
before the fast input occurs.

TO MOVE FROM ONE MOVE TO ANOTHER:
Step 1.Put the first move in the active queue. It will begin.

Step 2.Call the FAST_QUE function.

Step 3.Put the second move in the next queue.

The first move will be aborted and the second move will begin after the fast
input occurs and the fast input axis has moved the specified distance.
Again, the FAST_QUE function must be called before the fast input occurs
or it will be ignored until the next fast input.

TO END A MOVE:
Step 1.Put the move in the active queue. It will begin.
Step 2.Call the FAST_QUE function.

Note:

The move will end when the fast in occurs and the axis moves the distance
entered at DIST. Do not put any move in the next queue until after the fast
input occurs. If you do, the second move will begin when the fast input
occurs as described above.

A programming error (P_ERRORS function) will occur on the axis identi-
fied at AXIS on the FAST_QUE function if the fast axis travels in the
wrong direction more than 65,535 FU. If the axis continued to move in the
wrong direction, a move could be started unexpectedly.

It is important that you ensure this does not occur. Do this by program-
ming an ABORTALL function at the occurrence of this programming error
to remove all moves from the queues.

The programming error must be reset with the P_RESET function.

The move will travel the distance specified in DIST and then you abort
the move. The total distance traveled beyond the fast input will equal the
DIST value plus whatever distance it takes to decel.

2-104

Chapter 2 Function/Function Block Description

FAST_QUE

The holding mode can be cancelled by calling the FAST_QUE function with a
zero on the function input labeled "FAST". Cancelling the holding mode will
cause the axis to behave as if no FAST_QUE had been called. Note that if a
queued move is waiting on a fast input to begin, canceling the holding mode will
cause the move to begin.

Chapter 2 Function/Function Block Description 2-105

FAST_REF

FAST_REF

Fast Input Reference (Machine Reference) Motion/REF

FasT Rep | Inputs: EN (BOOL) - enables execution (One-shot)
{EN okl AXIS (USINT) - identifi.es axis (servo or digitizing)
{axas auel NOTE: Fast input on axis feedback required.
{pLus PLUS (BOOL) - indicates direction of motion to refer-

ence switch

RATE
+ RATE (UDINT) - feedrate at which motion occurs
1D (entered in LU/MIN)

OPTN DIM (DINT) - reference dimension for the nearest

resolver null or the next encoder index mark after the fast
input occurs. Itis entered in LU. If DIM is outside the
range of -536,870,912 to 536,870,911 FU, the OK will
not be set.

OPTN (WORD) - provides referencing options
Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of reference move for queue

The fast input reference is a machine reference. It will cause a servo axis to move
in the direction (PLUS) and at the feedrate (RATE) specified to the reference
switch. The reference switch is connected to the fast input on the feedback mod-
ule. When the switch closes, the position of the axis is recorded based on the near-
est null of the resolver or the next index mark of the encoder. The value entered at
DIM is assigned to this position.

If the axis is a digitizing axis or if "no motion" has been selected at OPTN (see
below), this function does not cause motion. You must use other methods of mov-
ing the axis to the reference switch. The inputs PLUS and RATE are ignored when
no motion is selected.

A fast reference done with the FAST REF function monitors the axis until a fast
input on the feedback module occurs. How the fast input responds is defined by
variable 19 in the WRITE_SV function. The default is to respond to the rising
edge. In contrast, the ladder reference (see LAD_REF and REF_END functions)
monitors the axis until the REF_END function is called in your ladder program.

When using a SERCOS axis, the function block SCA_RFIT must be called and
completed successfully prior to calling the FAST_REF function.

Note: If an encoder is the feedback device, the axis will continue to move after
the switch closes until the next index mark is seen.

2-106 Chapter 2 Function/Function Block Description

FAST_REF

The OPTN input provides the following options:

Option Binary value Hex value
1. Ignore index/null 00000000 00000001 0001
2. No motion 00000000 00000010 0002

If no option is desired, enter a “0.”

Option inputs
Ignore the index/null
Choosing this option allows a reference to occur which ignores the index mark of
an encoder or the null of a resolver during the reference cycle. If bit O is set to “1,”

the reference position assigned by DIM will be assigned to the position the axis is
at when the fast input makes its transition.

With an encoder, the axis will stop immediately after the fast input transitions.
The axis does not continue movement until the index mark is reached. NOTE:
This makes the reference switch position given with the READ_SV function
invalid. With a resolver, the reference switch position available with the
READ_SV function is valid.

No motion

The no motion option allows a reference to occur without any motion. The axis is
put into a mode whereby it is watching for the conditions of a reference cycle.
Even though no move is placed in the queue, a queue must be available. A move
will be initiated by the ladder following the reference cycle.

Once the call is made, the reference complete flag goes low until the fast input
occurs and the index mark (unless “ignore index” option is active) is received. The
reference complete flag goes high once these events occur and the axis position
takes on the reference value at DIM.

If the move type is VEL, RATIO_GR, LAD_REF, or FAST_REF, the new axis
position assigned by the no-motion reference has no effect on the move itself.
With a DISTANCE move, the actual distance covered will be the same. If a no-
motion reference occurs during a position move, the endpoint will be reached.

If a no-motion reference is used during a RATIO_PRO move, the lock on point of
the slave axis to the master axis may be undefined. This is not recommended.

Note: A fast reference can also be performed on a digitizing axis. You must
cause the axis to move and the fast input to occur. Use variable 29 with
the READ_SV function to read the reference switch position.
REF_DNE? can also be used with digitizing axes.

Setting up a machine reference switch

A reference switch is needed for each axis requiring a machine reference. When
the switch is tripped, the position of the axis is indicated by the signal from the

Chapter 2 Function/Function Block Description 2-107

FAST_REF

feedback device coupled to the axis. The PiC references to the nearest null of a
resolver or the next index mark of an encoder. If the switch is improperly placed
in relation to the feedback device, a reference could take place that was one revolu-
tion off of the previous reference.

To ensure that you will always get an accurate repeatable reference, there are cer-
tain factors to keep in mind when setting up the reference switch:

e With encoders - the software calculations assign the reference value of the
function to the first index mark following switch closure. The reference
switch should be positioned so that the count bandwidth is within the range
of 25 to 75% of the total count. If the total count is 1000 per rev, the switch
location should be between 250 and 750 counts. See A in Figure 2-

5. below.

e With resolvers - the software calculations assign the reference value of the
function to the nearest null following the switch closure. The reference
switch should be positioned so that the count is greater than 3000 or less

than 1000. The switch location is incorrect if the resolver signal is between
10001 and 2999. See Figure 2-5 below.

Figure 2-5. Referencing positions for encoders and resolvers

750 250 3000 1000

99 3999

0 0
Index Mark Null

Machine reference
should occur in this half.

A B

Note that the referencing position is in different halves for the encoder and
resolver. That is because the encoder references to the next index mark and
you want to avoid referencing in the same half of the encoder revolution as
the index mark. The resolver references to the nearest null so you want to
avoid referencing around the half-rev point.

e After a machine reference is completed, the READ_SV functions function
(see servo data functions) can be used in your ladder to read the reference
switch position after the switch closes by entering variable 29 in the VAR
input and viewing the RSLT output in PiCPro. The RSLT output is in feed-

2-108 Chapter 2 Function/Function Block Description

FAST_REF

back units. For an encoder the reference switch position is the distance
between the switch closure and the index mark. For a resolver, the reference
switch position is the position of the resolver when the switch is closed.

If the reference switch position read from the READ_SV function is between 25%
and 75% for the total encoder count or less than 1000 or more than 3000 for a
resolver, than your reference switch is positioned properly to ensure accurate,
repeatable referencing.

If the position read is outside of these ranges you can change the position of the
feedback device when the switch transitions by either moving the reference switch
or the feedback device itself. Perform the machine reference again and read the
reference switch position to see if it is now within the range.

NOTE

If in adjusting the location of the reference switch or the feedback de-
vice, you find that the result of variable 29 increases when you expect
it to decrease after performing the machine reference, move the de-
vice in the opposite direction until the reading is acceptable.

One factor to keep in mind when performing a machine reference from the ladder
with the LAD_REF function is there can be a lag time between the actual closing
of the reference switch and the software calculations. This is caused by up to 32
ms of update time and up to 200 ms of scan time. (200 ms is the maximum time
limit for one scan before a loss of scan occurs.) This could have an affect on the
repeatability of your reference especially when referencing at high velocities. The
example which follows illustrates this.

Assume an axis using resolver feedback is moving at a velocity of 50000 counts
per minute (NOTE: 50000 C/MIN = .83333 C/ms). Looking at an example with
the maximum update and scan time

(32 ms + 200 ms) * .83333 C/ms = 193.333 or 193 C

If the READ_SV function gave a reading of 1000 C for the reference switch posi-
tion, the actual position of the device when the switch closed could be up to 1193
counts (or 807 counts if referencing in the negative direction).

By using a lower velocity, the number of counts is lowered. For example, if the
velocity is 5000 C/MIN, then the count is as follows (NOTE: 5000 C/MIN =
.08333 C/ms):

(32 ms + 200 ms) * 08333 C/ms = 193.33 or 193 C

The actual position of the reference could be up to 1019 counts (981 counts if ref-
erencing in the negative direction).

When the machine reference is done using the fast input with the FAST_REF
function, the recording of the reference switch transition is not affected by what
the ladder scan is executing at the time. There is virtually no lag between the time
the reference occurs and the time it is recorded. This is a very accurate method of

Chapter 2 Function/Function Block Description 2-109

FB_CLS

referencing. The only time consideration for the fast input is a short (50 ps) turn-
on time.

Note: This function cannot be used with the stepper axis module.

FB CLS
Field Bus Close Fbinter/FB_CLS
'CHBJS(E: LS Inputs: REQ (BOOL) - enables execution (one-shot)
{REQ DONEL- SLOT (USINT) - slot number (use same slot number
entered for FB_OPN)
{SLOT FAIL}|-

I Outputs: DONE (BOOL) - set when communications with the
field bus are closed

FAIL (BOOL) - set if an error occurred
ERR (INT) - error number

- ERR

The FB_CLS function block is used to close communications with the Field Bus.
You must call the FB_OPN function block to re-establish field bus communica-
tions.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check

0 No error

1 No Fieldbus module was found at |Ensure that a Fieldbus module is installed in
the slot number entered at SLOT the correct slot.
input.

2-110 Chapter 2 Function/Function Block Description

FB_OPN

FB OPN
Field Bus Open

Fbinter/FB_OPN

_F(BJP(%PJN Inputs: REQ (BOOL) - enables execution (one-shot)

{REQ DONEL- SLOT (USINT) - slot number (3 - 13 main rack only
available)

4{SLOT FAILR

- ERR

mode.

I Outputs: DONE (BOOL) - set when Fieldbus module is in RUN

FAIL (BOOL) - set if an error occurred
ERR (INT) - error number

The FB_OPN function block is used to open communications with the field bus
placing the Fieldbus module in the RUN mode.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check
0 No error
1 No Fieldbus module was found at |Ensure that the Fieldbus module is installed in

the slot number entered at SLOT
input.

the correct slot.

No configuration file for this slot.

Ensure that you have a .UCT (configuration)
file with the same name as your .LDO file.

Chapter 2 Function/Function Block Description 2-111

FB_RCV

FB_RCV

Field Bus Receive

Fbinter/FB_RCV

SLOT ERR|-

FB_RCV Inputs: EN (BOOL) - enables execution

1N 0K = SLOT (USINT) - slot number (use same slot number as
entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error

ERR (INT) - error number

The FB_RCYV function receives all data from the configurator file indicated by Tag

names.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check

0 No error

1 No Fieldbus module was found at |Ensure that the Fieldbus module is installed in
the slot number entered at SLOT the correct slot.
input.

2-112 Chapter 2 Function/Function Block Description

FB_SND

FB_SND
Field Bus Send Fbinter/FB_SND

FB_S\D Inputs: EN (BOOL) - enables execution

1EN oK - SLOT (USINT) - slot number (use same slot number as
entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error
ERR (INT) - error number

SLOT ERR|-

The FB_SND function is used to send data indicated by Tag names in the configu-
rator file.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check

0 No error

1 No Fieldbus module was found at |Ensure that the Fieldbus module is installed in
the slot number entered at SLOT the correct slot.
input.

Chapter 2 Function/Function Block Description 2-113

FB_STA

FB_STA
Field Bus Status Fbinter/FB_STA

FBSTA Inputs: EN (BOOL) - enables execution

1N 0K = SLOT (USINT) - slot number (use same slot number as
entered for FB_OPN)
4{SLOT FAILR
ONLI Outputs: OK (BOOL) - execution completed without error
erR FAIL (BOOL) - set if an error occurred

STAT - ONLI (BOOL) - set if the Fieldbus module is communi-
cating with nodes.

ERR (INT) - number of error
STAT (DWORD) - status information

The FB_STA function allows you to check if the Fieldbus module is communicat-
ing with nodes and to check field bus status information.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check

0 No error

1 No Fieldbus module was found at |Ensure that the Fieldbus module is installed in
the slot number entered at SLOT the correct slot.
input.

The following tables define the value of status information that can appear at the
STAT output based on the double word format shown below.

MSB LSB2 LSB1 LSBO
NET_STATUS_FLAGS | NET_STATUS_CODE | IF_STATUS_FLAGS | IF_STATUS_CODE

NET_STATUS_FLAGS

NET_STATUS_FLAGS indicates various conditions related to the Fieldbus mod-
ule network interface. Each Fieldbus module supports a subset of the status flags
as appropriate.

Bit |Name Description
0 |Warning The communication error warning threshold has been exceeded.
NO_POWER |Bus power is not present.
2 [NO_BUS Bus is not connected.
3-7 (Reserved)

2-114 Chapter 2 Function/Function Block Description

FB_STA

NET_STATUS_CODE

NET_STATUS_CODE indicates the status of the Fieldbus module network inter-
face. Each Fieldbus module supports a subset of the status codes as appropriate.

Value [Name Description
00 OFFLINE Network interface is offline.
01 OFFLINE_FAULT Network interface is offline due to a network fault.

02 OFFLINE_BAD_CF [Network interface is offline due to a configuration fault
G (invalid or duplicate station address, invalid baud rate,
invalid DIP-switch data, etc.)

03 ONLINE Network interface is online, no faults detected.
04 ONLINE_FAULT Network interface is online, one or more network services
has failed.

05 ONLINE_ACTIVE [Network interface is online and is exchanging data, no
faults detected.

Any failure of a secure service is reported.

06 ONLINE_IDLE Network interface is online and is exchanging data, one or
more services is receiving an idle indication, no faults
detected.

07 ONLINE_INACTIVE [Network interface is online, one or more previously active
services has been suspended, no faults detected.

08- (Reserved)
0OFFh

Chapter 2 Function/Function Block Description 2-115

FB_STA

IF_STATUS_FLAGS

IF_STATUS_FLAGS indicates various conditions related to the Fieldbus module
end of the data exchange interface.

Bit Name Description

0 EVENT_LOST |An event was lost due to a full event queue. This flag is cleared
when the data exchange interface is closed.

1-7 (Reserved)

IF_STATUS_CODE

IF_STATUS_CODE indicates various conditions related to the Fieldbus module
data exchange interface.

Value |Name Description

00 CLOSED Data exchange interface is closed.

01 OPEN Data exchange interface is open.

02 HEARTBEAT_ |Data exchange interface is faulted due to heartbeat timeout.
FAULT (Same behavior as closed.)

03h - (Reserved)

OFFh

NOTE: FB_XXX functions can be used with either a DeviceNet or Profibus net-
work. Fieldbus is used as a generic term.

2-116 Chapter 2 Function/Function Block Description

FIND

FIND
Find String /FIND

FIND Inputs: EN (BOOL) - enables execution
1N 0K = IN1 (STRING) - STRING to search
1INt ouTk IN2 (STRING) - STRING to find
J1IN? Outputs: OK (BOOL) - execution completed without error

OUT (INT) - position

The FIND function is used to find a STRING that is contained in another STRING. “
It searches within the variable at IN1 for the first occurrence of the variable at IN2.

If the STRING is found, the position of its first character is placed into the variable

at OUT. If the STRING is not found a zero is placed in the variable at OUT.

An error occurs if:

Length of IN1 = 0O
Length of IN2 = 0
Length of IN2 > length of IN1

Example of find function

Varat IN1 VaratIN2 Varat OUT
string1string2 ring 3

Chapter 2 Function/Function Block Description 2-117

FRESPACE

FRESPACE
Free Space lo/COMM
-FR'E%MECE_ Inputs: REQ (BOOL) - enables execution (One-shot)
{rREQ DONEL NAMZ (STRING) - a string containing the complete
pathname
{NAMZ FAIL}
eral Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0
aryt
FAIL (BOOL) - energized if ERR # 0

not energized if ERR =0

ERR (INT) - 0 if data transferred successfully
0 if data transfer unsuccessful

QTY (DINT) - number of bytes available on the RAM-
DISK or FMSDISK

See Appendix B in the software manual for error codes.

The FRESPACE function block allows you to read at the QTY output how many
bytes of memory are available on the RAMDISK or FMSDISK.

At the NAMZ input, enter the following to check the available free space on the
RAMDISK or FMSDISK:

For RAMDISK RAMDISK:$00
For FMSDISK FMSDISK:$00

FU2LU

Feedback Units to Ladder Units

Motion/DATA

FUZLU

{EN
1AXTS
1

oK
Ly

Inputs:

Outputs:

EN (BOOL) - enables execution

AXIS (USINT) - axis number (servo or digitizing)
FU (DINT) - feedback unit value to convert

OK (BOOL) - execution completed without error
LU (DINT) - ladder unit value

The FU2LU function converts the feedback unit value at FU to its equivalent lad-
der unit value and places the result at LU.

2-118

Chapter 2 Function/Function Block Description

GE

Greater Than or Equal To Evaluate /GE

GE Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL or STRUCT) - value to be
compared
4INT OUT
e IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are greater than or
equal to successive values

The GE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17
If IN1 > 1IN2 > IN3 >> IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

Chapter 2 Function/Function Block Description 2-119

GETDAY

GETDAY
Get Day Xclock/GETDAY

GETDAY Inputs: EN (BOOL) - enables execution

JEN 0K |- WEEK (BOOL) - determines day of week or year

WEEK DAY = Outputs: OK (BOOL) - execution completed without error
DAY (UINT) - value extracted

The GETDAY function outputs the day of the week or the day of the year.

If power flow exists at WEEK, the (number of) the day of the week is output to the
variable at DAY. The numbers O - 6 correspond to Sunday - Saturday.

If power flow does not exist at WEEK, the (number of) the day of the year is out-
put to the variable at DAY. The numbers are from 1 - 365 or 366.

2-120 Chapter 2 Function/Function Block Description

GR_END

GR_END
Gear End Motion/RATIOMOV

GR enp | Imputs: EN(BOOL) - enables execution (One-shot)
1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The GR_END function ends the ratio gear move. When it is called in the ladder,
the slave axis will stop moving immediately with no ramping.

A ratio gear move may also be stopped by aborting the move:

¢ with no move in the queue. The ratio gear move will ramp down at the
default deceleration rate and motion will stop.

OR

¢ with another move in the queue. The velocity will ramp to the new move
rate and continue with the new move or the velocity will step and continue
if a master/slave move is next.

NOTE: A gear ratio move may also be ended with a SYN_END function. Itis
possible to specify the point at which the slave should drop out of synchronization
with SYN_END.

Chapter 2 Function/Function Block Description 2-121

GT

GT
Greater Than Evaluate/GT
GT Inputs: EN (BOOL) - enables execution
1N 0K |- IN1 (ANY except BOOL or STRUCT) - value
I oot to be compared
e IN2 (same type as IN1) - value to be compared
T Outputs: OK (BOOL) - execution completed without
error
OUT (BOOL) - indicates if values are greater
than successive values
The GT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.
For the inputs at IN1, IN2, ...IN17
If IN1 > IN2 > IN3 > ...> IN17, the coil at OUT is energized.
Otherwise the coil at OUT is not energized.
2-122 Chapter 2 Function/Function Block Description

HOLD

HOLD
Feed Hold

Motion/MOVE_SUP

HOLD

4 AXIS

oK

Inputs:EN (BOOL) - enables execution (Typically one-shot)
AXIS (USINT) - identifies axis (servo)
Outputs:OK (BOOL) - execution completed without error

The HOLD function tells the iterator to stop iterating the current move on the spec-
ified axis. It will ramp down at the set decel rate. This function works with the dis-
tance, velocity, and position moves.

Chapter 2 Function/Function Block Description 2-123

HOLD _END

HOLD END
Feed Hold End Motion/MOVE_SUP

hop eno | Inputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The HOLD_END function tells the iterator to resume iterating the current move
on the specified axis. It will ramp up at the set accel rate. This function works with
the distance, velocity, and position moves.

It works in conjunction with the feed hold function listed previously.

2-124

Chapter 2 Function/Function Block Description

INSERT

INSERT
Insert String/INSERT
INSERT | Inputs: EN (BOOL) - enables execution
{EN 0K = OUT (STRING) - output STRING
10UT---0uT = IN1 (STRING) - STRING to insert into
JIN1 IN2 (STRING) - STRING to insert
4{IN2 P (INT) - position after which insert occurs
4P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The INSERT function is used to insert a STRING into another STRING. The vari-
able at IN2 is placed within the variable at IN1, starting after the position specified
by P. The resulting STRING is placed into the variable at OUT.

The variable at IN2 must be unique from the variable at OUT, or an error will
occur.

An error will also occur if:

P > 255

P > length of IN1

IN2 = OUT

Length of IN1 + length of IN2 > length of OUT

Examples of insert function
var at IN1 value at IN2 value at P var at OUT

stringstring2 | 6 string I string?2
stringstring2 1 0 Istringstring2

Chapter 2 Function/Function Block Description 2-125

INT2DINT

INT2DINT
Integer to Double Integer Datatype/INTCONV

INT2DINT Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (INT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The INT2DINT function changes the data type of the value at IN from an integer
to a double integer. The sign of the integer is extended into the leftmost 16 bits of
the double integer. The result is placed in the variable at OUT.

2-126 Chapter 2 Function/Function Block Description

INT2LINT

INT2LINT
Integer to Long Integer Datatype/INTCONV

inTzLinT | Inputs: EN (BOOL) - enables execution

JEN oK IN (INT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The INT2LINT function converts an integer into a long integer. The sign bit of the
INT is extended into the leftmost 48 bits of the long integer. The result is placed in
a variable at OUT

Chapter 2 Function/Function Block Description 2-127

INT2SINT

INT2SINT
Integer to Short Integer Datatype/INTCONV

inT2sint| Inmputs: EN (BOOL) - enables execution

JEN 0K |- IN (INT) - value to convert

1IN ouTl=Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The INT2SINT function changes the data type of the value at IN from an integer to
a short integer. The leftmost 8 bits of the integer are truncated. The result is
placed in the variable at OUT.

2-128

Chapter 2 Function/Function Block Description

INT2UINT

INT2UINT
Integer to Unsigned Integer Datatype/INTCONV

intouint| Imputs: EN (BOOL) - enables execution

JEN 0K |- IN (INT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (UINT) - converted value

The INT2UINT function changes the data type of the value at IN from an integer
to an unsigned integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-129

INT2WORD

INT2WORD
Integer to Word Datatype/INTCONV

INT2WORD Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (INT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The INT2WORD function changes the data type of the value at IN from an integer
to a word. The result is placed in the variable at OUT.

2-130

Chapter 2 Function/Function Block Description

IN_POS?

IN POS?
In Position Motion/MOVE_SUP

N pos? | Imputs: EN (BOOL) - enables execution
JEN oKL AXIS (USINT) - identifies axis (servo or time)
AXIS INPS| Outputs: OK (BOOL) - execution completed without error

INPS (BOOL) - indicates if the axis is in position if it
is within the bandwidth established in setup and
including any filter following error and the propor-
tional gain position, and both queues are empty

The IN_POS? function asks the question “Are both the active and the next que
empty and is the position within the setup parameter?” If the output at INPS is set,
the axis is in position. If not, the axis is not in position.

For a TIME axis, the output at INPS will be set if a Distance, Position, or Velocity
move is not in progress. -

Chapter 2 Function/Function Block Description 2-131

10_CFG

10_CFG
10 Configuration lo/10_CFG
B IgNgEG_ Inputs: REQ (BOOL) - enables execution
{REQ DONEL FUNC (USINT) - number of function desired
JFUNC FAILL NUM (USINT) - number of missing blocks in DATA
INUM ERRL DATA (BYTE ARRAY) - array of missing blocks
4 DATA L Outputs: DONE (BOOL) - set if the block I/O system is config-
1 | ured
FAIL (BOOL) - set if the block I/O system is not con-
figured

ERR (UINT) - error number if function failed

The 10_CFG function block is used to initialize the configuration of the block I/O
system, to evaluate the block I/O system, and to inhibit the block I/O system
allowing you to add/remove blocks. Enter one of the following numbers in the
FUNC input to select what the function block will do:

FUNC Input Function

Number
| Initialize the block I/O configuration
2 Check the status of the block I/O system
3 Inhibit the block 1/0 system

State of the DONE, FAIL and ERR outputs based on FUNC input

FUNC #

DONE (if set) IFAIL (If set) ERR (If FAIL is set)

I (Initiate)

Configured Cannot be configured Code for first I/O module that
cannot be configured

2(Evaluate) |Configured and |Cannot be configured or is [Code for first /O module that

operational not operational cannot be configured or is not
operational
3(Inhibit) NA Not operational 0

The error number at the ERR output can be a master rack diagnostic code (22_) or
an expansion rack diagnostic code (3_ _) where the _ indicate the number of the
module. Note: Only the -01 or later block I/O modules are capable of changing
their initial configuration. Any block I/O modules in your system with a part num-
ber ending with -00 cannot be used with this function block to change the configu-
ration of modules (function 1).. These -00 modules must be addressed
consecutively in the hardware declarations starting with "1" and all declared
blocks must be physically in the system before scanning can occur.

2-132

Chapter 2 Function/Function Block Description

10_CFG

The I0_CFG function block is used in conjunction with the Ladder Configurable
I/0 check box on the hardware declarations page of the main ladder. If that Enable
box is checked then the main ladder will no longer indicate a blink code when an
I/O configuration error or failure is detected. This function block provides that
blink code to the ladder. If the operator needs that code, then the ladder must make
it available to the operator. Otherwise, the operator can use PiCPro to do an
"Online | Status..." to get the error information in the Run Time Failure descrip-
tion (a message that indicates which module or connection has failed).

When the programmer checks the Ladder Configurable I/O Enable box, a dialog is
immediately displayed reminding the programmer of the I/O_GFG function block
in the ladder. Remember that with the Ladder Configurable I/O box enabled, the
CPU will continue to scan with an I/O failure. Depending on the I/O failure, some
or all of the system I/O modules will no longer function. It is strongly recom-
mended that when this feature is enabled the ladder must have the I0_CFG func-
tion block so that the ladder can react to the 1/O failure.

IMPORTANT -

If the ladder Configurable I/O box is enabled on the Hardware Decla-
rations page, the ladder will continue to scan even if a run time I/O
failure occurs. If the failure occurs in either Remote I/O (in expansion
racks) or in block I/0, the main rack I/O will continue to function. If
the 1I/O failure occurs in the main rack then all I/O will be non-func-
tional. Note that this applies only to discrete I/O. A communications
module will not be affected by this status so the CPU is still capable
of communicating with other processors unless it is the communica-
tions module itself that failed.

With the Ladder Configurable I/O box enabled, it is the main ladder’s
responsibility to use the IO_CFG function block to obtain the state of
the I/O system. Based on the state of the I/O system, the ladder must
take the appropriate actions.

If the FUNC input is 1 and REQ is one-shot then the ladder is telling the CPU
which block modules are missing. The DATA input is a byte array that indicates
which block I/O modules are missing in the configuration; NUM is the number of
missing blocks in DATA. The last item in the array will have a value of 0. For
example, if the 4th block will be missing from however many blocks are normally
there, the array would consist of 4, 0 and NUM would be 1. A non-zero value for
ERR (and FAIL set) indicates that a failure exists in the I/O system. If the FAIL is
set then the set of missing blocks apparently did not result in a valid block 1/O con-
figuration based on the ladder’s hardware declarations.

When using the FUNC value of 1, the ladder’s hardware declarations will include
all of the block I/0O modules that can exist in any configuration. For a specific con-
figuration, the DATA array indicates which of those blocks are currently missing.

Chapter 2 Function/Function Block Description 2-133

10_CFG

If a machine has one variation with block 4 missing but another variation has
blocks 3, 5, and 8 missing, then the DATA array is configured for the correct list of
missing blocks when the IO_CFG REQ is made. In the first case, the DATA array
would have 4, 0 and NUM is 1. In the second case, the DATA array would have 3,
5, 8,0 and NUM is 3. The DATA array can be sized for the longest list of missing
modules and the NUM value indicates the number of blocks in the list at the time
of the request.

If the FUNC input is 2 then the ladder is asking the CPU to provide the state of the
I/0O system. A non-zero value for ERR (and FAIL set) indicates that a failure exists
in the I/O system. This value is the blink code that would be sent by the CPU if this
PiCPro feature is not used. If the FAIL is set then the ladder must react appropri-
ately to the failure in its I/O system.

For both FUNC 1 or 2, the ERR output is the blink code value. The default anima-
tion display for a UINT variable will be decimal. By entering an initial value of
16#0 for this variable, the animation will display the value in hexadecimal format.
For example, if the first block I/O module failed or was not connected, the ERR
output would be shown as 929 in decimal or 3A1 in hexidecimal (depending on an
initial value, if any). The 3A1 hex value is read as 3-10-1, which corresponds to a
blink code of 3-10-1. This blink code sequence indicates the first block I/O mod-
ule. To make this important data easier to reference using animation, the initial
value of 16#0 for the ERR output variable is recommended.

If the FUNC input is 3 then the remote I/O system is inhibited (for all block I/O
modules and any remote expansion racks). The main rack I/O remains operational
in this state. Block I/O modules may be moved or removed without causing an I/O
failure. The FAIL output is set indicating the I/O system is not operational but the
ERR output will be zero. To enable the I/O system after inhibiting the block 1/0
chain in this manner, the IO_CFG must be triggered (with REQ) with the FUNC at
1 so that the block I/O system is configured again.

If the FUNC input is 1 then the block I/O modules that are in the list as missing
blocks really must be missing. If the modules are actually connected, then the
CPU will try to reconfigure them to subsequent locations (based on the DATA
array). This request can result can result in an odd ERR value because the missing
modules are not really missing. If the correct blocks are connected, do not try to
configure them as missing.

2-134

Chapter 2 Function/Function Block Description

IPACCEPT

IPACCEPT
(IP Accept) lo/SOCKETS
VWIE —— Inputs: REQ (BOOL) - requests execution (One-shot)
TPACCEPT puts: q
{REQ DONEL HNDL (UINT) - socket handle from IPSOCK function
block
{HNDL FAILF
l1p7- 1071 IPZ (STRING) - holds the remote node IP address
| eppl Outputs: DONE (BOOL) - execution completed without error
1 HNDL L FAIL (BOOL) - energized if and only if err is # 0

IPZ (STRING) -same area as IPZ input, with zero ter-
minated string inserted

ERR (INT) - error number if FAIL is set

HNDL (UINT) - new socket handle for connection -

The IPACCEPT function block is used by the TCP server to accept incoming con-
nect requests. It is used after the IPSOCK and the IPLISTEN function blocks. It
removes the next connect request from the queue (or waits for one), creates a new
socket for the connection, and returns a handle to that new socket.

The TCP/IP stack will check for an available connect request assigned to the
socket specified in HNDL. If a request is found, a new socket will be created. If no
request is found, the scan will continue until a request is found.

If a new socket cannot be created, the scan will continue until there is a socket
available.

The Host node address will be returned at IPZ.

Once the new socket is no longer needed, the application must call the IPCLOSE
function block in order to free that socket.

Chapter 2 Function/Function Block Description 2-135

IPCLOSE

IPCLOSE
(IP Close) lo/SOCKETS
—NAME —— . _
rrclose | Imputs: REQ (BOOL) - requests execution (One-shot)
1REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAIL}

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

ERR

The IPCLOSE function block is used by an application to terminate a
communication session for the socket specified at HNDL. Any unread data at a
socket will be discarded. Once the IPCLOSE function block is called, the socket
handle is no longer valid and free to be reused by a subsequent IPSOCK or
IPACCEPT call.

2-136

Chapter 2 Function/Function Block Description

IPCONN

IPCONN
(IP Connection) lo/SOCKETS
—WWE —— Inputs: REQ (BOOL) - i -sh
TPCONN puts: Q() - requests execution (One-shot)
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF
HOSZ (STRING) - name or address of the target host,
{HOSZ ERR} .
zero terminated
4 PORT
PORT (UINT) - port number on the target host

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris # 0
ERR (INT) - error number if FAIL is set

The IPCONN function block is used by a client application to connect to a remote -

server by specifying the remote endpoint address for a socket. If used with a TCP
socket, the three-way TCP handshake is initiated. If used with a UDP socket, it
simply fills in the target endpoint (address and protocol port).

The TCP/IP protocol stack will obtain the endpoint address for the named host and
connect to the requested protocol port (if the preceding call to the IPSOCK func-
tion block had the TYPE set to 1 for TCP).

In the absence of DNS/DHCP, the TCP/IP protocol stack will keep its own route
table to nearby neighbors for peer-to-peer connections.

Chapter 2 Function/Function Block Description 2-137

IPHOSTID

IPHOSTID

(IP Host Identification) lo/SOCKETS
_I'F,'ﬁ"AETF Inputs: REQ (BOOL) - requests execution (One-shot)
{REQ DONEL SLOT (USINT) - slot number of the resource
1SLOT FAILE CHAN (USINT) - channel number for this NAME
JCHAN ERRL NAMZ (STRING) - name of this resource, zero termi-
Iz nated

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

The IPHOST function block is optional and not required to be used. It assigns a
name to a communication resource. If there are multiple communication resources
in use, the IPHOST function block must be called for each one so that a different
name is assigned to each resource.

The SLOT input is used to select the physical location of the TCP/IP communica-
tion module to use. There may be up to two in the system.

The CHAN input is used to select one of several possible communication
resources. The actual assignments will be an on-going, upward compatible assign-
ment of numeric assignment to a physical communication resource.

Channel Description

0 Default ethernet connection (currently BNC)
1 10-Base-T connection (twisted pair)

2 10-Base-5 connection (15-pin AUI)

3 10-Base-2 connection (BNC coax)

4 Modem port

The NAMZ input is used to assign a TCP/IP address to this resource. If a Domain
Name Server (DNS) or DHCP is in operation, a name may be inserted. Otherwise,
an IP address in dotted decimal notation is required. This input variable must be a
zero terminated string. The loop-back resource shall be predefined and named
localhost at address 127.0.0.1. Implementation of the localhost resource still
requires a TCP/IP protocol stack running on a communication module or ethernet
module.

2-138 Chapter 2 Function/Function Block Description

IPIP2NAM

IPIP2NAM
(IP IP to Name) lo/SOCKETS
WIE —— [nputs: REQ (BOOL) - requests execution (One-shot)
IPNAM2IP puts: q
{REQ DONEL IPZ (STRING) - IP address, zero terminated
11P7 FAILL CNT (INT) - Size of the HOSZ buffer
JCNT ERRL HOSZ (STRING) - receives the host name
{H0SZ-HoSzt+ Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set
HOSZ (STRING) - receives the host name

The IPIP2NAM function block allows the application to obtain the host name
when you supply the IP address.

NOTE: You must have a DNS (Domain Name Server) configured in the system
and available on the network to use this function block.

Chapter 2 Function/Function Block Description 2-139

IPLISTEN

IPLISTEN
(IP Listen) lo/SOCKETS
VWIE —— Inputs: REQ (BOOL) - requests execution (One-shot)
IPLISTEN puts: q
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF
lwe el QUE (UINT) - depth of queue (maximum of 5)
Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

The IPLISTEN function block is used to make a socket passive (i.e., ready to
accept incoming connect requests). It binds the socket defined in HNDL to the port
defined by the protocol port (PROT) when the socket is created with the IPSOCK
function block. For UDP it binds and for TCP it binds and also prepares for con-
nects. It also sets the size of a queue used to buffer multiple connect requests while
a server processes the first one.

The socket specified in HNDL is prepared to service remote requests for a TCP
connection. The number of connect requests that may be buffered is defined by the
QUE input. The IPACCEPT function block can be used to remove connect
requests from the queue.

2-140 Chapter 2 Function/Function Block Description

IPNAM2IP

IPNAM2IP

(IP Name to IP) lo/SOCKETS
_I,P’IANXIGZF Inputs: REQ (BOOL) - requests execution (One-shot)
{REQ DONEL HOSZ (STRING) - name of host, zero terminated
1HOSZ FAILL CNT (INT) - size of the HOSZ buffer
JCNT ERRL IPZ (STRING) - receives the IP address
{IPZ---1Pz} Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set
IPZ (STRING) - IP address, zero terminated

The IPNAM2IP function block allows the application to obtain an IP address when
you supply the host name.

NOTE: You must have a DNS (Domain Name Server) configured in the system
and available on the network to use this function block.

Chapter 2 Function/Function Block Description 2-141

IPREAD

IPREAD
(IP Read) lo/SOCKETS
—WWE —— Inputs: REQ (BOOL) - enabl i -
TPREAD puts: Q() - enables execution (One-shot)
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF .
lont emal CNT (INT) - size of the buffer
18UrR BUFRL BUFR (MEMORY AREA) - buffer to contain data
lorst Actl MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
1P MEMBER

OFST (UINT) - offset into buffer for data
PRI (BOOL) -priority of the function block

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set
BUFR (MEMORY AREA) - same area as BUFR input
ACT (INT) - number of bytes stored in buffer

The IPREAD function block allows you to read input data sent between a client
function and a remote server. The data content is a stream of octets. As data is
received by the TCP/IP stack, it is appended to this stream. A read of this stream
will return the CNT number of octets or the entire stream if it contains fewer octets
than CNT. The IPREAD function block is used with a TCP or UDP (connected)
socket. NOTE: When the socket is a UDP (connectionless) socket, use the
IPRECYV function block to get a packet of octets from a UDP socket.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task.

The ACT output will not always equal CNT and nothing can be learned if they are
not equal. ACT = 0 also means nothing.

2-142

Chapter 2 Function/Function Block Description

IPRECV

IPRECV
(IP Receive) lo/SOCKETS
—WWE —— Inputs: REQ (BOOL) - i -
TPRECY puts: Q() - requests execution (One-shot)
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF _
lont emal CNT (INT) - size of buffer area
18UrR BUFRL BUFR (MEMORY AREA¥*) - buffer to contain mes-
sage
{0FST ACT} .
17 1P7 OFST (UINT) - offset into message
IPZ (STRING) - place to receive node IP address
{PRI PORT|

PRI (BOOL) - priority of the function
Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0 -
ERR (INT) - error number if FAIL is set
BUFR (MEMORY AREA¥*) - same area as BUFR
Input
ACT (INT) - number of bytes stored in BUFR

IPZ (STRING) - same as IPZ input but holds the IP
address of the sending node

PORT (UINT) - port number in sending node

*MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

The IPRECYV funtion block is used to get a packet of data sent between a client
function and a remote server. The data content is a complete packet of octets.

If there is a UDP packet waiting on the TCP/IP stack, this packet will be returned.
If there is no packet available, this function block will wait indefinitely until a
packet is received. Any time-out function must be implemented in the application
software. The IPRECV function block may be cancelled by closing the socket.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task

The IPRECYV function block is used with a UDP (connectionless) socket. NOTE:
When the socket is a TCP or UDP (connected) socket, use the IPREAD function
block.

Chapter 2 Function/Function Block Description 2-143

IPSEND

IPSEND
(IP Send) lo/SOCKETS
—NVWE ~— Inputs: REQ (BOOL) - i -
TPSEND puts: Q() - requests execution (One-shot)
{rEQ DonEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF
laurr emal BUFR (MEMORY AREA) - buffer containing data-
gram
4{CNT
MEMORY AREA is a STRING, ARRAY, STRUC-
OFST TURE, ARRAY ELEMENT, or STRUCTURE
4NAMZ MEMBER
4 PORT CNT (INT) - size of buffer
{PRI OFST (UINT) - offset into message
NAMZ (STRING) - name or address of target node,
zero terminated
PORT (UINT) - port number in target node
PRI (BOOL) - priority
Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

The IPSEND function block is used to send data between client function and
remote servers. The data content is a packet of octets.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task.

The IPSEND function block is used with a UDP (connectionless) socket. NOTE:
When the socket is a TCP or UDP (connected) socket, use the IPWRITE function

block.

2-144

Chapter 2 Function/Function Block Description

IPSOCK

IPSOCK
(IP Socket) lo/SOCKETS
—NVWE —— Inputs: REQ (BOOL) - i -
TPSOCK puts: Q() - requests execution (One-shot)
{rEQ DonEL TYPE (USINT) - 0=UDP CLIENT, 1 =TCP, 4 =
UDP SERVER
{TYPE FAILF
lerom emal PROT (UINT) - protocol port number
Isiot oot L SLOT (USINT) - slot number
Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set
HNDL (UINT) - unique socket handle

The IPSOCK function block is used to obtain a data structure and assign it to a -

specific communication resource. When the REQ input is set, the input parameters
will be passed to the TCP/IP protocol stack defined by the SLOT input. The func-
tion will then wait for a response to the request. This may take multiple scans.

If a socket data structure is allocated, the DONE output will be set. The HNDL
output can then be used for further operations with this socket data structure. If an
error occurs, the FAIL output will be set and the ERR output will be set to the
error number.

The type of service (TCP, UDP Client, or UDP Server) and Protocol (PROT) are
required to bind the protocol to the socket. NOTE: Bind is done by the IPLISTEN
function block using the data entered in the TYPE and PROT inputs of the
IPSOCK function block.

The TCP/IP community assigns protocols via RFC 1060 (Assigned Numbers).

NOTE

If ERR has a value of 1005 (TCP/IP Failure) a ladder program change
is needed. A ladder with Ethernet functions loaded on an MMC for
PC requires the IPSTAT function to reset the connection to the host.
The other PiC CPU models have an external Ethernet module (with
it’s own TCP/IP stack) and do not require IPSTAT.

Chapter 2 Function/Function Block Description 2-145

IPSTAT

IPSTAT
IP Status lo/SOCKETS

1psTaT | Imputs: EN (BOOL) - enables function

1N 0K = RES (BOOL) - indicates reset Blue Screen of Death
(BSOD) status is requested

Outputs: OK (BOOL) - Indicates OK status of the Windows NT
resources

4{RES

This function should be called on a periodic basis with the RES input not ener-
gized whenever it is desired to know the status of the resources provided by the
Windows NT operating system. Should these resoureces become unavailable the
OK ouput will not be energized. If the resources are available, the OK ouput will
be energized.

After a loss of resources, it will be necessary to call this function with the RES
input energized. This will re-arm the detection of the BSOD. The reset functional-
ity is provided to allow the ladder application to ensure that all required applica-
tion code that requires the detection of the loss has seen the loss of resources.
Furthermore, it allows the application ladder to ensure that all appropriate actions
have been completed before the BSOD flag is reset. Therefore, it is recommended
to wait until all TCP/IP function blocks have executed at least once before a reset
is requested. This "wait" could be simply be implemented by use of a timer that
ensures that all tasks containing TCP/IP function blocks have executed, or by con-
tacts indicating that all appropriate actions have been taken and that active TCP/IP
function blocks have terminated.

Because the MMC for PC may be run regardless of the state of the Windows NT
operating system or the power status of the PC from which it is run, the status out-
put OK may or may not be energized upon the first scan of the application ladder.
It cannot be assumed that the status is OK initially. If the status is not OK, the
application ladder is required to perform the RESET functionality of this function.

This function is specifically for use on the MMC for PC. However, it can be used
in any other 486 based PiC without causing any problems. In this case the status
will always be OK, regardless of the status of the TCP/IP stack.

2-146 Chapter 2 Function/Function Block Description

IPWRITE

IPWRITE
(IP Write) lo/SOCKETS
WE —— Inputs: REQ (BOOL) - requests execution (One-shot)
TPWRITE puts: q
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF
laurr emal BUFR (MEMORY AREA) - buffer containing data
lorst actl MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
CNT MEMBER
PRI OFST (UINT) - offset into the buffer for data

CNT (INT) - number of bytes in the buffer

PRI (BOOL) - priority of the function
Outputs: DONE (BOOL) - execution completed without error -
FAIL (BOOL) - energized if and only if erris # 0

ERR (INT) - error number if FAIL is set
ACT (INT) - number of bytes appended

The IPWRITE function block is used to send data between client function and
remote servers. The data content is a sequence of octets. That sequence will be
appended to the stream of any other octets that have previouly been sent via this
function block.

The PRI input sets the priority level at which the function will be handled. A high
priority is indicated when PRI is set. To affect a high priority, the function block
should be in a ladder task.

The IPWRITE function block is used with a TCP or UDP (connected) socket.

Note: When the socket is a UDP (connectionless) socket, use the IPSEND
function block.

Chapter 2 Function/Function Block Description 2-147

IPWRITE

Overview of Using the Ethernet -TCP/IP Function Blocks

The following procedures summarize the various ways of using the IP function
blocks to accomplish certain operations with TCP or UDP.

Creating a TCP Server
The following procedure is used to setup a TCP server.

1. Call the IPSOCK function block. Enter a "1" (TCP) in the TYPE input of the
IPSOC function block. this creates a data structure that will be used to associate
this server with a specific TCP based protocol.

2. Call the IPLISTEN function block. This marks the socket as used by the server.
Incoming connect requests will be buffered up to the depth of the queue. They
are removed by an accept request.

3. Call the IPACCEPT function block. This obtains a new socket that can be
passed to a server TASK or used by the server in the application. The IPZ value
may be used to determine who issued the connect request.

4. When the server is done using [IPREAD and IPWRITE function blocks, the
IPCLOSE function block should be called to free the new socket that was cre-
ated.

5. Steps 3 and 4 can then be repeated. Step 3 can be called again before step 4 is
called if multiple connections are required. However it is the application’s
responsibility to make sure that each server uses the correct socket.

6. Once the ladder decides that the socket created by the IPACCEPT function
block is no longer required, call the IPCLOSE function block to free this socket.

7. Also, once the ladder decides that the server is no longer required, the IPCLOSE
operation should be called to free the original socket obtained in step 1.

Creating a TCP Client

The following procedure is used to setup a TCP client connection to a server. The
server must already be running for the operation to work.

1. Call the IPSOCK function block. Enter a “1” (TCP) in the TYPE input of the
IPSOCK function block. This creates a data structure that allows the client to
use a specific protocol.

2. Call the IPCONN function block. This connects the client with the requested
server on the requested node.

3. Call the IPREAD and IPWRITE function blocks to transfer data between the
client and the server.

4. When done transferring data, call the IPCLOSE function block to free the
socket obtained in step 1.

2-148 Chapter 2 Function/Function Block Description

IPWRITE

Creating a UDP Server (Connectionless)

The following procedure is used to setup a UDP server.

1. Call the IPSOCK function block. Enter a “4” (UDP Server) in the TYPE input
of the IPSOCK function block.This creates a data structure that will be used to
associate this server with a specific UDP based protocol.

2. Call the IPLISTEN function block.

3. Call the IPRECV function block. This provides a buffer that an incoming data-
gram can be read into. Upon receipt of a datagram, the response (if any) may be
generated and sent using the IPSEND function block. The sending node name
and port (IPZ and PORT) are available to be used in a response.

4. Call the IPSEND function block if necessary and return to step 3 or go to step 5.

5. When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

Creating a UDP Client (Connectionless)

The following procedure is used to setup a UDP client.

1. Call the IPSOCK function block. Enter a “0” (UDP Client) in the TYPE input of
the IPSOCK function block. This creates a data structure that will be used to
associate this client with a specific UDP based protocol.

2. Call the IPSEND function block with a message to be sent to the server.

3. Call the IPRECV function block if a response is expected. Go back to step 2 or
on to step 4. If a time-out occurs, decide whether to call the [IPRECV function
block again.

4. When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

NOTE: If there are multiple messages in transit, UDP clients and servers are not guar-
anteed that messages will be received or received in the same order as sent.

UDP Client (Connected)

1. Call the IPSOCK function block. Enter a “0” (UDP Client) in the TYPE input of
the IPSOCK function block.

2. Call the IPCONN function block to connect the client to the server.

3. Call the IPREAD and IPWRITE function blocks to read and write data to the
Server.

The UDP server is implemented in the same manner as a connectionless UDP

server (see above).
NOTE

The following books may be helpful as references when working with TCP/IP:

e Comer, D.E. (1991), Internetworkinging with TCP/IP Vol.I: Principals, Protocols, and Architecture. Pren-
tice-Hall, Englewood Cliffs, New Jersey. ISBN 0-13-468505-9

e Comer, D.E. (1993), Internetworking with TCP/IP Vol. I1I: Client-Server Programming and Applications.
Prentice-Hall, Englewood Cliffs, New Jersey. ISBN 0-13-474222-2

Chapter 2 Function/Function Block Description 2-149

IPWRITE

Ethernet-TCP/IP Errors

The following errors can be reported our of the ERR output on the IPXXXX function blocks.

ERR# |Description ERR# |Description

0 No error 40 Destination address required

1 Not owner 41 Protocol wrong type for socket

2 No such file or directory 42 Protocol not available

3 No such process 43 Protocol not supported

4 Interrupted system call 44 Socket type not supported

S 1/0O error 45 Operation not supported on socket

6 No such device or address 46 Protocol family not supported

7 Arg list too long 47 Address family not supported

8 Exec format error 48 Address already in use

9 Bad file number 49 Can’t assign requested address

10 No children 50 Socket operation on non-socket

11 No more processes 51 Network is unreachable

12 Not enough core 52 Network dropped connection on reset

13 Permission denied 53 Software caused connection abort

14 Bad address 54 Connection reset by peer

15 Directory not empty 55 No buffer space available

16 Mount device busy 56 Socket is already connected

17 File exists 57 Socket is not connected

18 Cross-device link 58 Can’t send after socket shutdown

19 No such device 59 Too many references: can’t splice

20 Not a directory 60 Connection timed out

21 Is a directory 61 Connection refused

22 Invalid argument 62 Network is down

23 File table overflow 63 Text file busy

24 Too many files open 64 Too many levels of symbolic links

25 Not a typewriter 65 No route to host

26 File name too long 66 Block device required

27 File too large 67 Host is down

28 No space left on device 68 Operation now in progress

29 Illegal seek 69 Operation already in progress

30 Read-only file system 70 Operation would block

31 Too many links 71 Function not implemented

32 Broken pipe 72 Operation cancelled

33 Resource deadlock avoided ~ |[1000 |There is a non-zero terminated string which
requires zZero termination.

2-150 Chapter 2 Function/Function Block Description

IPWRITE

34 No locks available 1001 ([There is a CNT input which is too large.

35 Unsupported value 1002 |The SLOT number requested does not contain
an Ethernet board.

36 Message size 1003 (Either the firmware does not support TCP/IP or
there is no Ethernet board in the rack.

37 Argument too large 1004 [The IPZ buffer is too small.

38 Result too large

Chapter 2 Function/Function Block Description 2-151

LAD_REF

LAD REF

Ladder Reference (Machine Reference) Motion/REF

LAD REF Inputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies axis to be referenced (servo
or digitizing)

{AXIS QUEF

1pLUs PLUS (BOOL) - indicates direction of motion to refer-
ence switch

+{RATE
RATE (UDINT) - feedrate at which motion occurs

1M (entered in LU/MIN)

40PTN

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when ref-
erence switch is set. It is entered in LU. If DIM is out-
side the range of -536,870,912 to 536,870,911 FU, the
OK will not be set.

OPTN (WORD) - provides referencing options

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - queue number for reference move

The ladder reference is a machine reference done from the ladder. It will cause a
servo axis to move in the direction (PLUS) and at the feedrate (RATE) specified to
the reference switch* until the REF_END function is called in your ladder pro-
gram. In your ladder logic, the closing of the reference switch should enable
REF_END.

When the switch closes, the position of the axis is recorded based on the nearest
null of the resolver or the next index mark of the encoder. The value entered at
DIM is assigned to this position.

If the axis is a digitizing axis or if ‘no motion’ has been selected at OPTN (see
below), this function does not cause motion. You must use other methods of mov-
ing the axis to the reference switch. The inputs PLUS and RATE are ignored when
no motion is selected.

The ladder reference monitors the axis until the REF_END function is called in
your ladder program. In contrast, a fast reference (see FAST_REF) monitors the
axis until a fast input on the feedback module occurs.

When using a SERCOS axis, the function block SCA_RFIT must be called and
completed successfully prior to calling the LAD_REF function.

NOTE: If an encoder is the feedback device, the axis will continue to move after
the switch closes until the next index mark is seen.

2-152 Chapter 2 Function/Function Block Description

LAD_REF

The OPTN input provides the following options:

Option

Binary value Hex value

Ignore index/null 00000000 00000001 0001
No motion 00000000 00000010 0002

If no option is desired, enter a “0.”

*See FAST_REF function for information on setting up a reference switch.

Option inputs

Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark of
an encoder or the null of a resolver during the reference cycle. If bit O is set to “1,”
the reference position assigned by DIM will be assigned to the position the axis is
at when the fast input makes its transition.

With an encoder, the axis will stop immediately after the fast input transitions.
The axis does not continue movement until the index mark is reached. NOTE:
This makes the reference switch position given with the READ_SV function

invalid.

With a resolver, the reference switch position available with the READ_SV func-
tion is valid.

No motion

The no motion option allows a reference to occur without any motion. The axis is
put into a mode whereby it is watching for the conditions of a reference cycle.

Even though no move is placed in the queue, a queue must be available. A move
will be initiated by the ladder following the reference cycle.

Once the call is made, the reference complete flag goes low until the reference
switch input occurs and the index mark (unless “ignore index” option is active) is
received. The reference complete flag goes high once these events occur and the
axis position takes on the reference value at DIM.

If the move type is VEL, RATIO_GR, LAD_REF, or FAST_REF, the new axis
position assigned by the no-motion reference has no effect on the move itself.
With a DISTANCE move, the actual distance covered will be the same. If a no-
motion reference occurs during a position move, the endpoint will be reached.

If a no-motion reference is used during a RATIO_PRO move, the lock on point of
the slave axis to the master axis may be undefined. This is not recommended.

Note:

A ladder reference can also be performed on a digitizing axis. You must
cause the axis to move and the fast input to occur. Use variable 29 with
the READ_SV function to read the reference switch position.
REF_DNE? can also be used with digitizing axes. This function cannot
be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-153

LE

LE
Less Than or Equal To Evaluvate/LE
L Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL or STRUCT) - value
I oot to be compared
N IN2 (same type as IN1) - value to be compared
T T Outputs: OK (BOOL) - execution completed without
error
OUT (BOOL) - indicates if values are less than
or equal to successive values
The LE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.
For the inputs at IN1, IN2, ...IN17
If IN1 <IN2 <IN3 £...<IN17, the coil at OUT is energized.
Otherwise the coil at OUT is not energized.
2-154 Chapter 2 Function/Function Block Description

LEFT

LEFT
Left String String /LEFT
LEFT Inputs: EN (BOOL) - enables execution
1N oK = OUT (STRING) - output STRING
J0UT---0UT = IN (STRING) - STRING to extract from
JIN L (INT) - length
HL Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The LEFT function is used to extract characters from the left side of a STRING.
The number of characters specified by the input at L are extracted from the left
side of the variable at IN and placed into the variable at OUT.

An error occurs if:
L > 255
L > length of OUT

Example of left function

Var at IN Value at . Var at OUT
string 1 string?2 7 string1

Chapter 2 Function/Function Block Description 2-155

LEN

LEN
Length String/LEN

LEN Inputs: EN (BOOL) - enables execution

1N 0K = STR (STRING) - input value

1sSTR LEN|=Outputs: OK (BOOL) - execution completed without error
LEN (INT) - length

The LEN function is used to return the length of a STRING. The number of char-
acters in the variable at STR is placed in the variable at LEN.

Example of length function

Declared length of string Value at STR ~ Value at LEN
10 string 6

2-156 Chapter 2 Function/Function Block Description

LIMIT

LIMIT
Limit Filter/LIMIT
LIMLT Inputs: EN (BOOL) - enables execution
1N 0K |- MIN (ANY except BOOL and STRUCT)) - minimum
value
AMIN OUT
1 IN (same type as MIN) - value to be limited
Iuax MAX (same type as MIN) - maximum value

Outputs: OK (BOOL) - execution completed without error
OUT (same type as MIN) - value within limits

The LIMIT function assigns a value to the variable at OUT that is within the lower
and upper limits you enter. The value at MIN (lower limit) must be less than the
value at MAX (upper limit). The value at OUT will be the value of the input at
either 1) IN, 2) MIN, or 3) MAX.

For the variables or constants assigned at IN, MIN, and MAX if:

MIN <IN £ MAX, then OUT = IN
IN > MAX, then OUT = MAX
IN < MIN, then OUT = MIN

Chapter 2 Function/Function Block Description 2-157

LINT2DI

LINT2DI
Long Integer to Double Integer Datatype/LINTCONV

LINT2DI Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN ouT|Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The LINT2DI function converts a long integer into a double integer. The left most
32 bits of the long integer are truncated. The result is placed in a variable at OUT.

2-158 Chapter 2 Function/Function Block Description

LINT2INT

LINT2INT
Long Integer to Integer Datatype/LINTCONV

LINT2INT | Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (INT) - converted value

The LINT2INT function converts a long integer into a double integer. The left
most 48 bits of the long integer are truncated. The result is placed in a variable at
OUT.

Chapter 2 Function/Function Block Description 2-159

LINT2LR

LINT2LR
Long Integer to Long Real Datatype/LINTCONV

LINT2(R | Imputs: EN (BOOL) - enables execution

1N ok L IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

The LINT2LR function converts a long integer into a long real. The result is
placed in a variable at OUT.

2-160 Chapter 2 Function/Function Block Description

LINT2LW

LINT2LW
Long Integer to Long Word Datatype/LINTCONV

LINTZLW Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The LINT2LW function converts a long integer into a long word The result is
placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-161

LINT2SI

LINT2SI
Long Integer to Short Integer Datatype/LINTCONV
LinT2s1 | Imputs: EN (BOOL) - enables execution
1N ok L IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The LINT2SI function converts a long integer into a short integer. The left most
56 bits of the long integer are truncated. The result is placed in a variable at OUT.

2-162

Chapter 2 Function/Function Block Description

LINT2ULI

LINT2ULI
Long Integer to Unsigned Long Integer Datatype/LINTCONV

LINT2ULT Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LINT2ULI function converts a long integer into an unsigned long integer The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-163

LN

LN
Natural Log Arith/TRIG

N Inputs: EN (BOOL) - enables execution

1N oKL NUM (REAL/LREAL) - value

Inm INE Outputs: OK (BOOL) - execution completed without error
LN (REAL/LREAL) - natural log

NOTE: The data types entered at NUM and LN must
match, 1.e. if NUM is REAL, then LN must be REAL.

The LN function calculates the natural log of the number entered at NUM. The
result is placed at LN.

2-164 Chapter 2 Function/Function Block Description

LOG

LOG

Log Arith/TRIG

L0G Inputs: EN (BOOL) - enables execution

1N oKL NUM (REAL/LREAL) - value

Inm Logl Outputs: OK (BOOL) - execution completed without error
LOG(REAL/LREAL) - log of NUM

NOTE: The data types entered at NUM and LOG must
match, i.e. if NUM is REAL, then LOG must be

REAL.

The LOG function calculates the log of the number entered at NUM. The result is
placed at LOG.

Chapter 2 Function/Function Block Description 2-165

LREA2LI

LREA2LI
Long Real to Long Integer Datatype/LREALCNV

lReaz 1 | Imputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The LREA2LI function converts a long real into a long integer. The result is
placed in a variable at OUT.

2-166 Chapter 2 Function/Function Block Description

LREA2LW

LREA2LW
Long Real to Long Word Datatype/LREALCNV

LrReazLw | Imputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) -execution completed without error
OUT (LWORD) - converted value

The LREA2LW function converts a long real into a long word. The result is
placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-167

LREA2RE

LREA2RE
Long Real to Real Datatype/LREALCNV

LReazre | Imputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) -execution completed without error
OUT (REAL) - converted value

The LREA2RE function converts a long real into a real. The result is placed in a
variable at OUT.

2-168

Chapter 2 Function/Function Block Description

LREA2ULI

LREA2ULI
Long Real to Unsigned Long Integer Datatype/LREALCNV

lReazuLr | Inputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LREA2ULI function converts a long real into a unsigned long integer. The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-169

LT

LT
Less Than Evaluate /LT
T Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL or STRUCT) - value to be
compared
4INT OUT
N IN2 (same type as IN1) - value to be compared
T T Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are less than succes-
sive values
The LT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.
For the inputs at IN1, IN2, ...IN17
If IN1 < IN2 < IN3 < ...< IN17, the coil at OUT is energized.
Otherwise the coil at OUT is not energized.
LU2FU
Ladder Units to Feedback Units Motion/DATA

LUZFU Inputs: EN (BOOL) - enables execution
1N oK - AXIS (USINT) - axis number (servo or digitizing)
IAXIS FUL LU (DINT) - ladder unit value to convert
L Outputs: OK (BOOL) - execution completed without error

FU (DINT) -feedback unit value

The LU2FU function converts the ladder unit value at LU to its equivalent feed-
back unit value and places the result at FU.

2-170 Chapter 2 Function/Function Block Description

LWOR2BYT

LWOR2BYT
Long Word to Byte Datatype /LWORDCNV

LWORZBYT Inputs: EN (BOOL) - enables execution
1EN oKL IN (LWORD) - value to convert
1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The LWOR2BYT function converts a long word into a byte. The leftmost 56 bits
of the long word are truncated. The result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-171

LWOR2DW

LWOR2DW
Long Word to Double Word Datatype /LWORDCNV

tworzow | Imputs: EN (BOOL) - enables execution

JEN oK IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The LWOR2DW function converts a long word into a double word. The leftmost
32 bits of the long word are truncated. The result is placed in a variable at OUT.

2-172

Chapter 2 Function/Function Block Description

LWOR2LI

LWOR2LI
Long Word to Long Integer Datatype /LWORDCNV

LWORZLI Inputs: EN (BOOL) - enables execution

1EN oKL IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The LWORZ2LI function converts a long word into a long integer. The result is
placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-173

LWOR2LR

LWOR2LR
Long Word to Long Real Datatype /LWORDCNV

LWORZLR Inputs: EN (BOOL) - enables execution

JEN oK IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

The LWOR2LR function converts a long word into a long real. The result is
placed in a variable at OUT.

2-174 Chapter 2 Function/Function Block Description

LWOR2ULI

LWOR2ULI
Long Word to Unsigned Long Integer Datatype /LWORDCNV

LWORZULL Inputs: EN (BOOL) - enables execution
1EN oKL IN (LWORD) - value to convert
1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LWOR2ULI function converts a long word into an unsigned long integer.
The result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-175

LWOR2WO

LWOR2WO
Long Word to Word Datatype /LWORDCNV

LWORZWO Inputs: EN (BOOL) - enables execution

JEN oK IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The LWOR2WO function converts a long word into a word. The leftmost 48 bits
of the long word are truncated. The result is placed in a variable at OUT.

2-176

Chapter 2 Function/Function Block Description

LWR_CASE

LWR_CASE
Lower Case String/LWR_CASE
LWR_CASE Inputs: EN (BOOL) - enables execution
1N oKL IN (STRING) - string of characters to convert to lower
case
{ouT---0uTt
1 Outputs: OK (BOOL) - execution completed without error
OUT (STRING) - converted string

The LWR_CASE function converts the characters in a string to all lower case
characters. The result is placed in the string at OUT.

The OK will not be set if the number of characters in the string at IN is larger than
the maximum number of characters you have declared in the string at OUT. See
also UPR_CASE function.

Chapter 2 Function/Function Block Description

2-177

MAX

MAX
Maximum Filter/MAX
WAX Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL and STRUCT) - value to be
compared/moved
4INT OUT1 |
e IN2 (same type as IN1) - value to be compared/moved
| Outputs: OK (BOOL) - execution completed without error
OUT1 (same type as IN1) - moved value
The MAX function determines which input at IN1 or IN2 has the largest (maxi-
mum) value, and places the value of that variable or constant into the variable at
OUT. This is an extensible function which can output the maximum value of up to
17 variables.
2-178 Chapter 2 Function/Function Block Description

MEASURE

MEASURE

Measure

Motion/MOVE_SUP

veasure | Inmputs: EN (BOOL) - enables execution (Typically one-shot)

JEN oK AXIS (USINT) - identifies axis (servo or digitizing)
AXIS NOTE: Fast input on axis feedback required.

Outputs: OK (BOOL) - execution completed without error

If registration or referencing are not being used but you still want the fast input to
be read, the MEASURE function is used. It enables the module to respond to the
fast input. It must be called once before variable 20 (Fast input distance) is read.

SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the MEASURE function with a SERCOS axis.

Chapter 2 Function/Function Block Description 2-179

MID

MID
Middle String String/MID
WD Inputs: EN (BOOL) - enables execution
1N 0K = OUT (STRING) - output STRING
J0UT---0UT = IN (STRING) - STRING to extract from
JIN L (INT) - length
1L P (INT) - position
1P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The MID function is used to extract characters from (the middle of) a STRING.
The number of characters specified by the input at L are extracted from the vari-
able at IN, starting at the position specified by the input at P. The resulting
STRING is placed in the variable at OUT.

An error occurs if:

=0
> 255

> length of IN
> 255

> length of OUT

i el I

Example of MID Function

The value at L is 4 so four characters will be extracted from the string at IN and
placed in the string at OUT. In the example below, start counting from the left.

Var at IN Valueat L. ValueatP Varat OUT
abcdefghij 4 3 cdef

2-180 Chapter 2 Function/Function Block Description

MIN

MIN
Minimum Filter/MIN

WIN Inputs: EN (BOOL) - enables execution

1N 0K |- IN1 (ANY except BOOL and STRUCT) - value to be com-
pared/moved

INT OUTT

e IN2 (same type as IN1) - value to be compared/moved

Outputs: OK (BOOL) - execution completed without error
OUT]1 (same type as IN1) - moved value

The MIN function determines which input at IN1 or IN2 has the lowest (mini-
mum) value, and places the value of that variable or constant into the variable at
OUT. This is an extensible function which can output the minimum value of up to
17 variables.

Chapter 2 Function/Function Block Description 2-181

mMobD

MOD
Modulo (Remainder) Arith/ARITH

VoD Inputs: EN (BOOL) - enables execution
JEN 0K = DVND (NUMERIC or TIME dur) - dividend

DVND REM |- DVSR (same type as DVND if DVND is numeric; DINT if
DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error
REM (same type as DVND) - remainder

- DVSR

The MOD function divides the value of the variable or constant at DVND by the
value of the variable or constant at DVSR, and places the remainder in the variable
at REM. If there is no remainder, zero is placed in the variable. The quotient is
not returned. See the DIV function.

2-182 Chapter 2 Function/Function Block Description

MOVE

MOVE

Move

Filter/MOVE

Inputs: EN (BOOL) - enables execution
IN1 (ANY) - value to be moved

Outputs: OK (BOOL) - execution completed without error
OUT1 (same type as IN1) - moved value

MOVE

EN
IN1

oK
ouT?

The MOVE function puts the value of the constant or variable at IN1 into the vari-
able at OUT]1, the value of the variable or constant at IN2 into the variable at
OUT?2, etc. From 1 to 16 inputs can be moved.

The input variables or constants to this function can be of different types. An out-
put variable must be of the same type as its corresponding input (on the same line).

Note: In this extensible function, each input is moved to its corresponding out-

put sequentially. Other extensible functions look at all the inputs first
and then go to the outputs.

Chapter 2 Function/Function Block Description 2-183

MUL

MUL
Multiply Arith/ARITH
MOL Inputs: EN (BOOL) - enables execution
1N 0K |- MCND (NUMERIC or TIME dur) - multiplicand
IMCND PROD = MPLR (same type as MCND if MCND is numeric; DINT
IMPLR if MCND is TIME) - multiplier
T T Outputs: OK (BOOL) - execution completed without error
PROD (same type as MCND) - product
The MUL function multiplies the value of the variable or constant at MCND by
the value of the variable or constant at MPLR, and places the result in the variable
at PROD. This is an extensible function that can multiply up to 17 numbers.
X MCND
*Y MPLR
Z PROD
2-184 Chapter 2 Function/Function Block Description

mux

MUX
Multiplex Filter/MUX
WMUX Inputs: EN (BOOL) - enables execution
1N 0K = K (USINT) - value selector
1K ouT = INO (ANY except STRUCT) - value to be selected
JINO INT (same type as INO) - value to be selected
4IN1 Outputs: OK (BOOL) - execution completed without error

OUT (same type as INO) - selected value

The MUX function is used to select one of two (or more) values and place it into
the output variable. The selection is based on the value of the NUMERIC input at
K.

If the value at K equals 0, then the value of the variable or constant at INO is placed
into the variable at OUT. If the input at K equals 1, then the value of the input at
IN1 is placed into the variable at OUT.

This is an extensible function. Up to 17 inputs can be specified. If the value of the
input at K equals 2, 3, ...16, then the value of the input at IN2, IN3, ...IN16 is
placed into the variable at OUT.

Chapter 2 Function/Function Block Description 2-185

NE

NE
Not Equal To Evaluate/NE
NE Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL or STRUCT) - value to be
compared
4INT OUT|
e IN2 (same type as IN1) - value to be compared
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are not equal
The NE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. If they are not equal, the coil at OUT is
energized. If they are equal, the coil at OUT is not energized.
2-186 Chapter 2 Function/Function Block Description

NEG

NEG
Negate Value Arith/ARITH

NEG Inputs: EN (BOOL) - enables execution
1N 0K = IN (NUMERIC) - signed number to negate
1IN ouTl Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - negated number

The NEG function negates (finds the opposite) value of the signed number at IN
and places the result into the variable at OUT.

The negate function on a number, x, is:

f(x) =-x

Chapter 2 Function/Function Block Description 2-187

NETCLS

NETCLS
NEXNET Network Close lo/NETWORK

Inputs: REQ (BOOL) - enables execution (Typically one-shot)
Outputs: DONE (BOOL) - execution completed without error

E
NETCLS
REQ DONE

The NETCLS function block closes the communication channel for this PiC,
removing the node from the NEXNET network.

NETCLS should not be executed before the DONE output of the NETOPN func-
tion block has been set. If NETCLS has been executed, the NETOPN function
block must execute again to re-enable communication.

2-188 Chapter 2 Function/Function Block Description

NETFRE

NETFRE
NEXNET Network Free lo/NETWORK

NETFRE Inputs: EN (BOOL) - enables execution (typically one-shot)

EN ok |-Outputs: OK (BOOL) - execution completed without error

CLRC (UINT) - number of bytes cleared, same variable as
at CNT for NETSTA

CLRC

The NETFRE function block clears the input buffer of data involved in the most
recent receipt transaction, telling the communications daughter board that data can
be received again.

NETFRE zeros the output at CLRC, which should be the same variable that is at
the CNT output of the NETSTA function block.

This function block should be executed after all data for a transaction has been
received. Until NETFRE executes, receipt of new data is inhibited.

Chapter 2 Function/Function Block Description 2-189

NETMON

NETMON
NEXNET Network Monitor lo/NETWORK

Inputs: EN (BOOL) - enables execution (typically one-shot)

E
NETMON
EN ok |-Outputs: OK (BOOL) - execution completed without error

STAT (INT) - status of network

STAT

The NETMON function block monitors and outputs the status of the PiC network.

NETMON is for diagnostic purposes only. Do not use it in your application LDO.
Never enable the NETMON function all the time.

The status of the network is placed in the variable at STAT:

STAT =0 [If No receive activity and transmitter is enabled. The transmitter
and/or receiver are not functioning properly.

STAT =3 [The node sees receive activity and sees the token. The transmitter
is enabled. The network and node are operating properly.

STAT =8 [The node sees receive activity, but is not seeing the token. Possi-
ble causes are listed below.

1. No other nodes exist on the network.

2. Data corruption exists.

3. The media driver is not functioning properly.
4. The topology is set up incorrectly.

5. There is noise on the network.

6. A reconfiguration is occurring.

2-190 Chapter 2 Function/Function Block Description

NETOPN

NETOPN

NEXNET Network Open lo/NETWORK
NEI%EN Inputs: REQ (BOOL) - enables execution (typically One-shot)
{REQ DONE - SID (USINT) - source ID number of PiC
1sip rAIL|-Outputs: DONE (BOOL) - energized if ERR =0

ERR —

not energized if ERR # 0
FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if no errors occur
0 if error occurs

The NETOPN function block prepares the PiC (in which it is executed) for com-
munication with another PiC. It performs the following:

1. Checks and initializes communications.
2. Assigns a unique network node number to this PiC.
3. Opens the communication channel if no errors occur.

The value at SID (Source IDentification) is assigned to this PiC as a unique node
number. The value at SID should be from 1 - 255. This number is used by other
PiCs in the network to reference this PiC.

If no errors occur, the output at DONE is energized, the output at FAIL is not ener-
gized, and the output at ERR equals zero.

If an error occurs, it occurs during the checking and initialization of the daughter
board. The output at DONE is not energized, the output at FAIL is energized, and
the output at ERR # 0 as shown below.

ERR =1 The ARCNET hardware ID check failed.

ERR =2 The transmitter is not available. An ARCNET communications fail-
ure has occurred.

ERR =3 The power-on reset flag cannot be cleared. An ARCNET communi-
cations failure has occurred.

ERR =4 The SID specified is assigned to another node. Check SID numbers.

ERR =5to 44 (Check Appendix B in the software manual for errors connected to
the OPEN function block.

ERR > 1XXX [The node number has been set by PiCPro and is different than the
number you entered at the SID input. The XXX holds the PiCPro
node number 001 through 255.

Chapter 2 Function/Function Block Description 2-191

NETOPN

All PiCs in a network should execute the NETOPN function block one time (the
input at REQ should be a one-shot) before they execute any other NEXNET func-
tion blocks.

Other NEXNET function blocks are: NETCLS, NETFRE, NETMON, NETRCYV,
NETSND, and NETSTA.

If a PiC has executed a NETCLS, it must execute NETOPN again to re-enable
communications.

2-192 Chapter 2 Function/Function Block Description

NETRCV

NETRCV

NEXNET Network Receives lo/NETWORK
Né,\TAECV Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N 0K = CNT (INT) - number of bytes to read
JONT FAILL OFST (UINT) -offset from start of BUFR
JOFST ACTL BUFR (memory area) - destination of data
4{BUFR-BUFR | memory area is a STRING, ARRAY, or STRUCTURE

ERR— Outputs: OK (BOOL) -energized immediately after enable if
ERR =0

not energized if ERR =1 or 2

FAIL (BOOL) - energized if ERR =1 or 2
not energized if ERR =0

ACT (INT) - number of bytes received
BUEFR (same variable as BUFR input)

ERR (INT) - 0 if no errors occur
1 or 2 if an error occurs

cations hardware) and places it in a data memory area.

The NETRCYV function block "reads" data from the input buffer (of the communi- “

The number of bytes specified by the value at CNT are read and placed within the
memory area specified at BUFR. The value of CNT should be such that:

I <CNT <£494.

IMPORTANT

When receiving a STRING, the length specified should be the number
of characters indicated by the CNT output of NETSTA.

The data is placed in BUFR starting at OFST bytes past the first byte of BUFR. (If
OFST equals 0, 1, 2, etc. the data starts at 0, 1, 2, etc. bytes past the beginning of
BUFR).

The number of bytes actually read is placed in the variable at ACT. The value of
ACT will be less than the value of CNT when an error occurs. Otherwise the value
of ACT will equal the value of CNT.

Chapter 2 Function/Function Block Description 2-193

NETRCV

Multiple NETRCYV function blocks may be executed to sequentially read the data
from one transaction, allowing for the separation of the data into different memory
areas. The total number of bytes read by one or more NETRCVs should equal the
value of the CNT output of the NETSTA function block.

If an error occurs the output at DONE is not energized, the output at FAIL is ener-
gized, the value at ACT equals 0, the value at BUFR is unchanged, and the output
at ERR equals 1 or 2.

ERR =1 [There is no data in the input buffer to receive.

ERR =2 [The value of CNT is greater than the number of bytes in the input
buffer.

NOTE: The NETFRE function block should be executed after all

data (for one transaction) has been read from the input buffer.

2-194

Chapter 2 Function/Function Block Description

NETSND

NETSND
NEXNET Network Sends lo/NETWORK
Né,\TAEND Inputs: REQ (BOOL) - enables execution (typically one-shot)
{REQ DONEL- TBUF (memory area*) - optional protocol data
JTBUF FAILL TCNT (INT) - # of bytes to send from TBUF
JTCNT ERR|- DBUF (memory area*) - data to be sent
{DBUF ACT}|- DCNT (INT) - # of bytes to send from DBUF
- DCNT OFST (UINT) - offset from start of DBUF
10FST DID (USINT) - destination PiCs
1DID *memory area is a STRING, ARRAY, or STRUC-
TURE
Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0
ERR (INT) - 0 if transfer successful

0 if transfer unsuccessful
ACT (INT) - actual number of bytes sent “
The NETSND function block sends data from this PiC to another PiC or all net-
worked PiCs (broadcast message). NETSND transfers protocol data from the

memory area specified at TBUF and/or data from the memory area specified at
DBUF.

Protocol data is not required. If protocol data is created, the value of TCNT should
specify the number of bytes of protocol (at TBUF). If protocol data is not used,
there should be a null input at TBUF and the value at TCNT should be 0.

The value at DCNT specifies the number of bytes to send from the entry at DBUF.

The data that is transferred from within DBUF starts at OFST bytes past the begin-
ning of DBUFE. (If OFST equals 0, 1, 2, etc. then the data sent starts at 0, 1, 2, etc.
bytes past the first byte of DBUF.)

It is required that TCNT + DCNT < 494.

The receiving PiCs should have a memory area that is equivalent to the data being
sent defined at the BUFR input to the NETRCV function block(s).

Chapter 2 Function/Function Block Description 2-195

NETSND

IMPORTANT

When sending a STRING, the length specified should be the number
of characters plus 2 (bytes).

The value at DID should be from O - 255. If the value at DID is O, the data is sent
to all other PiCs in the network. If the value at DID is 1 - 255, the data is sent to
the PiC with that SID.

If an error occurs, the output at DONE is not energized, the output at FAIL is ener-
gized, the value at ERR equals an error number (see below) and the value at ACT

is 0.

ERR =1 The transmitter is unavailable. A previous send has not com-
pleted.

ERR =2 The message failed to be acknowledged as received within 900
milliseconds.

ERR =3 An attempt was made to send more than 494 bytes.

ERR =4 There is no TBUF input to the function block when protocol data
is created.

ERR =5 There is no DBUF input to the function block.

ERR = 6 to 44 (Check Appendix B in the software manual for errors connected to
the WRITE function block.

Note: This PiC should execute the NETSND function only after it has set the
DONE output of the NETOPN function block.

2-196 Chapter 2 Function/Function Block Description

NETSTA

NETSTA
NEXNET Network Status lo/NETWORK

Né'\TAETA Inputs: EN (BOOL) - enables execution

1N ok |-Outputs: OK (BOOL) -execution completed without error

SID|— SID (USINT) - source node ID
DID | DID (USINT) - destination node ID
CNT |- CNT (INT) - number of bytes received

The NETSTA function block outputs the number of bytes that are in this PiCs
daughter board input buffer (sent by another PiC). It also outputs the node number
of the sending PiC and the node number of this (receiving) PiC.

The number of the sending PiC (1 - 255) is placed in the variable at SID. The
value at SID equals O if there is no data in the buffer.

The number of this PiC is placed in the variable at DID. The value at DID equals
0 if the data is a broadcast or if there is no data in the buffer.

The number of bytes in the input buffer is placed in the variable at CNT. This
value indicates how many bytes should be read or received (by one or more

NETRCYV function blocks). The value at CNT equals 0 if there is no data in the “
buffer.

If only one NETRCYV function block is executed to read the data from the input
buffer, then the CNT output value of NETSTA should equal the CNT input value
to the NETRCV.

If more than one NETRCYV function block is executed to read the data from the
input buffer, then the sum of the bytes read by the NETRCVs should equal the
CNT value from NETSTA.

Note: Ensure that the DONE output of the NETOPN function block is set (the
communication channel is open) before NETSTA executes.

Chapter 2 Function/Function Block Description 2-197

NEWRATIO

NEWRATIO

New Ratio

Motion/MOVE_SUP

NEWRATIO Inputs: EN (BOOL) - enables execution

1N ok L AXIS (USINT) - identifies the slave axis (servo)

JAXIS MAST (USINT) - identifies the master axis the slave
axis follows in the ratio move

{MAST

lspsT SDST (DINT) - (slave distance) indicates the new dis-

tance the slave should move for each MDST distance
MBST (entered in LU*)

MDST (DINT) - (master distance) indicates the new
distance the master axis will move during each SDST
(entered in LU*)

*NOTE: The range of values entered in SDST and
MDST is -536870912 to +536870911 FU (excluding 0
for the MDST input.) If you are using ladder units,
make sure they do not exceed this range when con-
verted to feedback units.

Outputs: OK (BOOL) - execution complete without errors

The NEWRATIO function allows you to change the current constant ratio in a
RATIO_GR or a RATIOSYN move and change the default ratio in a RATIOSLP
move.

Changing the ratio in RATIO_GR and RATIOSYN

You define a constant ratio when using the RATIO_GR or RATIOSYN moves.
The NEWRATIO function is called after the RATIO_GR or RATIOSYN move is
active and allows you to change this constant ratio. The new ratio takes effect after
the next servo interrupt.

The function does not use the queue but changes the ratio of the move in the active
queue.

Changing the default ratio in RATIOSLP and RATIO_RL

The RATIOSLP and RATIO_RL moves have a default ratio of 1:1. The NEWRA-
TIO function is normally called before the move is active and allows you to
change this default ratio.

If the NEWRATIO function is called after the move, the current ratio of the move
is used initially and the ratio defined by NEWRATIO takes effect after the next
servo interrupt.

2-198

Chapter 2 Function/Function Block Description

NEWRATIO

The OK will not be set if any of the following programming errors occur:

1. Master axis not available
2. Master distance not valid
3. Slave distance not valid.

IMPORTANT

Whenever the NEWRATIO function is called, it always sets the default ratio
for a RATIOSLP move.

If, for example, the NEWRATIO function is called for a RATIO_GR
or RATIOSYN move, and later a RATIOSLP move is called, the RA-
TIOSLP move will also use the ratio established in the NEWRATIO
function as its default ratio.

If you do not want to use this ratio, call the NEWRATIO function
again.

Chapter 2 Function/Function Block Description 2-199

NEW_RATE

NEW_ RATE
New Rate Motion/MOVE_SUP

NEw Rare | Inputs: EN (BOOL) - enables execution
1N ok L AXIS (USINT) - identifies axis (servo)
JAXIS RATE (UDINT) - new feedrate (entered in LU/MIN)
IRATE QUE (USINT) - number of move whose rate you want
laue to change
Outputs: OK (BOOL) - execution completed without error

The NEW_RATE function allows the rate of the move identified by the queue
number to be changed. The move identified by the queue number can be in the
active or next queue.

If a “0” is entered in QUE, the new feedrate only affects the move in the active
queue.

2-200 Chapter 2 Function/Function Block Description

NOT

NOT
Not Binary/NOT

NOT Inputs: EN (BOOL) - enables execution
1N 0K = IN (BITWISE) - number to be complemented
1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (same type as IN) - complemented number

The NOT function complements the variable or constant at IN and places the result
in the variable at OUT. The net effect of this function is that the bits of the output
variable are the reverse of the bits of the input variable or constant.

If bit x of the input is O then bit x of the output is 1. If bit x of the input is 1 then bit
x of the output is O.

Example of NOT function:

Value at IN Value at OUT
11001010 00110101

Chapter 2 Function/Function Block Description 2-201

NUM2STR

NUM2STR
Numeric to String Datatype/NUM2STR

NUMZSTR Inputs: EN (BOOL) - enables execution
JEN oK |- STR (STRING) - output STRING
ISTR---STRI- NUM (NUMERIC) - number to convert (may include
INTY plus (+) or minus (-) sign)

Outputs: OK (BOOL) - execution completed without error
STR (same variable as STR input) - output STRING

The NUM2STR function converts the numeric variable or constant at NUM into a
STRING, and places the result into the variable at STR. If the length of the vari-
able at STR is not adequate to hold the value (from NUM), the output at OK will
not energize and the value of the variable at STR will be null (STRING length of
Zero).

When converting REAL or LREAL floating point numbers, the output follows the
following format.

REAL LREAL
Minimum size
of string 13 characters 23 characters
String output
= = -
E H E
= 3 = =
{=% —
E = E £
S E - S 3 =
22 = g 2 £3 e 5 £
2 = S = ES = S z
s = g @ g2 e £ o
g3 20 5 @ E2 = v =
] = o S o= ° o =
£ 50 o = < 20 = = S
- - e ° P = = =
ce = s 32 C 20 S 5
52 2 2 52 ¥ - & 2
n o oI N — v oen
|
|| —— |4 |1, BN
+1.234567 E + 10 +1.234567890123456 E + 123
| | | | - Il |
Mantissa Exponent Mantissa Exponent

2-202 Chapter 2 Function/Function Block Description

OPEN

OPEN
Open lo/COMM
OPEN_ Inputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEL- NAMZ (STRING) - name of file/device
INAMZ FAILL MODE (INT) - mode in which to open channel
IMODE ERR|— Outputs: DONE (BOOL) - energized if ERR =0
HADL not energized if ERR # 0
FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0
ERR (INT) - 0 if data transfer successful

0 if data transfer not successful

HNDL (INT) - unique communication number

See Appendix B in the software manual for ERR codes.

The OPEN function block prepares a file or device for a sequential read/write.
It performs three functions.

number into the variable at HNDL.

. It accepts the name of the file or device from the input at NAMZ.
It accepts the mode in which the file/device should be opened from the input at MODE.

It assigns a unique number (called a handle) for the file/device and mode, and places the

A maximum of 10 modes can be assigned for files/devices at one time. A READ
and WRITE or an APPEND equals two modes. All others equal one.

Input variable
NAMZ*

MODE**

*

Enter this
PICPRO:c:\sub\filename.ext$00
RAMDISK:sub\filename.ext$00
FMSDISK:filename.ext$00%*
USER:$00

16#601

16#602

16#603

16#604

To do this

open workstation DOS files**
open RAMDISK files

open FMSDISK files

open User Port

READ ONLY

WRITE ONLY ##3%#%*

READ and WRITE

APPEND (READ and WRITE -
start write at end of file)

PICPRO, RAMDISK, FMSDISK, and USER must be entered in capital let-
ters, followed by a colon (:). A full (directory) path must be specified for files.

Chapter 2 Function/Function Block Description

2-203

OPEN

The $00 characters are required at the end. NOTE: The total number of characters
is limited to 77.

*k Workstation files can be opened only in the read (16#601) or write
(16#602) mode; and only one workstation file at a time can be open.

Glolo FMSDISK files can be opened only in the read mode.

sk If there is an existing file, opening it in the write only mode will delete
the existing data. The new data will then be written to it.

A subdirectory can be created by opening in the WRITE ONLY mode. If the sub-
directory and filename do not exist when the OPEN is performed, both will be cre-
ated.

OPEN is used in conjunction with the CLOSE, CONFIG, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

2-204

Chapter 2 Function/Function Block Description

OPENLOOP

OPENLOOP
Open Loop Motion/INIT

openLoop | Imputs: EN (BOOL) - enables execution (One-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The position loop for the designated axis is opened when the OPENLOOP func-
tion is activated. The servo software instructs the analog output to send a zero-volt
signal to the drive.

If the drive has been properly adjusted, the zero-volt signal will cause it to hold the

motor at zero velocity. If the drive has not been adjusted properly, the motor may
“drift.”

No other commands can be sent until the loop is closed again. See also
CLOSLOORP.

Chapter 2 Function/Function Block Description 2-205

OR

OR

Or (Inclusive) Binary/OR

0R Inputs: EN (BOOL) - enables execution
1N 0K = INT (BITWISE) - number to be ORed
JINT oUTk IN2 (same type as IN1) - number to be ORed

J1IN? Outputs: OK (BOOL) - execution completed without error
OUT (same type as IN1) - ORed number

The OR function ORs the variable or constant at IN1 with the variable or constant
at IN2, and places the results in the variable at OUT. This is an extensible function
which can OR up 17 inputs.

The OR function places a 1 in bit x of the output variable when bit x of one or
more (including all) input variables equals 1. A zero is placed in bit x of the output
variable if bit x of all input variables equals 0.

Example of OR function (on three inputs):

11000011 value at IN1
10101010 value at IN2
11001100 value at IN3
11101111 value at OUT

2-206

Chapter 2 Function/Function Block Description

PART_CLR

PART_CLR

Part Reference Clear Motion/REF

pART cLr | Imputs: EN (BOOL) - enables execution (Typically one-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or digitizing)
JAXIS Outputs: OK (BOOL) - execution completed without error

The PART_CLR function cancels the part reference dimension (See PART_REF
below). The axis reverts to the original reference value.

An axis can be “part referenced’ several times. The PART_CLR function will
cancel all part references as if no part reference had occurred.

Note: This function can be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-207

PART_REF

PART REF
Part Reference Motion/REF

PART_REF Inputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies axis to be part referenced
(servo or digitizing)

REFD (DINT) - reference dimension entered in LU.
If REFD is outside the range of:

-536,870,910 to 536,870,911 FU, the OK will not be
set.

4 AXIS
- REFD

Outputs: OK (BOOL) - execution completed without error

The part reference function allows you to change the current position of an axis.
No motion occurs when a part reference is performed. The reference dimension
value at REFD will become the new current position for the axis specified at
AXIS. This reference dimension will remain in effect until it is canceled using the
PART_CLR function or replaced by a new part reference.

A servo axis must be at rest when a part reference is performed. A digitizing axis
can be in motion when a part reference is performed.

This function can be used with the stepper axis module.

2-208 Chapter 2 Function/Function Block Description

PID

Proportional, Integral, Derivative lo/PID

['P,Vi-\"[/JE_ Inputs: EN (BOOL) - enables execution (timer output)
1N oKL SPT (DINT) - setpoint value of the control variable
SPT FAIL specified as a scaled value between + 2,147,483,646
Iact emnl ACT (DINT) - actual value of the control variable in
same units as setpoint value
{1sT ouTh
REV HILT IST (STRUC) - structure holding PID variables
| I REV - (BOOL) - reverse sign on output
{vaN LoLTH
BTVL MAN - (BOOL) - Manual/auto mode

BTVL - (DINT) - bumpless transfer value
Outputs: OK (BOOL) - execution completed without error

FAIL (BOOL) - set if ERR # 0

ERR (SINT) - 0 = no error; 1 = math overflow error

OUT (DINT) - value of the output in the range of
+2,147,483,646

HILT (BOOL) - set if output was limited by the HIGH
limit
LOLT (BOOL) - set if output was limited by the LOW
limit

Background information on PID control

When a process characteristic such as level, speed, temperature, pressure, flow,
etc. is being monitored and controlled, the PID function can be used to maintain
the desired or setpoint value for the process. The actual process characteristic
could deviate from the desired setpoint due to disturbances in the system. This
deviation is the error.

E = setpoint (SPT) - actual (ACT)
or

E = actual (ACT) - setpoint (SPT)

Chapter 2 Function/Function Block Description 2-209

PID

Once an error is detected, the PiC will modify the output to the process in an
attempt to force the error to zero. The purpose of the PID function is to act on this
error in one or a combination of the ways listed below.

Definition Characteristics

Proportional |establishes an output whose value is pro-* Fast response

portional to the value of the instanta-

* Easy to use
neous error. (P)

* Always some error (offset) between
setpoint and actual

Integral or

reset

establishes an output whose value is pro-* Provides most correction for slowly
portional to the error over a period of [changing processes

time. (I) * Eliminates the inherent offset of

proportional only control

* Adversely affects stability

Derivative or |establishes an output whose value is pro-* Provides most correction for rap-

rate

portional to the rate of change of the idly changing processes
error. (D) * Almost anticipates correction
needed

* Cannot be used alone

* Does not reduce the inherent offset

The process output can be controlled by using P, PI, PID, or PD depending on the
desired response for the process.

The PID function block is designed to provide proportional, integral, and deriva-
tive control for processing applications. There are two PID algorithms available to
use in a PID control loop. The function block must be declared in the software
declaration table.

The desired setpoint for the process variable is entered at SPT (setpoint). The
actual (ACT) input specifies the measured value of the process variable.

If REV input is set, the sign on the PID output is reversed.

A bumpless transfer feature is available with the MAN and BTVL inputs. The
MAN is a manual/automatic boolean switch. When it is set, the value at the BTVL
input is the value at the OUT output. The algorithm updates the integral accumula-
tor. This prevents the accumulation of an integral error during the manual mode.
Then when the MAN input is cleared, the transfer to PID control is smooth.

The FAIL output will be set if a math overflow error occurs. A 1 appears at the
ERR output. The function output will be the output of the last iteration that did not
fail.

The IST is an input structure to the PID function block. The members are
described below.

2-210

Chapter 2 Function/Function Block Description

PID

IMPORTANT

The structure you enter in the software declarations table for the IST
input must have the members entered in the order shown below. The
data type for each member of the structure must be as shown in the
Type column in order for the software to recognize the information.

Put initial values for the following structure members in the Init. Val
column: P, I, D, Ts, KDFT, FP, FD, DB+, DB-, HIGH, LOW, and
EXOP.

The software assigns values to PROP, INTG, and DERV.
The initial values for these three structure members must be 0.

Structure for the IST input of PID function block

Structure
name ———PD STRUC
P INT
I INT
.D INT
.TS INT
KDFT SINT
-FP SINT
Members] .FD SINT
of Structure .DBPLUS INT
.DBMINUS INT
HIGH DINT
.LOW DINT
.EXOP WORD
.PROP DINT
INTG DINT
.DERV DINT
END_STRUCT

Chapter 2 Function/Function Block Description 2-211

PID

The IST structure members

P INT (write)

(proportional) b6 tional gain (Kp) * 100 [For example, P of 0.55 entered as 55]
Il INT (write)

(integral) Reciprocal of the integral time (f (1,Ti)) * 100 (time units)

D INT (write)

(derivative)

Derivative time (Td) * 100 (time units)

TS INT (write)
(sample time)

PID sample time in seconds * 100

Ts represents the sample time used to calculate the integral and derivative
gains for the PID loop as shown in the equations below.

NOTE: The TS value is the product of the PID sample time (the PID
enable period) times 100. For example, a 10 ms sample results in a TS
value of 1 (0.010 * 100) and a 200 ms sample results in a TS value of 20
(0.200 * 100).

Integral Gain Derivative Gain
Ts Td D
Ki = === TsxI Kd = —= —
! Ti s d Ts Ts

A filter value for the derivative term can be entered at KDFT. Filters for the pro-
portional and derivative errors can be entered at FP and FD respectively.

KDFT SINT (write)

gfrl\)/atlve Filter value for the derivative term in percent (derivative change limit)
ilter

FP SINT (write)

g)liop)ortlonal Proportional error filter in percent (100% = no filtering)
ilter

FD SINT (write)

(derivative perjyative error filter in percent (100% = no filtering)

error filter

A deadband is used to set up a range on either side of the setpoint where the output
does not change if the error remains within the range or band. This allows you to

2-212 Chapter 2 Function/Function Block Description

PID

control how close the actual value will match the setpoint value without changing
the output. The range is entered in DB+ and DB-.

DBPLUS

band)

(positive dead- Deadband in the positive direction of out (OUT + DB)

INT (write)

band)

DBMINUS [INT (write)
(negative dead-

Deadband in the negative direction of out (OUT - DB)

An anti-reset windup feature is available with the HIGH and LOW limits. It pre-
vents the integral gain from becoming excessive or winding up when the limits are
reached. The output will be held at the value it was during the previous iteration
whenever the high or low limit is encountered.

(The HILT and LOLT outputs are set respectively if the HIGH or LOW limits are
encountered.)

HIGH

(high limit)

DINT (write)

Output high limit used for integral accumulator high saturation limit. Same
units as setpoint.

LOW
(low limit)

DINT (write)

Output low limit used for integral accumulator high saturation limit. Same
units as setpoint.

NOTE: HIGH and LOW are used for anti-reset windup.

The word available with the EXOP gives you four options.

EXOP

(execution

options)

WORD (write)

Tz 211109 57 6 54 352120
HNNEEENEEEEEEEEE

| | |_ 0- EAAghm, 1- Roependent gains Agorhm
| 0- ETof = SPT- @CT, 1- Bl = ACT - SPT
Set remaining bits to 0 0- FP = [SFT- #CT), 1- FP= SP
0- FO = [SPT- ACT), 1- FO= SF

AR |55

Chapter 2 Function/Function Block Description 2-213

PID

EXOP Bit 0

The PID function block gives you a choice of two algorithms in the EXOP mem-
ber of the IST structure at bit 0.

1. The ISA algorithm
2. The independent gains algorithm

The terms used in the following equations are described here:

Equation (Function Description
Term Term)
Mn (OUT) = output
Kp (P) = proportional gain constant
Ts (Ts) = sample rate
Ti 1 = integral time
(7)
Td (D) = derivative time
Ep - = error the jth iteration
DCL (KDFT) = derivative change limit
Ts Ix7s = Ki, integral gain constant
Ti
Td pxTs = Kd,derivative gain constant
Ts
DG-1) - = derivative from previous iteration

The following continuous equation performs the calculation with the ISA algo-
rithm:

M(r) = Kp{e(t) + % : JJ Oc(r)dt + Td‘—i—il%‘—)}

2-214 Chapter 2 Function/Function Block Description

PID

The discrete equation is shown below:

j=n
Mj = Kp E]+T E-J—LEQ——— [E—E(j—l) X DCL+[D(j—1)x (1-DCL)]
j=0
Prop Integral Derivative (current)

(Reset) (Rate)

The block diagram below illustrates the ISA algorithm.

Figure 2-6. Block diagram of ISA algorithm

Manual nput

B o dedoe
e

Dedee Unle=0uput

Ew.q._h |:u1:u1_._

P'[\‘ + J': Term
e W-

-
I N N N N N N N NN N NN N N

e PID Engaged aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa N
Do Offierenid : High
: a_-P'F.H‘ . Term [. : |i= Lker Conuerslon
: e : chors or denlce
C (Er b H[Fortod Ly 5 b A A p [T [Pt o b i
: H:Tff‘ _Wﬁ'ﬂ_/‘ : OupuE= Dedee Unlc
: : Lo
: Term :
P -

BRI

Chapter 2 Function/Function Block Description 2-215

PID

The following continuous equation performs the calculation with the independent
gains algorithm:

_ 1 J’ det
M(t) = Kp xe(t)+ Ti Oetdt+ Td 0

The discrete equation is shown below:

j=n

Mj=Kp><Ej+?, '%(’_IH%[E]'—(E]'—1)]><DCL+D(]'—1)><(1—DCL)
l S
j=0

2-216 Chapter 2 Function/Function Block Description

PID

The block diagram below illustrates the independent gains algorithm.

Figure 2-7. Block diagram of Independent gains algorithm
Manual npud

+
Clead
"y

Eand

EXOP Bit 1

:-:.'.-.'.' h"&l"ll-lﬁ] Ehgaged'.-.’f.-.’f.-.’.’.-

&l

Term
C1eand Froporfond

SR RS RS SES SR,

Eand Error

aaaaaaaaaaaaa

o
X
m ular ..':_
High Rew
Y o+
T3 M T b curar—
Low

oo o dedlice
Inkerface
Dedce Unle=0upue

—» Imier e

Lk Conuer<lon
B o dedice

Oupu == Dedee Unlc

AR |55

With bit 1, you can choose to have the error calculated by the setpoint minus the
actual or by the actual minus the setpoint.

EXOP Bit 2

With bit 2, you can choose to have the proportional filter multiplied by the setpoint
minus the actual or by the setpoint only.

EXOP Bit 3

With bit 3, you can choose to have the derivational filter multiplied by the setpoint
minus the actual or by the setpoint only.

The values of the proportional, integral, and derivative terms for the current step
can be read with members PROP, INTG, and DERV. Add them to your View list

in PiCPro.

Chapter 2 Function/Function Block Description

2-217

PID

PROP DINT (read)

g;rl ?15) ortional (mpe value of the proportional term at this step.
INTG DINT (read)

(integral gain) e yajue of the integral term at this step.
DERV DINT (read)

(derivative

The value of the derivative term at this step.

gain)

You may execute the PID loop every scan or trigger it at your own update rate by
using the timer TON function block at the EN input (see below). Total update time
is the timer value plus the time required for one ladder scan.

2-218 Chapter 2 Function/Function Block Description

Figure 2-8. Example PID network using a timer

"TIMER "PIDFH
TOH PID

TIMEDOHE TIMEDOHE

/w0) ok

TH250MS 5>— PT ET | _ SETPOINT >—{SPT FAIL

 ACTUAL —ACT ERR

PID —IST OUT

REVERSE

— | “REV HILT

MANUAL

— | {MAN LOLT
BTVL >— BTVL

PID_OK

—

PIDHNOK

—{

— PID_ERR

— OUTPUT
HI_LIM

—

LOW_LIM

—{

PID

Chapter 2 Function/Function Block Description

2-219

PLS

PLS
Programmable Logic Switch Motion/MOVE_SUP

PLS Inputs: EN (BOOL) - enables execution

1N oKL AXIS (USINT) - axis number (servo, digitizing or time)
IAXIS ouTl POSN (Array of STRUCTURE) - list of ON/OFF posi-
1posN I tions
oty i QTY (USINT) - number of ON/OFF positions
Isior | SLOT (USINT) - slot number of output module or MMC
oNT for PC ASIU number
0ABL PNT (USINT) - output point

DABL (BOOL) - disable control of output
Outputs:OK (BOOL) - execution completed without error
OUT (BOOL) - output state

The PLS function is used to turn on a discrete output for specified ranges of axis positions.
These ranges are specified by the list of ON/OFF positions pointed to by the POSN input. If
the axis’ current position is within any of the ranges specified, the output will be turned on. If
the axis’ current position is in none of the ranges specified, the output will be turned off.

The EN input enables execution of the function block. A one-shot is all that is required to ac-
tivate the PLS. The EN input may be left enabled to update the OUT output each scan.

The AXIS input specifies the axis whose position will control the state of the output. This may
be a servo axis, digitizing axis, or time axis.

The POSN input is an array of structures specifying the axis position ranges in which the output
is to be turned on. The array of structures must be in the following format:

POSN STRUCT (0..n-1)
.ON DINT

.OFF DINT

END STRUCT

(where n = number of ranges)

2-220 Chapter 2 Function/Function Block Description

PLS

The ON and OFF values are axis positions expressed in ladder units. When PLS is active, the
following logic is used to determine if the axis’ current position is within an ON/OFF range:

If ON < OFF, CP is in the range if CP = ON and CP < OFF.
If ON > OFF, CP is in the range if CP > ON or CP < OFF.
If ON = OFF, the range is ignored.

(where CP is the axis’ current position)

The QTY input specifies the number for ranges in the POSN array of structures. Valid input
values are 1 through 255.

With a PiC control, the SLOT input specifies the slot number of the output module. Valid input
values are 0 and 3 through 13. IF SLOT =0, only the OUT output will be controlled; no discrete
outputs will be controlled. No more than two different slots may be specified by multiple calls
to PLS. If output points among 1-16 and among 17-32 are specified on a 32-point output mod-
ule, only that one slot may be specified by multiple calls to PLS.

With an MMC control, the SLOT input specifies the slot number of the output module. Valid
input values are 0 and 2. If SLOT = 0, only the OUT output will be controlled; no discrete out-
puts will be controlled.

With an MMC for PC Analog control, the SLOT input specifies the ASIU number. Valid input
values are 0 through 8. If SLOT =0, only the OUT output will be controlled; no discrete outputs
will be controlled.

With a PiC control, the PNT input specifies the output to be controlled. Valid input values are
1 through 32. Multiple calls to PLS should never attempt to control a single output point with
more than one axis. However, a single axis can control multiple output points. Up to 32 output
points can be controlled. This can be 32 points on a single 32-point output module or 16 points
on each of 2 output modules.

With MMC and MMC for PC Analog controls, the PNT input specifies the output to be con-
trolled. The valid input values are 1 through 16.

The DABL input will disable the PLS function. If PLS is called with DABL set, the discrete
output and the function ’s OUT output will be turned off and will no longer be controlled by
PLS.

The OK output indicates the function block executed successfully. If the OK output is reset,
any of the following errors occurred:

e AXIS input is invalid
e SLOT input is invalid
e PNT input is invalid

¢ Too many slots have been specified by multiple calls to PLS functions

Chapter 2 Function/Function Block Description 2-221

PLS

The OUT output is set when the axis’ current position is within any of the ON/OFF ranges and
the DABL input is reset. The OUT output is reset when the axis’ current position is in none of
the ON/OFF ranges. It is also reset when the DABL input is set.

Notes:

1. PLS will operate with or without rollover-on-position specified for the axis.
2. The outputs being controlled by PLS are updated every servo interrupt.

3. While the PLS is active, the ON/OFF values may only be modified via the PLS _EDIT
function. Modifying these values by any other means while the PLS is active may cause
outputs to unexpectedly turn on or off. If the DABL input is set or if the EN input has
never been set, the ON/OFF values may be modified by conventional means (i.e. MOVE
function).

4. Do not declare the PLS output point (specified by SLOT and PNT) in the software decla-
rations.

2-222 Chapter 2 Function/Function Block Description

PLS_EDIT

PLS _EDIT
Programmable Logic Switch Editor Motion/MOVE_SUP
pis eprT | Imputs: EN (BOOL) - enables execution (one-shot)
JEN oKL POSN (Array of STRUCTURE) - list of ON/OFF posi-
tions
4 POSN -
{1NDX i INDX (USINT) - index of ON/OFF positions to change
{on | ON (DINT) - new ON position
J0FF OFF (DINT) - new OFF position

Outputs:OK (BOOL) - execution completed without error

The PLS EDIT function is used to edit an ON/OFF pair of values used by a PLS function while
PLS is active. Since the PLS function accesses the ON/OFF values on an interrupt basis, the
ladder must not attempt to change these values with any other function (i.e. MOVE function)
while PLS is active. PLS_EDIT will protect the integrity of the ON/OFF values when changing
them.

The EN input enables execution of the function.

The POSN input is the array of structures containing the list of ON/OFF positions. The array
of structures must be in the following format:

POSN STRUCT (0..n-1)
.ON DINT
END STRUCT

(where n = number of ranges)

The INDX input specifies the ON/OFF range to edit. Valid input values are 0 through 254.
The ON input specifies the new value for the ON position of the range.
The OFF input specifies the new value for the OFF position of the range.

The OK output indicates the function executed successfully.

Chapter 2 Function/Function Block Description 2-223

POSITION

POSITION

Position

Motion/MOVE

posiTion | Imputs: EN (BOOL) - enables execution (One-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or time)
IAXIS QUEL RATE (UDINT) - feedrate at which motion occurs
pate (entered in LU/MIN)
1pos POS (DINT) - indicates absolute position endpoint
(entered in LU)

Outputs:OK (BOOL) - execution completed without error
QUE (USINT) - number of position move for queue

The POSITION function moves an axis to an endpoint at a specified feedrate.
When the position move is used with a time axis, the S_CURVE function must be
called first.

2-224

Chapter 2 Function/Function Block Description

P_ERRORS

P_ERRORS
Programming Errors Motion/ERRORS

p errors | Imputs: EN (BOOL) - enables execution

JEN oK AXIS (USINT) - identifies axis (servo)

AXIS ERRSL Outputs: OK (BOOL) - execution completed without error
ERRS (WORD) - identifies errors

The ERRS output on the P_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error.

High byte Low byte

The programming errors listed in the tables below can be divided into two catego-
ries--those connected to the FAST QUE function and those connected to the mas-
ter/slave moves.

Note: The P_ERRORS can also be viewed from the tune section of the Servo
setup program.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error. The “E” is what appears on the tune screen in Servo
setup.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

The first error listed (bit location 8 of low byte) is connected to the FAST_QUE
function. The remaining errors are connected to the master/slave moves.

Chapter 2 Function/Function Block Description 2-225

P_ERRORS

Programming errors (Low byte)

was too big to fit into 32 bits.

Bit Location Hex *
Error Description (low byte) Value
(Decimal)
87654 BR (in LDO)
The FAST axis in [The axis traveled more than 65,535 FU E 8080
the FAST_QUE [in the opposite direction of the value (32896)
function moved too |entered in DIST of the FAST_QUE
far in wrong direc- [function.
tion
Profile number not [Data for a profile move is not valid. E 8040
found (32832)
Master axis not This error can occur when using the E 8020
available FAST_QUE function or the functions (32800)
for master/slave moves (RATIO_GR,
RATIOSYN, or RATIOPRO). The
conditions that can set this bit:
1. Master axis or fast axis not initial-
ized
2. Interrupt rates different for axes
3. Axis at slave input is the same as
axis at master input in master/slave|
moves
(not used)
(not used)
(not used)
(not used)
Master start posi- [When the dimension for the lock posi- 8001
tion for lock on tion was converted to feedback units, it (32769)

2-226

Chapter 2 Function/Function Block Description

P_ERRORS

Programming errors (High byte)

Bit Location Hex*
Error Description (high byte) Value
(Deci-
mal)
6 54 32 |1 (inLDO)
This bit is set whenever any of the 8000
remaining 15 bits is set. (32768)
(not used)
(not used)
(not used)
Master axis beyond [The master axis is beyond its starting E 8800
start point point for a ratio move. (34816)
Slave axis beyond [The slave axis is beyond its starting E 8400
start point point for a ratio move. (33792)
Master distance not [When the master distance is converted E 8200
valid to feedback units, it is greater than 16 (33280)
bits.
Slave distance not [When the slave distance is converted to E 8100
valid feedback units, it is greater than 16 (33024)
bits.

*When more than one error occurs, the hex values are OR’d. For example, if 8100
and 8200 occur, the result is 8300 hex (33536 decimal)

Chapter 2 Function/Function Block Description

2-227

P_RESET

P RESET
Programming Reset Motion/ERRORS

p reseT | Imputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oKl AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

Use the P_RESET function to reset any programming errors that occur.

2-228 Chapter 2 Function/Function Block Description

Q_AVAIL?

Q_AVAIL?
Queue Available? Motion/QUE
0 AVALL? Inputs: EN (BOOL) - enables execution
E& (')K AXIS (USINT) - identifies axis (servo)
| | Outputs: OK (BOOL) - execution completed without error
ARIS QAVLE QAVL (BOOL) - queue available if set

The queue available function asks the question “Is a queue available for the speci-
fied axis?” If QAVL is set, then a queue is available. If not, no queue is available.

The Q_AVAIL? inquiry cannot be set until the servo loop is closed.

Chapter 2 Function/Function Block Description 2-229

Q_NUMBER

Q NUMBER
Queue Number Motion/QUE

a Noveer | Inputs: EN (BOOL) - enables execution
JEN oK AXIS (USINT) - identifies axis (servo)
AXIS quElL Outputs:OK (BOOL) - execution completed without error

QUE (USINT) - the number of the move in the active
queue

The Q_NUMBER function gives the number of the move that is in the active
queue. A queue number is assigned to each move by the software when the move
function OK output is set. Queue numbers are assigned to the moves sequentially
from 1 to 255. A "0" at the QUE output indicates that there is no move in the
queue.

2-230

Chapter 2 Function/Function Block Description

RATIOCAM

RATIOCAM
Ratio Cam Motion/RATIOMOV
RATIOCAM Inputs: EN (BOOL) - enables execution (One-shot)
1N okl AXIS (USINT) - identifies slave axis (servo)
MAST (USINT) - identifies master axis
IS QUE CAM (ARRAY OF STRUCTURES) - points to the first ele-
MAST ment in the array of structures defining the profile to run
4 CAM NOTE: Each segment of the profile is entered in FUs. If you
1ssTR are entering equal master segments, then you enter a STRUC-
TURE WITH AN ARRAY here.
TUSTR SSTR (DINT) - Slave starting point in LU
10PN If SSTR is outside the range of -536,870,912 to 536,870,911
FU, the OK will not be set.

MSTR (DINT) - Master starting point in LU
If MSTR is outside the range of -536,870,912 to 536,870,911
FU, the OK will not be set
OPTN (WORD) - provides four options: repeat, ignore mas-
ter start, ignore slave start, equal master segments

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of the cam profile move for the
queue.

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types available:
1.A servo axis
(Range of numbers available to enter at MAST for servo axes is |
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2.A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides the
ability to generate velocity profiles. It is set up and monitored using the
S_CURVE function and/or variables 1, 6, 12, and 26 with the READ_SV
and WRITE_SV functions.

3.A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is 49
through 64.)
A digitizing axis must be set up with the Servo setup and tuning program.

Chapter 2 Function/Function Block Description 2-231

RATIOCAM

With RATIO_GR and RATIOSYN functions, the slave distance/master distance
ratio is constant.

With the RATIOCAM function, the slave distance/master distance ratio can vary in
steps or segments over the course of the profile as shown below in
Figure 2-9.There are 10 segments in the example profile.

NOTE: Each square equals 10 feedback units.

In each individual segment, you define the slave distance/master distance ratio by
determining how far the slave axis will move while the master axis covers its seg-
ment distance.

The master moves five units in each segment (NOTE: It is not required that the
master axis move the same distance each segment).

Figure 2-9. A ratiocam profile with 10 segments

2 Slawve Distance
E
e [area under the curve)
1 2 3 4 g E T b1) 10
Mazter Distance RREEL ol

An example of a profile where the master distance varies over the course of the
ratiocam profile is shown in Figure 2-10.

Figure 2-10. A ratiocam profile with 9 segments

Rario

ave Distance
[=wea under the cure)

Master Distance [——

An example of a profile where the slave axis is moving in a negative direction dur-
ing the last four segments of the ratiocam profile is shown in Figure 2-11.

2-232 Chapter 2 Function/Function Block Description

RATIOCAM

Figure 2-11. A ratiocam profile with 10 segments

Slave Distance
[aresunder the curve]

raster Distance

Ratia

AR Ol

The SSTR, MSTR, and OPTN inputs

When the SSTR input is used, it defines the slave axis position at the beginning of
the profile.

When the MSTR input is used, it defines the master axis position at the beginning
of the profile.

The OPTN input provides the following options.

Bit# Option Binary Value Hex Value
Entered

0 Repeat profile 00000000 0001
00000001

1 Ignore master start 00000000 0002
00000010

2 Ignore slave start 00000000 0004
00000100

3 Equal master segments* 00000000 0008
00001000

*The Equal master segments option can be used if the master distance for each
segment is the same. It provides a way of saving memory. Instead of entering an
array of structures to hold the profile data, you enter a structure with an array.
Information on equal master segments can be found at the end of this RATIOCAM
description.

If you want the profile to repeat continuously, bit O is set.

If you choose to ignore the master start (bit 1 set), any value you enter in MSTR
has no effect. The cam profile will begin executing as soon as the function is
called. During the first cycle, the slave axis may be located within the profile
depending on its current position and the value in SSTR.

Chapter 2 Function/Function Block Description 2-233

RATIOCAM

If you choose to ignore the slave start (bit 2 set), any value entered in SSTR has no
effect and the profile will execute at the beginning when the master axis reaches its
starting point (MSTR).

If you choose to ignore both MSTR and SSTR (bits 1 and 2 set), the profile will
execute immediately at the beginning from wherever the master and slave axes are
currently located.

The four examples that follow illustrate
what affect ignoring or using the SSTR and
MSTR inputs via OPTN have on what the
beginning position for each axis will be.

7

100

Three segments of a ratiocam profile -

(shown on the right) will be used in each Begnng <t
example. The master axis moves 100 units
in each segment. The slave axis moves 50,
75, and 100 units in the first, second, and
third segments respectively.

profle

e

a0
Hae D5 s

!

!

L

g |

100

M e Dlstancs

LUTRLTRLS:

Example 1 - Ignore SSTR and MSTR

Entering a 7 in the OPTN input sets all three bits. The value at the SSTR and
MSTR inputs (xxx) will be ignored. The profile will repeat, the master start will
be ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the axes lock on immediately and the
slave begins moving. The current positions of the axes become the positions at the
beginning of the profile.

RATIOCAM Current Axes Positions Portion of Cam Profile
Slae s
XX S5TR
: P l1on 1m0
X%% - MSTR Slave Axis @ 100
7 L OPTH Master Axis @ 400]
.
0
LA s Sae Ol fancs
Pos 100 | | |
4 W0 B0 W "?“
| |
wm o D m
Mzt Dl dance [——
2-234 Chapter 2 Function/Function Block Description

RATIOCAM

Example 2 - Ignore SSTR

The value in the SSTR input is ignored since a 5 has been entered in the OPTN
input setting bits O and 2. The profile will repeat, the master start will not be
ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the master must move from its current
position to 100 (the MSTR value) before lock on occurs and the slave begins mov-
ing. The positions at the beginning of the profile are the MSTR value for the mas-
ter axis and the current position (100) for the slave axis.

RATIOCAM Current Axes Portion of Cam Profile
Positions
XA S5TR e ol
‘ P 1o 1m0 et
00— MSTR Slave Axis @ 100 |
§ | OPTH Master Axis @ 50 10
75
"
Pt s Hane Ol e
P 100 | | |
00 o 0 a0 "?“
| |
wo Do T qm
Pk Dlsdance [——

Example 3 - Ignore MSTR

The value in the MSTR input is ignored since a 3 is entered in the OPTN input set-
ting bits 0 and 1. The profile will repeat, the master start will be ignored, and the
slave start will not be ignored.

When the RATIOCAM function is called, the slave is at 150 within the profile.
Lock on occurs immediately and the slave begins to move. The beginning posi-
tions of the axes are based on the value in SSTR (50) for the slave axis and the cur-
rent master position minus how far the master has moved in the profile (200 - 167)
or 33 for the master axis.

Chapter 2 Function/Function Block Description 2-235

RATIOCAM

RATIOCAM Current Axes Positions Portion of Cam Profile
50 - S5TR Sae s Current Poson o
Pior 1400 S s
xx | MSTR Slave Axis @ 150%* 10
3 - OPTH Master Axis @ 200

X
0
| |
wr oo U o
M def D fance

RR] - 155

Example 4 - Use both SSTR and MSTR

The SSTR and the MSTR inputs are not ignored. A 1 is entered in the OPTN input
setting bit 0. The profile will repeat, the master start will not be ignored, and the
slave start will not be ignored.

When the RATIOCAM function is called, the slave is at 250 within the profile.
The master axis is at 100 and must move to 425 within the profile to lock on. The
beginning positions of the axes at the start of the profile are based on the value in
the SSTR (50) and the MSTR (150) inputs .

RATIOCAM Current Axes Positions Portion of Cam Profile
Sane s
50 - S5TR P (100 C;r%ﬂ;:epﬁ;:tﬂ a1
160 | MSTR Slave Axis @ 250*
1 | OPTH Master Axis @ 100

g |
Mz def DIl dances

100

LLTRE A L

*Typically, the position of the slave axis in examples 3 and 4 must be within the
profile (> 50), unless rollover on position is on.

2-236 Chapter 2 Function/Function Block Description

RATIOCAM

Other characteristics of the ratiocam move include:

o Affects the slave axis only.

e The slave axis may be a master axis to another axis.

e More than one slave axis may be connected to the master axis.
e The master axis may be a servo, a time, or a digitizing axis.

o [f the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

o If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SYV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOCAM function.

¢ Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

e Starting points for the master axis and slave axis may be entered.
¢ Both the master and slave axes must be at the same interrupt rate.
e Registration can be used with the RATIOCAM function.

e The ratiocam function move will repeat continuously if the repeat option is
set until either the move is aborted or a REP_END function is called. With
the abort move function, the move will stop wherever it is in the profile.
With the repeat end function, the move will stop at the end of the current
profile.

A new ratio cam profile can then be called.

Chapter 2 Function/Function Block Description 2-237

RATIOCAM

e Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Slave axis beyond start point (P-error) [Slave start value out of range,
current slave position is not within profile, not ignoring slave start with
both queues not available (NOTE: Rollover on position will not be
used by the servo software to correct this condition.)]

4. Master axis beyond start point (P-error) [Master start value out of range
or master axis beyond start point]

5. Slave axis (AXIS) not initialized during setup

e An E-error will occur if there is a slave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ERRORS
function.

To ensure that this E-error will not occur, calculate the worst case for your
application as explained below. With feedback units equal to ladder units,
master distance/interrupt (velocity) X largest slave array value<32 bits

Creating a profile with an array of structures

NOTE

An array of structures is always used to create the ratio cam profile if
the master distance varies with each segment. It can also be used if
the master distance for each segment is equal as shown in the example
that follows. However, if you want to save memory, you can set op-
tion bit 3 and enter a structure with an array.

Each segment or step in the cam profile is defined by you in PiCPro by creating an
array of structures in the software declarations table. (More information on arrays
and structures can be found in the Software Manual.)

There are two members of the structure--the master distance and the slave dis-
tance. These distances are entered in feedback units. Each element in the array
represents the master distance and the slave distance for one segment of the cam
profile.

In order to create the array of structures, you need to know:

1. The master distance and the slave distance for each segment. The table on the
left that follows contains this information for the example in Figure 2-9.

2. The number of segments the profile contains.

2-238 Chapter 2 Function/Function Block Description

Note:

RATIOCAM

Add “1” to this number to calculate the length of the array you will

declare. For the example which contains 10 segments, the length of the
array is “11” as seen in Figure 2-9. The servo software uses the first ele-
ment in the array to determine the size of the profile.

The table below on the right contains the array information for the example in
Figure 2-9.

DISTANCE DATA FOR EXAMPLE ARRAY DATA FOR EXAMPLE
PROFILE PROFILE
Segment # | Master Slave Element | .Master (FU) | .Slave (FU)

0 +11%* +0*

1 50 100 1 +50 +100

2 50 200 2 +50 +200

3 50 350 3 +50 +350

4 50 450 4 +50 +450

5 50 550 5 +50 +550

6 50 450 6 +50 +450

7 50 350 7 +50 +350

8 50 250 8 +50 +250

9 50 150 9 +50 +150
10 50 50 10 +50 +50

*See note that follows.

NOTE

Remember that the first element (0) in the array determines the size
of the cam profile.

The .MASTER line of the first element must contain the number of
segments in the profile plus one.

It is not necessary to enter any value in the SLAVE line. It will de-
fault to zero.

By entering the name of the array and the first element at the CAM input, the
desired profile can be accessed by the RATIOCAM function.

Chapter 2 Function/Function Block Description

2-239

RATIOCAM

CAUTION

Never attempt to change the values in the array elements while the
move is being executed.

The example below shows how the RATIOCAM function can be entered in your
LDO.

STARTCAM RATIOCAM
iPi EN OK -
1— AXIS QUE——QUE 1
2—— MAST
RCI1 (0)— CAM
0—{ SSTR
0—— MSTR
7—— OPTN
STOP-CAM REP_END
;Pi EN OK [
1+ AXIS

2-240

Chapter 2 Function/Function Block Description

RATIOCAM

Equal Master Segments

If the master distance for all the segments in the RATIOCAM profile is the same,
you can define the profile in the software declarations table with a structure with
an array as shown below in order to save memory.

Structure with an array (if master distance for all segments is equal)

RC1 STRUCT
SIZE INT
MASTER INT
SLAVE INT (0..9)

In this structure with an array,
SIZE is the number of slave segments in the profile plus 2
.MASTER is the master distance for all segments

.SLAVE is an array holding the slave distances for each segment (In this
example, there are 10 slave segments.)

Bit 3 of the option bits must be set when you use this structure with an array.

The array of structures used in the previous examples (shown below) must be used
if the master distance for all the segments varies in the RATIOCAM profile. It can
also be used when the master distance for each segment is equal but it uses more
memory than using the structure with an array above.

Array of Structures (if master distance for all segments varies)

RC1 STRUCT (0..10)
.MASTER INT
SLAVE INT

Chapter 2 Function/Function Block Description 2-241

RATIOPRO

RATIOPRO

Ratio Profile

Motion/RATIOMOV

ratiopro | Imputs: EN (BOOL) - enables execution (One-shot)

EN okl AXIS (USINT) - identifies slave axis to move (servo)
AXIS QUEL MAST (USINT) - identifies master axis

MAST PNUM (USINT) - profile number to be run

PNUM MSTR (DINT) - master start position (entered in LU)
MSTR RPTP (BOOL) - repeat profile

RPTP RVAL (BOOL) - reversal allowed

RVAL BKPR (BOOL) - back to back profiles

BKPR Outputs:OK (BOOL) - execution completed without error

QUE (USINT) - indicates the number of the ratiopro
move for the queue

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types avail-
able:
1.A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2.A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3.A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)
A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

2-242

Chapter 2 Function/Function Block Description

RATIOPRO

Ratiopro function summary

The ratio profile function enables the slave axis to start a ratio move where the
slave axis moves at a variable ratio relative to the position of an independent mas-
ter axis.

When the master axis (MAST) passes through the master start position (MSTR) in
the positive direction, the slave axis will start executing a profile (PNUM). This
profile has been created by you using the PiC Profile program as explained in
Chapter 7.

To run the profile repeatedly, RPTP is set.
To stop a repeating profile the REP_END function is used.

If it is desirable to have the slave axis follow the master axis when the master
reverses direction, then set reversal allowed (RVAL).

If it is desirable to have two different profiles run back to back, set back to back
profile (BKPR). When two profiles are run back to back, the last segment of the
profile in the active queue and the first segment of the profile in next queue is
dropped.

The execution of the function will not be OK if any of the following occurs:

¢ Aninvalid input is entered.

e When the servo software converts your axis units to feedback units in order
to perform its calculations, the number is out of range.

e The queues are full.

A number for the move (QUE) is assigned by the software to identify the move for
the queue.

Profile number

This is the number of the profile made by you using the PiC Profile program that
you want this move to execute. The number assigned to PNUM must be from 1 to
18.

Figure 2-12. User-defined profile

Chapter 2 Function/Function Block Description 2-243

RATIOPRO

IMPORTANT

Be sure to follow the two steps listed below in the order listed when
using profiles:

1. Initialize the servo data.

2. Initialize the profile data by including the profile function in
your LDO before calling the RATIOPRO function that uses
it.

Repeating

Enter the position of the master at which the slave will lock onto the master and be
synchronized. This will be handled during the first segment of the profile.

For example, if you know that the master axis should be at 10,000 units at the end
of the first segment and also it moves 5000 units in that first segment, then the
value entered at MSTR would be 5000 (10,000 - 5000 = 5000).

The slave has to be moved into position before the RATIOPRO move begins. In
this example, you know that the slave should be at 8000 at the end of the first seg-
ment and that it moves 2500 units in the first segment. Then you would use the
position move function to move the slave axis to 5500 (8000 - 2500 = 5500).

profiles

If you want the profile you are using in the RATIOPRO move function to run con-
tinuously, enter a “1” at the RPTP input. What happens when RPTP is set is shown
in Figure 2-13. Note that the first and last segments are dropped when the profile
repeats.

When using repeating profiles, it is important to have the ending ratio of the first
segment match as close as practical the starting ratio of the last segment. This pre-
vents any large steps for the slave axis. This was achieved by dividing segment 4
and 5 in Figure 2-13. If this was not a repeating profile, segments 4 and 5 could
have been one segment.

2-244

Chapter 2 Function/Function Block Description

RATIOPRO

Figure 2-13. Repeating profile

Portion of profile that will be repeated
when repeat profile is selected.

First segment Last segment

The first segment must begin at zero.The last seg-
ment must end at zero. However, if the profile
will be repeated continuously in your application,
it will not include the first and last segment.

To stop repeating profiles, enter a REP_END function.
Reversal of the slave axis allowed

If the RVAL input is set, the slave axis will follow the master axis if it reverses
direction during the profile.

The slave will follow the master in a reverse direction until it reaches the MSTR

dimension. At that point, the slave will stop and the two axes are no longer syn-
chronized. m

If the RVAL input is not set, the slave axis will stop and wait for the master to
move in a positive direction again. It will begin to move forward again when the
master axis position calls for it.

If the master axis reverses back to the MSTR dimension, synchronization is lost.

Chapter 2 Function/Function Block Description 2-245

RATIOPRO

Back to back profiles

It is possible to run two profiles back to back if the BKPR inputis setto a “1.” The
second profile is called in a second RATIOPRO function. When this is done, the
last segment of the first profile and the first segment of the second profile are
dropped as shown below.

Figure 2-14. Back to back profiles

Prafile 1

The lazt zegment from profile 1 and the first segment
from profile 2 are dropped when back o0 back profiles
are nih.

F——— Prfie { Profle 2 ———|

Profiles 1 and 2 run back to back

PATE |

2-246 Chapter 2 Function/Function Block Description

RATIOSCL

RATIOSCL

Ratio Scale

Motion/MOVSUP

ratoscL | Imputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies the slave axis associated
with the scaling (servo)

{AXIS
Iy NUM (INT) - numerator of the scale factor
1oen DEN (INT) - denominator of the scale factor

NOTE: Range for NUM and DEN inputs is less than
70PN +32767 FU.

OPTN (WORD) - set the LSB to zero for slave scaling;
set the LSB to one for master scaling

NOTE: Master and slave scaling are independent. To
scale both, the function must be called twice.

Outputs: OK (BOOL) - execution complete without errors

The RATIOSCL function allows you to scale the slave and/or master axis in
RATIOCAM and RATIOSLP, and the master axis in RATIO_RL moves. The pro-
files generated by these moves will be scaled by the amount defined in the numer-
ator (NUM) and denominator (DEN) inputs to the RATIOSCL function. To turn
off scaling, call this function again with equal numbers entered in NUM and in
DEN.

Ratio move functions called before calling the RATIOSCL function are not
affected by the scaling. Only the ratio move functions called after the RATIOSCL
function will be scaled by the value in NUM and DEN. Scaling will be in effect on
any RATIOCAM, RATIOSLP, and RATIORL move in your program.

Scaling resolution is maintained throughout the profile. An example of the effect
this has is if you have an original profile with equal positive and negative dis-
tances, then the scaled profile will also have equal positive and negative distances.

Chapter 2 Function/Function Block Description 2-247

RATIOSCL

To change the scaling of an already repeating ratio move, follow these steps in
order.

1. Call the RATIOSCL function with a new ratio. This will change the scaling for
subsequent moves.

2. (all the ratio move again. This will queue the move with the new scaling.

3. Call the REP_END function. This will end the first move and blend into the
second profile with the new scaling.

An overflow in the calculations will cause an E-stop error to be set. Overflows can
be caused by a profile segment and/or scaling that is extremely large.

The scaling does not affect the default gear ratio that can be used with the RATIO-
SLP and RATIO_RL functions. Use the NEWRATIO function to change the
default gear ratio value.

It is important to remember that the scaling affects the master/slave relationship,
not the individual axes. Multiple slave axes following the same master can each
have different master scaling.

With slave scaling, the slave distance is multiplied by the scaling factor. With
master scaling, the master distance as viewed by the slave is multiplied by the scal-
ing factor as it occurs. This is illustrated by the examples for a RATIOCAM and a
RATIOSLP move that follow.

2-248

Chapter 2 Function/Function Block Description

RATIOSCL

Ratio Cam Profile

The RATIOCAM move with no scaling is shown on the left. When you enter a 2/
1 slave scaling factor as shown in the center, each original slave distance is multi-
plied by the scaling factor of 2/1. When you use a 2/1 master scaling factor as
shown on the right, the slave axis views the actual master travel as multiplied by
the scaling factor of 2/1 as it occurs; i.e., a master travel of 50 counts is actually the
100 counts of the profile.

RatioCam RatioCam RatioCam
No scaling Effective profile with slave Effective profile with
scaling (2/1) master scaling (2/1)
5
5
5 400
5 5 300 3 200
5 3 200 200 5 [150
150

M 100 100 100 M 100 100 100 M50 5050

Chapter 2 Function/Function Block Description 2-249

RATIOSCL

Ratio Slope Profile

The RATIOSLP move with no scaling is shown on the left. When you enter a 2/1
slave scaling factor as shown in the center, each original slave distance is multi-
plied by the scaling factor of 2/1. When you use a 2/1 master scaling factor as
shown on the right, the slave axis views the actual master travel as multiplied by
the 2/1 scaling factor as it occurs; i.e., a master travel of 50 counts is actually the
100 counts of the profile.

Ratio Slope Ratio Slope Ratio Slope
No scaling Effective profile with slave Effective profile with
scaling (2/1) master scaling (2/1)
4.0 4.0
2.07 2.0 2.0
5 3 3 5
1.04 5 5 1.0 300 | 400 | 200 104120 5
3 201 5
150 | 200 | 100 10
M 100 100 100 b 100 100 100 b SO S0 50

2-250 Chapter 2 Function/Function Block Description

RATIOSLP

RATIOSLP

Ratio Slope Motion/RATIOMOV

RATIOSLP Inputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies the slave axis (servo)

IAXIS QUEL MAST (USINT) - identifies the master axis the slave

st axis follows

lsipE SLPE (ARRAY OF STRUCTURES) - data to define the
profile

{MSTR) .)
MSTR (DINT) - Master starting point entered in LU

10PTN If MSTR is outside the range of -536,870,912 to

536,870,911 FU, the OK will not be set.

OPTN (WORD) - provides two options: repeat and
ignore master start

Outputs:OK (BOOL) - execution complete without errors
QUE (USINT) - number of the RATIOSLP move for the

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

Chapter 2 Function/Function Block Description 2-251

RATIOSLP

The RATIOSLP function is similar to the RATIOPRO and RATIOCAM func-
tions. It allows a ratio to be established between a slave axis and a master axis
which varies over the course of the profile. The table below compares the three
types of moves.

Comparison of RATIOSLP, RATIOCAM and RATIOPRO

RATIOSLP RATIOCAM RATIOPRO
Setup |Array of structures in |Array of structures in lad- |Axis profile setup with
ladder der PiCPFL editing program
Structure members Structure members
Master distance Master distance
Slave distance Slave distance
Slope
Starting ratio
Flags
Limit of M/S [16-bit (FU) 16-bit (FU) 32-bit (FU)
distances/
segment
Profile [Ratios can change lin- [Ratio is constant within [Ratios can change linearly
ratios [fearly within each seg- each segment. within each segment.
ment.
S | A AT
Ending ratio of previous
Ending ratio of previous segment must equal start-
segment does not have to ing ratio of next segment.
equal starting ratio of
next segment.
Default [Has a default ratio of 1:1|No default ratio No default ratio
ratio (Can change default with
NEWRATIO function)

2-252 Chapter 2 Function/Function Block Description

RATIOSLP

With the RATIOSLP function, the slave distance/master distance ratio can vary
linearly in segments over the course of the profile.

The data required for creating a slope profile is entered in an array of structures at
the SLPE input of the RATIOSLP function. More information on this is covered
in the sections on the RATIOSLP structure members and Creating an array of
structures.

The master starting point is entered in the MSTR input. The profile will begin exe-
cuting at the beginning with the master and slave axes locked on when the master
reaches its starting position.

Note: If the ratio slope move is queued with no master starting position and the
master axis is moving in the opposite direction of that indicated in the pro-
file segments, the direction of the master will have to be reversed and the
accumulated distance covered before the move will execute.

The OPTN input provides the following options:

Option Binary Value Hex Value
1. Repeat profile 00000000 00000001 0001
2. Ignore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit O is set. If bit O is not set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered in
MSTR has no effect. The slope profile will begin executing as soon as the func-
tion is called.

Other characteristics of the ratio slope move include:

Affects the slave axis only.

The slave axis may be a master axis to another axis.

More than one slave axis may be connected to the master axis.

The master axis may be a servo, a time, or a digitizing axis.

If the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

Chapter 2 Function/Function Block Description 2-253

RATIOSLP

If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOSLP function.

Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

An individual segment of the profile may pass through zero. Segment 3 in
the profile on the left passes through zero to cover the slave distance
(shaded areas). The profile on the right uses two segments to accomplish
the same thing.

Segment passing through zero Two separate segments

RRIE 53]

The starting point for the master axis may be entered. If the move is queued
with no master start and the master axis is moving in the opposite direction
as defined by the profile segments, the distance will be accumulated. This
distance must be recovered before motion will start.

Both the master and slave axes must be at the same interrupt rate.
Registration can be used with the RATIOSLP function.

The profile can be changed on the fly by queuing up a new ratio slope move
and aborting the current one. Any remainder from the previous move is
cleared.

The default ratio of the function is executed whenever an empty segment is
encountered and/or the flag is set. The default ratio is 1:1. This can be
changed with the NEWRATIO function.

NOTE: It is possible to set up a default ratio with no motion on the slave
axis by entering a 0 in the SDST input of the NEWRATIO function.

The ratioSLP function move will repeat continuously if bit O of the OPTN
input is set until either the move is aborted or a REP_END function is
called. With the abort move function, the move will stop wherever it is in
the profile. With the repeat end function, the move will stop at the end of
the current profile.

2-254

Chapter 2 Function/Function Block Description

RATIOSLP

e Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Master axis beyond start point (P-error) [Master start value out of
range or master axis beyond start point]
4. Slave axis (AXIS) not initialized during setup

e An E-error will occur if there are calculation errors during runtime. The hex
code 0004 indicates this error on the ERRS output of the E_ERRORS func-
tion.

Chapter 2 Function/Function Block Description 2-255

RATIOSLP

RATIOSLP structure members

The five members of the structure required for the array of structures at the SLPE
input are described below.

MASTER INT The MASTER member specifies the distance (in
(master distance) Range -32768 to feedback units) the master travels during a seg-
32767 FU ment. The values of the master distance entered

in feedback units must all be the same sign for
each segment.

SLAVE INT The SLAVE member specifies the distance (in
(slave distance) Range -32786 to feedback units) the slave travels while the master
32787 FU travels its distance during a segment. The values

of the slave distance entered in feedback units can
be either sign.
SLLOPE DINT he SLOPE member specifies the slope of the seg-
(slope) Range -2147483648 ment.
t0 2147483647 scaled
by 92
(Range -127 to 127
unscaled)

SRATIO DINT The SRATIO member specifies the starting ratio
(starting ratio) Range -2147483648 of the segment.
t0 2147483647 scaled
by 9
(Range -127 to 127
unscaled)

2-256 Chapter 2 Function/Function Block Description

RATIOSLP

FLAGS DWORD (32 bits; 0-31)
(flags)

31302928 272625 2423222120191817 1615 141312 1110 9 8 7 6 5 4 3 2 1 0

Bit 1:

0 = copy a 0 to bit O after segment
execution;

1 = copy a 1 to bit O after segment
execution

Bit 0:
0 = execute valid data for segment;
1 = execute default ratio

If bit is set to 0, the segments of the slope profile will execute in sequence as
entered in the array of structures.

If bit O is set to 1, the segment is considered empty. The default ratio will be in
effect until bit O is set to 0 and a valid slope profile data is entered in the array
of structures.

NOTE: The default ratio of the RATIOSLP function is 1:1. The NEWRATIO
function allows you to change the default to another value.

As each segment completes its execution, whatever value is in bit 1 is copied
into bit 0.

All remaining bits (2-15) should be set to zero.

Chapter 2 Function/Function Block Description 2-257

RATIOSLP

Working with the FLAGS member

The FLAGS member of the structure provides the capability of using the default
ratio with the RATIOSLP function. Once the default ratio is running it is possible
to use the array of structures like a rotary queue with data moving in from the lad-
der and out via servos in sequence.

Bit1 Bit0 Example

0 0 [With both bits set to zero, the RATIOSLP function will

execute like RATIOCAM. If repeat is set on the OPTN
input, the profile will repeat continuously. \/l\ /]\
| ~

1 1 [With both bits set to one, the RATIOSLP function will
execute at the default ratio until the ladder places datain ~ Default
the array of structures and clears bit 0. Ratio

L T,

When each segment of the profile completes its execution, whatever is in bit 1 is
copied into bit 0.

NOTE: Whenever the default ratio is used, set the reversal not allowed flag using
variable 21 of the WRITE_SV function before calling the RATIOSLP function.

2-258 Chapter 2 Function/Function Block Description

RATIOSLP

Creating a profile with an array of structures

Each segment in the slope profile is defined by you in PiCPro by creating an array
of structures in the software declarations table. (More information on arrays and
structures can be found in Chapters 2 and 3. See also the RATIOCAM function.)

There are five members of the structure--the master distance, the slave distance,
the slope, the starting ratio, and flags. Each element in the array represents these
five items for one segment of the slope profile.

In order to enter the data for the array of structures, you need to know:
1. The master distance, the slave distance, the slope, the starting ratio, and the
ending ratio for each segment.

2. Whether or not you want to turn the array of structures into a rotary queue
and make use of default ratio capability. This is done with the FLAGS
member of the structure.

3. The number of segments the profile contains. NOTE: Add "1" to this num-
ber to calculate the length of the array to determine the size of the profile.

Chapter 2 Function/Function Block Description 2-259

RATIOSLP

Example

A simplified example of a ratio slope profile is shown in Figure 2-15. It has six
segments.

Figure 2-15. Slope profile

£
|

& |

Ratio e Dietner
=

=)

haster Distance
=y | {10y | LI | ey | =y | Lt |

MOTE E2ch duslon on e horlzoni ads equals 100unlt.

Each doslon on hewerical ads equals unil ARl 4]

For each individual segment, you determine how far the slave axis will move while
the master axis covers its segment distance. This establishes the slave distance/
master distance ratio for the segment. You also need to know the starting ratio of
each segment. With this information, an ending ratio can be calculated. Once this
is known, the slope for the segment can be calculated.

2-260 Chapter 2 Function/Function Block Description

RATIOSLP

The following steps illustrate how to determine this data for one segment from the
profile as shown in Figure 2-16.

Figure 2-16. Segment 3 of the ratio slope profile

o ER- SF
-
shring
A0SR e
o
E-' by
& ER- o S
g
=
X
R der s dancee ()
AR]

Step1. Master Distance - The master distance for segment 3 is 500 units.

Step 2. Slave Distance - The slave distance is determined by calculating the area
under the curve. This is 4000 units.

Step 3. Starting Ratio - The starting ratio frozgn the vertical axis is 6.
The starting ratio must be scaled by 2 or 16777216 before entering the
array element.

6 x 224= 100663296

Step4. Ending Ratio - The ending ratio is calculated from the following formula:

28 2 x 4000
ER = M—SR—(500 —6)— 10

where:

ER = ending ratio

S = slave distance
M = master distance
SR = starting ratio

Note: The ending ratio is needed in order to calculate the slope. It is not entered
into the structure.

Chapter 2 Function/Function Block Description 2-261

RATIOSLP

Step5. Slope - The slope is calculated from the following formula.

_ ER-SR
Slope = v
10 -8
Slope = 500
Slope = .004

The slope must be scaled by 2" or 16777216 before entering in the array element.

0.004 x 224 = 67109

DATA REQUIRED FOR RATIO SLOPE PROFILE
Segment # 1 2 3 4 5 6
Master 500 1000 500 500 500 500
Slave 1500 6000 4000 3000 2500 2500
Slope 012 0 .008 -.008 .008 -.008
Starting 0 6 6 8 3 7
Ratio
(Ending (6) (6) (10) 4) (7 3)
Ratio*®)

*The ending ratio is needed in order to calculate the slope. It is not entered into the
structure.

2-262 Chapter 2 Function/Function Block Description

RATIOSLP

DATA TO ENTER INTO ARRAY OF STRUCTURE
Element #| 0 1 2 3 4 5 6
Master 7 500 1000 500 500 500 500
Slave 0 | 1500 6000 4000 3000 2500 2500
Slope 0 | 67108 0 134218 -134218 134218 -134218
(Scaled)
Starting 0 0 100663296 | 100663296 |134217728| 50331648 | 117440512
Ratio
(Scaled)
Flag 0 0 0 0 0 0 0

IMPORTANT

Remember that the first element in the array determines the size of the

profile.

The .MASTER line of the first element must contain the number of
segments in the profile plus one.

It is not necessary to enter any value in the remaining lines. They will

default to zero.

By entering the name of the array and the first element at the SLPE input, the
desired profile can be accessed by the RATIOSLP function.

CAUTION

Never attempt to change the values in the array elements while the
move is being executed unless the rotary queue is in effect.

Chapter 2 Function/Function Block Description

2-263

RATIOSYN

RATIOSYN
Ratio Synchronization Motion/RATIOMOV

RATIOSYN Inputs: EN (BOOL) - enables execution (One-shot)
1N okl AXIS (USINT) - identifies the slave axis which will
move at a constant ratio depending on the master axis
{AXIS QUEF
movement (servo)
UAST MAST (USINT) - identifies the master axis that the
18DST slave axis is to follow
el SDST (DINT) - (slave distance) indicates the distance
4SSTR the slave should move for each MDST distance
{MSTR (entered in LU%)

MDST (DINT) - (master distance) indicates the dis-
tance the master axis will move during each SDST
(entered in LU¥)

*NOTE: The range of values entered in SDST and
MDST is -536,870,912 to 536,870,911 FU excluding 0.
If you are using ladder units be sure they do not exceed
this range when converted to feedback units.

SSTR (DINT) - Slave starting point entered in LU
If SSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

MSTR (DINT) - Master starting point entered in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of ratio syn move for queue

The ratio syn move function, like the ratio gear move, establishes a constant ratio
between a slave axis and a master axis.

In addition, a positional relationship between the master and slave is defined. The
master starting point (MSTR) and the slave starting point (SSTR) are entered. The
sign on the number entered in MDST dictates the direction the axis must approach
its starting point.

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

If there is a remainder as a result of the software division, Savedistance o (ot
master distance

ware includes it in its calculations preventing any drifting from the desired ratio.

2-264 Chapter 2 Function/Function Block Description

RATIOSYN

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis

(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

The ratiosyn move is similar to the ratio
gear move in that the gears will move at a

A. Mechanical Representation constant ratio. In addition, a positional
relationship between the master and slave
axes is established.

The profile of the move would look like
that shown to the right of example C.
Note that the A, B, and C points corre-
spond to the gear positioning in diagrams
A, B, and C on the left.

When the function is executed (A), the
master is in motion. From A to B in the

profile, the positional relationship is
established.

Master Slave

Chapter 2 Function/Function Block Description 2-265

RATIOSYN

At B, the axes move together and are locked
on. The slave axis began to move at a point

B. that ensured that it will reach SSTR when the
master axis reaches MSTR.

In the profile, the shaded area represents the
distance the slave moved in anticipation of
, arriving at SSTR when the master reached
MSTR. It represents the difference between
A SSTR and the actual position of the slave. The
slave starts out at the constant ratio.
When the axes arrive at C, their positions are

aligned as shown in C below left. This posi-
tional relationship will be maintained through-
out the move.

Master Slave

Ratio Syn Profile

Constant rakio

5:-&7) 1 P

bsT Pasitional q

2| relationship Slavve Distance

=3 established. \N
l l l l
| | | + | |

A B L

Move started Lock on MSTR
haster Distance

Master Slave RRIELEL0

2-266 Chapter 2 Function/Function Block Description

RATIOSYN

Some characteristics of the ratio syn move include:

o Affects the slave axis only.

e The slave axis may be a master axis to another axis.

e More than one slave axis may be connected to the master axis.
e The master axis may be a servo or a digitizing axis.

e If the master axis reverses direction, the slave will follow.

¢ Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has the same affect as making both signs posi-
tive.)

e Starting points for the master axis and slave axis are entered. (See the
explanation that follows for conditions necessary to ensure that a ratio syn
move will begin.)

e Both the master and slave axes must be at the same interrupt rate.
e The ratio can be changed on the fly by using the NEWRATIO function

Master and slave axes starting points

For a RATIOSYN move to occur, the slave axis must start at a point so that when
the master axis arrives at the value entered in MSTR, the slave axis will be at the
value entered at SSTR. The following guidelines ensure that this will happen.

e Both axes must be below their respective starting points.

e The master axis must be moving in the correct direction to reach its starting
points. Direction is defined by the sign of the number entered in MDST.

e The master axis must be a greater distance from its MSTR position than the
slave axis is from its SSTR position.

When you enter a value in SSTR, the software uses that information plus what it
knows about the slave’s actual position to calculate the ratio syn starting position
for the master. Several examples of how the master start is calculated follow. The
first three follow the guidelines listed above.

Examples 4 and 5 show the effect of rollover on position in allowing the guidelines
to be “stretched.”

Chapter 2 Function/Function Block Description 2-267

RATIOSYN

Example 1 - Slave axis at SSTR

In this example:
SDST

The slave/master ratio is 1:1. A slave starting point
= 1 (SSTR) of 100 and a master starting point (MSTR) of

MDST _ 1 200 has been entered. The slave axis is at SSTR. In
_ this case, the calculated master start will equal the
SSTR = 100 olue at MSTR.
MSTR = 200
ms (calculated master start) = MSTR
SC (slave current position) = 100 When the master zxis reaches 200, the slave axis
ROP (rollover on position) = Off begins to move. The axes are locked and synchro-

nized.

Figure 2-17. Slave axis at SSTR

This symbol represents
% lock on for the axes.

Slawe
CUFEhE
po=ition

Master Axis

BB 0Ea]

2-268

Chapter 2 Function/Function Block Description

RATIOSYN

Example 2 - Slave axis below SSTR

In this example: The slave/master ratio is 1:1, the slave start is 100

SDST = 1 and a master start is 200. The slave’s current posi-
MDST — 1 tion is 25. The calculation is:

SSTR = 100 ms = MSTR - (SSTR - SC)

MSTR = 200

ms = 200 - (100 - 25)
ms = 125

‘When the master axis reaches 125, the slave axis
will begin to move toward 100 so that when the mas-
ter reaches 200 the slave will be at 100.

SC (slave current position) 25
ROP (rollover on position) = Off

Figure 2-18. Slave axis below SSTR

This symbol represents
@ lock on for the axes.

Slamwe
GUFERt
position

— —r

| [L v b
T [] 1|
o 23 100 200 300 400

Slave Axis
hastar axis

_____ % — —

I I | I A AN NN NN (NN AN N N
T [r [] & 1]
0 100 125 200 a00 400

Mascter Axis
RGO

Chapter 2 Function/Function Block Description 2-269

RATIOSYN

Example 3 - Slave/master ratio in not 1:1

In this example: Rotary axes will be used to show a ratio of 2:1. The
SDST = 2 slave start is 100 and the master start is 200. The
MDST _ 1 slave’s current position is 25. The calculation is:
SSTR = 100 ms = (SSTR—-SC)xMDST
MSTR = 200 SDST

_(100-25)x 1
SC (slave current position) = 25 ms =)
ROP (rollover on position) = Off

ms = 37.5

ms = MSTR —ms

ms = 200-37.5

ms = 162.5

When the master axis reaches 162.5, the slave axis
will begin to move to 100 so that when the master
reaches 200 the slave will be at 100.

2-270 Chapter 2 Function/Function Block Description

RATIOSYN

Figure 2-19. S/M ratio not 1:1

This symbol represents
lock on for the axes.

270
270

an
ARz i3]

In any of these examples, it would be impossible to perform a ratio syn move if the
slave axis was past SSTR or the master axis was past the calculated master start
position.

However, if rollover on position is applied to the master and/or slave axis, it may
still be possible to lock on and synchronize.

Chapter 2 Function/Function Block Description 2-271

RATIOSYN

Example 4 - Rollover on position on the slave axis; the slave is past the SSTR

In this example: The current slave position is past its SSTR value.
SDST = 1 Without using rollover on position, the ratio syn
MDST = 1 move could not be started.

SSTR = 50 With rollover on position set at 100, the calculated
MSTR = 200 master start is as follows:

ms = MSTR - (SSTR - SC + ROP)

SC (slave current pos%t%on) = 75 ms = 200 - (50 - 75 + 100)
ROP (rollover on position) = 100
(slave) ms = 125
Figure 2-20. ROP on slave; slave past SSTR
| | | | L1 | | |
I I IR N N B
Actual
position —» 0 300 <00
Rollover on 1] 100
position 100 0 100
Slave Axis
Mastar axs
————— — —¥
1 1 1 I N A N N NN NN I N
N N N N N N N N N E N I N
1] 100 125 200 300 <00
Master Axis
RREE Ea|

2-272 Chapter 2 Function/Function Block Description

RATIOSYN

Example 5 - Rollover on position on the master axis; master is past the MSTR

In this example: The current master position is past its MSTR
SDST _ 1 value. Without using rollover on position, the
MDST _ 1 ratio syn move could not be started.
SSTR = 100 With rollover on position set at 200, the calculated
MSTR = 75 master start is as follows:

. ms = (MSTR - MC + ROP) - (SSTR - SC)
SC (SlaVe current pOSltl?l’:l) = 50 ms = (100 _ (100 _ 50))
MC (master current position) = 175 ms =50
ROP (rollover on position) = 200

(master) Since the master is already past 50, A ROP is
added to ms to ensure start.

Figure 2-21. ROP on master; master past MSTR

Actual 400
pasition
Follover an 1 50 7S 200
position 200 —* | |
Master Axis [y~
NOTE

Master and slave offsets will also have an effect on the starting of a
ratio syn move. They would be added into (or subtracted out of) the
calculations with MSTR and SSTR respectively.

Chapter 2 Function/Function Block Description 2-273

RATIO_GR

RATIO GR

Ratio Gear

Motion/RATIOMOV

RATIO_GR| Inputs:
len okl
JAXTS QUE
vasT
{sosT
{vpsT

Outputs:

EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies the slave axis which will move
at a constant ratio depending on the master axis move-
ment. (servo)

MAST (USINT) - identifies the master axis that the slave
axis is to follow (See master axis note below.)

SDST (DINT) - (slave distance) indicates the distance the
slave should move for each MDST distance (entered in
LU*)

MDST (DINT) - (master distance) indicates the distance
the master axis will move during each SDST (entered in
LU*)

*NOTE: The range of values entered in SDST and MDST
is -536870912 to +536870911 FU (excluding O for the
MDST input.) If you are using ladder units, make sure

they do not exceed this range when converted to feedback
units.

OK (BOOL) - execution completed without error
QUE (USINT) - number of ratio gear move for queue

The ratio gear move function establishes a constant ratio between a slave axis
(AXIS) and a master axis (MAST).

NOTE: The master axis cannot be entered in AXIS. This will generate a P-error if

attempted.

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

If there is a remainder as a result of the software division of slave distance divided
by master distance, the software includes it in its calculations preventing any drift-
ing from the desired ratio.

See also RATIOSYN.

2-274

Chapter 2 Function/Function Block Description

RATIO_GR

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

A ratio gear move can be represented
mechanically by two gears as shown on
A. Mechanical Representation the left. The master gear is in motion.

When the function is executed, imagine
the gears moving together as shown in B.
The slave begins its motion from what-
ever position it is at and follows the mas-
ter at a constant ratio until the move is
ended.

The profile of the move would look like
that shown to the right of example B.

Master Slave

Chapter 2 Function/Function Block Description 2-275

RATIO_GR

Ratio Gear Profile
B.
Constant ratio
>
SDST\ 8 |
MDST /] & Slave Distance
X T A I N B
T T T
Maste