PiCPro

Function/Function Block Reference Guide

Part Number 108-31005-00
Version 11.0

Giddings & Lewis

Giddings & Lewis
Controls, Measurement and Sensing

NOTE

Progress is an on going commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change without
notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely
understood. It is the responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921-7100.

108-31005-00
Version 5099

© 1995, 1996, 1997, 1998, 1999 Giddings & Lewis.

IBM is a registered trademark of International Business Machines Corp.

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.

ARCNET® is a registered trademanrk of Datapoint

PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDOMerge, PiCMicroTerm, and PiC Programming Pendant are
registered trademarks of Giddings & Lewis, LLC.

Table of Contents: Function/Function Block Ref.

CHAPTER 1-
PiCPro FUNCtioN/BIOCKS OVEeIVIEW......cueuiermuirrmnsrennsremssrenssrenssrnnssssnssssnssenns 1-1
Introduction 1-1
Arithmetic Category cesessstesssesstesssesstesasessssssssessssesasesessass 1-6
ARITH ZIOUP oottt 1-6
DATETIME SIOUP cooiiiiiiiieeiteetee ettt ettt ettt et 1-7
TRIG GIOUP ceeeeeeiiee ettt et e ettt e e e sttt e e e s abaeeeesabaeeeenas 1-8
Binary Category eeseseeeresensserasrssesarrrsssssarerssessaresssssaressssarnsssssanessessaresssssanesssesanes 1-9
Counters Category ceatesssatesssanesssntesssstessstesastsssastsssasesans 1-10
Datatype Categoryccccceesssancssanscssasccssascssasssssasessnns 1-11
BOOL2ZBYT GIOUDP uiiiiiiiieeiieeeiteeeie ettt ettt ettt ettt e s eesaneeen 1-11
DINTCONY IOUDP coiiiieiiiieiieeeiieeee ettt ettt et sttt e st esaeeeeas 1-12
DWORDOCNY ZIOUP ooiiiiiiiieiieciie ettt eieeeeeeeereeseeeeseesteeesseesseessseesseessseennes 1-13
D_TCONYV GIOUP .eeeeiieiiiieeete ettt ettt ettt ettt e e eeaaee s 1-14
INTCONYV SIOUDP ceeeeiiiieiie ettt ettt ettt e e e e s 1-15
LINTCONYV ZIOUP weeoiiiiieeiiieiieeieeieeteesteeteeseteeeseeseseeseesseessseesssessseesseessseennes 1-16
LREALCNY ZIOUP coiiiiiiiieeiieeete ettt ettt ettt sttt e e e 1-17
LWORDCNY ZIOUP oeiiiiiiieiiieeiieeete ettt ettt ettt ettt st eesibeeeaaee s 1-18
NUM2ZSTR SIOUP oottt ettt e ettt e ettt e e e s ibaeeessaabeeeeenas 1-19
REALCONY ZrOUP oieeieiiieteee ettt ettt ettt et s 1-20
SINTCONYV GIOUDP oottt ettt e e 1-21
SIZEOF IOUP .ooooiiiiiieeiiieiieeie ettt ettt te e tteeveessaeesseessaeesbaessaaesseesaeensaas 1-22
STRCONYV ZIOUP .eiieiiieiiiieeitee ettt ettt ettt e et e st e e st e st eesabeesabeesaes 1-23
UDINTCNYV IOUDP coiiiieiiieeiie ettt ettt ettt ettt st e e s 1-24
UINTCONY ZIOUP coeiieiieeiieeiiecieeeieeteestteete vt e steeeseessaeenbeeseessseesaessseesseensnas 1-25
ULINTCNY SIOUP coeiiiiiiiieeite ettt ettt ettt ettt eibee s s 1-26
USINTCNYV GIOUP ..ttt ettt ettt ettt et e et e st eeiteeeaaee s 1-27
WORDCONYV ZIOUP eviiiieiiieiieeiie ettt st eieesiee vt eseeeebeesteeesseesssesnseesseessseennes 1-28
Evaluate Categorycceeceeernreees .o 1-28
Fbinter Categoryccccceeveecssanccssascssascssancsnns 1-30
Filter Category 1-30
I/0 Category 1-31
ANLGIN GrOUD oottt e ettt e e ettt e e e e ibee e e s sabaeeeenas 1-32
ANLGOUT GIOUP ..ettiiiiiiiiieeiiee ettt ettt ettt st e st e sbt e st e esar e saeeeeas 1-33
BAT_OK? GIOUP...ictiiiiiiiieeiieieeeie ettt et ete e eeesbeeseteebeesteessseesseeessaesseessseenses 1-34
BIO_PERF GIOUP......iooiiiiieiieeiieiie ettt ettt et sveetaessseenseannnas 1-35
COMM Zroup e 1-36
JKTEMP GrOUP coiooiieiieiieeteeeee ettt ettt et ettt e e saae e e sneesbeenes 1-37
NETWORK ZIrOUD .oociiiiiiiiieiiecieeteteeee ettt et e e seae e e e e enes 1-38
PID GIOUD oottt ettt et 1-39
READFDBK ZIOUP .vviiiiiiiieiieeiie ettt ettt eve et e eeaessseesseessseennas 1-40

TOC-1

RTDTEMP GrOUDP oottt ettt e et e e st e e e
SOCKETS IOUP ..eeiiiuiiiieeiiiiieeeeeiitee ettt e e et e e e st e e s saateeessbbaeeessnseeeessnns
STEPPER GrOUDP oottt ettt ettt s e

MOLtiON CALEZOTY .eeccerrercrsarcsssnncssasssssasssssasesssnssssasesssssessasssssasssssasesssssssssssessasssssassssss

DATA GIOUP ceeeeeieieeeeee ettt e e e st e e e st e e s eabbeeeennnee
ERRORS SIOUP .ottt et s
IINTT ZIOUP eeeiieeeiiee ettt e e ettt e e s et e e e st e e e e s abeeeesaseeeeennnne
MOVE IOUP oottt ettt et e e st e e e et e e s s abe e e s sabbeeesnnnee
MOVE_SUP GIOUP .eoiuiiiiiiiieiieeeiteeette ettt et ettt ettt et e st esaaeeeas
QUE GIOUP .eeiieiiiiieeeeieee ettt ettt e et e e e st e e e s sabteeeenbaeeessnsaaeesnnnns
RATIOMOV GIOUP...coutiitiiiiiieiteeieee ettt sttt ettt st
REF GIOUD ettt ettt et e e st e e e
SERC_SLV IOUP oniiiieeieiiiee ettt ettt ettt e e e e e s
SERC_SYS GIOUP oottt ettt e e et e e e e

String Categorycccceeeeenee

TImMers CateZOrYcccccccerercssrercssnrcssssscssssesssasesssssssssesssnes

D, (174 [OF:1 17111 o OO

CHAPTER 2-
Function/Block DescCriptionscccccriiiiiemmmnmnnnnsssmssns s sssssssassnnns

ANLG_OUT ..o
ARTDCHIT ..ot

TOC-2

BIO_PERF ...t e 2-36

BOOLZBYT ... 2-39
BYT2BOOL ...t 2-40
BYTEZDW ..o 2-40
BYTEZLW ..o 2-41
BYTEZSI ...ttt st e 2-41
BYTE2US....ooiiiie e 2-42
BYTE2ZWO ..o 2-42
CAM_OUT ..o 2-43
CAPTINIT ..o e 2-46
CAPTSTAT ..ot 2-52
CLOCK ... 2-53
CLOSE ... e 2-54
CLOSLOOP ... 2-55
CLSLOOPY ...t 2-56
CONCAT ... e 2-57
CONFIG.....ciiiiiie e e 2-58
COORD2ZRL ...ttt s 2-60
GO e e 2-64
CTD et st e 2-64
CTU e 2-65
CTUD ..ot s 2-65
C_ERRORS ... s 2-66
C_RESET ...t s 2-68
C_STOP ..o 2-68
C_STOPT ..o 2-69
DATE2ZSTR ..ot 2-71
DELETE ..ot 2-72
DELFIL ...ttt st 2-73
DINT2ZDW L.t s 2-74
DINTZ2INT ..ot 2-75
DINT2LI ..ot 2-76
DINT2RE ...t 2-77
DINT2ST ..o 2-78
DINT2UDI ..ottt 2-79
DIRECT ..ot s 2-80
DISTANCE ... e 2-82
DIV e 2-83
DT2DATE ...cooiiiiii s 2-84
DT2STR ..o 2-85
DT2TOD ..ot 2-86
DWORZBYT ..ot 2-87
DWOR2DLI ...ttt e 2-88
DWOR2ZLW Lo 2-89
DWORZRE ..ottt e 2-90
DWOR2UDLI ..ottt 291

TOC-3

D_TOD2DT ...ttt ettt ettt ettt ee 2-93
B et et 2-94
B X P ettt ettt e 2-95
E_ERRORS ..ottt 2-96
E RESET ...ttt s 2-98
E_STOP ...ttt et ettt st 2-99
B STOPY ettt ettt ettt e 2-100
FAST_QUE ...ttt st 2-101
FAST_REF ...ttt e 2-103
FB_CLS ettt ettt ettt 2-107
FB_OPN ...ttt e 2-108
FB_RCV ettt e 2-109
FB_SND ...ttt ettt st 2-110
FB_STA ettt ettt et 2-111
FIIND ettt ettt et e b et enaees 2-114
FRESPACE ...ttt e 2-115
FUZLU ..ttt ettt e st 2-115
G ettt ettt ettt et e 2-116
GETDALY .ottt et ettt ettt as 2-117
GR_END ...ttt e 2-118
G ettt ettt st ettt ettt e bt 2-119
HOLD ..ttt ettt ettt 2-120
HOLD_END ...ttt 2-121
INSERT ..ttt ettt ettt et st 2-122
INT2ZDIINT Lttt ettt et st 2-123
INT2ZLINT ..ottt sttt et e 2-124
INT2SIINT Lttt et ettt et e e e e 2-125
INT2UINT Lttt ettt st 2-126
INT2ZWORD ..ottt sttt 2-127
IN P OIS ettt ettt et st 2-128
TO_CEFG ettt ettt 2-129
TPACCEPT ...ttt st 2-130
TPCLOSE ..ttt ettt et st 2-131
TPCONN. ..ttt ettt ettt e bt e et be e st e e b e e e 2-132
TPHOSTID ..ottt st 2-133
TPIP2INAM ..ottt ettt ettt e 2-134
TPLISTEN ...ttt ettt ettt e e 2-135
IPINAM2ZIP ...ttt ettt st st 2-136
TPREAD ..ottt ettt et st 2-137
TPRECYV ettt ettt ettt 2-138
IPSEND ..ottt e 2-139
IPSOCK ...ttt ettt ettt eaes 2-140
IPWRITE ...ttt st ettt 2-141

Overview of Using the Ethernet -TCP/IP Function Blocks..........cccccceeuuene. 2-142

Ethernet-TCP/IP EITOIS.....c..coiiiiiiiiiiiiiiiiceceeteeteceteceee e 2-144

TOC-4

L e s 2-148
LERT ettt ettt et e 2-149
LEN e e 2-150
LIMIT oot 2-151
LINT2DI ..o 2-152
LINT2INT ..o s 2-153
LINTZLR oo s 2-154
LINT2LW oo 2-155
LINT2SI o s e 2-156
LINT2ULL ...ttt 2-157
LN o s 2-158
LIOG .o 2-159
LREAZLL ..o s 2-160
LREAZLW ..ottt st e e 2-161
LREAZRE ...t 2-162
LREAZULL ..ottt 2-163
LT e e 2-164
LUZEFU .ot 2-164
LWOR2BYT ... 2-165
LWOR2ZDW ..o 2-166
LWOR2ZLL....coiiiieeeee e 2-167
LWOR2ZLR ..o 2-168
LWORZULL ..ottt s 2-169
LWOR2WO ..o 2-170
LWR_CASE ... e 2-171
IMAX s 2-172
MEASUREooiiiii s 2-173
MID ..o 2-174
IMIIN ettt sttt ettt et e sb e e e e 2-175
MOD .. e e 2-176
MOVE ... e 2-177
MUL ..o s 2-178
MUK e et e e e 2-179
INE e e 2-180
NEG ..o 2-181
NETCLS ..ot s 2-182
NETEREoooi e 2-183
NETMON ..ot 2-184
NETOPN ...t e 2-185
NETRCV .ot 2-187
NETSND ..ot s 2-189
NETSTA L. 2-191
NEWRATIOoiiiiiii e 2-192
NEW_RATE ..o 2-194
INOT e st 2-195

TOC-5

OPEN ..o 2-197
OPENLOORP.......cociiiiiiiiiiiiccc e 2-199
OR e e 2-200
PART _CLR ...ooiiiii e 2-201
PART_REF ... 2-202
PID ..o e 2-203
P S e 2-214
PLS_EDIT ..o e 2-217
POSITION ..ot 2-218
P_ERRORS ... e 2-219
P _RESET ..o 2-222
QLAVAILT? et 2-223
Q_NUMBER ..o e 2-224
RATIOCAM ... 2-225
RATIOPRO ..o 2-236
RATIOSCL ...t 2-241
RATIOSLP ..ot e 2-245
RATIOSYN .o e 2-258
RATIO_GR ..o e 2-268
RATIO_RL ..o 2-272
READ ..o 2-281
READFDBK ... e 2-283
READ _SV Lo 2-295
READ_SVE L. 2-320
REAL2ZDI ..ot 2-321
REALZDW Lot 2-322
REAL2ZLR ..o 2-323
REAL2ZUDI ..ottt e 2-324
REF _DNE7? ..o 2-325
REF_END ..o 2-326
REGIST .o 2-327
RENAMEoiiiiii e 2-337
REPLACE ..o 2-338
REP_END ..o 2-339
RIGHT ... 2-340
ROL <o 2-341
ROR .. 2-342
R_PERCEN ...t 2-343
SC_INIT ..t e 2-345
SCA_ACKR e e 2-346
SCA_CLOS ..o 2-347
SCA_CTRL ..o 2-348
SCA_ERST ..o 2-351
SCA_PBIT ..o 2-352
SCA_RCYC ..o 2-354

TOC-6

SCA_RECYV .o 2-356

SCA_REF ..o s 2-358
SCA_RFEIT ..o 2-360
SCA_SEND ... e 2-362
SCA_STAT ..o 2-364
SCA_WCYC .. e 2-365
SCR_CONT ... e e 2-366
SCR_ERR ... 2-367
SCR_PHAS ... 2-371
SCS_ACKR ... 2-372
SCS_CTRL .ot 2-373
SCS_RECV . 2-376
SCS_REF ... 2-378
SCS_SEND ..ot 2-380
SCS_STAT ..o 2-382
SERCOS EITOTS ..ottt 2-383
SCURVE e 2-386
SEEK ..o 2-392
SEL e e 2-394
SERVOCLK ...ttt 2-395
SHL L 2-396
SHR e 2-397
SIN e s 2-398
SINT2BYT ... s 2-399
SINT2DI ..o 2-400
SINTZ2INT ..o 2-401
SINT2LI. ..ottt 2-402
SINT2UST ..ot s 2-403
SIZEOF ..o e 2-404
SQRT L 2-406
STATUS e 2-407
STATUSSY Lo 2-408
STEPCNTL......ooiiiiiiiiiiicee e 2-410
STEPINIT ... e e 2-414
STEPSTAT ... 2-416
STEP_CMD ..ot 2-419
STEP_POS ... 2-427
STR2D T ..ot s 2-428
STR2ZNUM ..ottt s 2-429
STR2USL. ..o s 2-430
STRTSERYV ..o 2-431
SUB .. 2-433
SYN_END L. e 2-434
S_ DT DT e 2-435
S DT T e s 2-436
S_ DD e s 2-437

TOC-7

S_TOD_TO ..ottt 2-439
TAN Lo 2-440
TIM2UDIN Lot 2-441
TIMEZSTR ..o 2-442
TME_ERR? ..o 2-443
TOD2ZSTR ... e e 2-444
TOF e e 2-445
TON L 2-446
TP e e 2-447
TUNEREAD ..o 2-448
TUNEWRIToocoiiiiiiii s 2-449
UDIN2DI ..ot 2-452
UDIN2DW L. s 2-453
UDINZRE ...t 2-454
UDIN2TIM ..ottt s s 2-455
UDIN2UT ..ot 2-456
UDINZULLL ..ottt 2-457
UDIN2USI ...t 2-458
UINTZ2INT Lo s 2-459
UINT2UDI ..ottt 2-460
UINT2ULL ... 2-461
UINT2UST ..o 2-462
UINT2ZWO ..o 2-463
ULINZLI ..o 2-464
ULINZLR Lot 2-465
ULINZLW e 2-466
ULINZ2UDI ..ot 2-467
ULINZ2UL oot 2-468
ULINZUST ..o 2-469
UPR_CASE ... e 2-470
USINZ2BY T .o e 2-471
USINZSL..ooi s 2-472
USINZ2STR ..o e 2-473
USINZ2UDLI ...t 2-474
USINZUL ..o 2-475
USINZ2ULL ..ot s 2-476
VEL_END ..ot 2-4717
VEL_STRT ..o 2-478
WORD2ZBYT ..o e 2-479
WORD2ZDW ..ot 2-480
WORDZINT ..ot e 2-481
WORD2ZLW Lo 2-482
WORD2ZUIL ..ottt 2-483
WRITEoiiiiiii s 2-484
WRITE_SV .. 2-485

TOC-8

XOR e 2-487
OL_SER ... A.1-2
OPC_ENET ... B.1-2
LN 10 IND-1

TOC-9

TOC-10

CHAPTER 1

PiCPro Funcition/Blocks Overview

Introduction

Function and function blocks are the programming tools used to perform opera-
tions on data in PiCPro ladder diagram programs. They are similar to the subrou-
tines of other programming languages.

The difference between functions and function blocks is that a function completes
an operation in one scan whereas a function block may take more than one scan to
complete an operation. Therefore, function blocks must have internal storage for
their variables from scan to scan until their operation is complete. You must
declare and assign a name to function blocks in the software declaration table so
that PiCPro can reserve memory for them.

Chapter 1 of this reference manual presents a summary of all the standard func-
tions and function blocks available within PiCPro. This summary will familiarize
you with what is available for programming.

Chapter 2 presents descriptions of all the function/function blocks in alphabetical
order.

NOTE

You must have a math coprocessor (NPX) installed in the control
to perform any functions involving logarithmic, exponential,
trigonometric, and floating point mathematical operations. Some
CPU modules already have an integrated math coprocessor. To
determine if the control has a math coprocessor, start PiCPro for
Windows and select Online | Status. The CPU line contains an
"NPX" if you have a math coprocessor.

Chapter 1 Function/Function Block Description 1-1

All functions and function blocks for PiCPro are stored in libraries according to
the category of operations they perform.The list of the libraries appears under the
Ladder/Functions menu.

Arith
Binary
Counters
Datatype
Evaluate
Fbinter
Filter
Io
Motion
String
Timers
Xclock

NOTE

When you use the UDFB or TASK feature to create your own
function blocks, another category appears called USER as shown
below. This is not a library, but selecting it will bring up a list of
any library you have created to store UDFBs or TASKs.

Arith
Binary
Counters
Datatype
Evaluate
Fbinter
Filter
Io
Motion
String
Timers
USER
Xclock

When you create a Servo or SERCOS setup file, you create a
library to store the setup function in. This library also shows up
in the above list.

When you access a library one of two things happens.

Chapter 2 Function/Function Block Description

You are given a list of all the function/blocks available in that library. You select the
function/block you want to insert into a network of your module from this list.

or

You are given a list of groups into which all the function/blocks have been divided.
You select the group that holds the function/block you want. This brings up the list of
function/blocks in that group and now you can select the one you want to insert into
the network of your module.

Chapter 2 Function/Function Block Description 1-3

The table below shows all the lists that appear when a library is selected. Whether
the list represents groups or function/blocks is indicated.

Table 1-1. Library Lists

Arith Binary Counters Datatype Evaluate Filter
Groups Functions Function Groups Functions Function
blocks Blocks
BOOL2BYT
ARITH AND CTD BYTECONVY EQ FB_CLS
DATETIME NOT CTU DINTCONV GE FB_OPN
TRIG OR CTUD DWORDCNV GT FB_RCV
ROL D_TCONV LE FB_SND
ROR INTCONV LT FB_STA
SHL LINTCONY NE
SHR LREALCNV
XOR LWORDCNV
NUM2STR
REALCONVY
SINTCONV
SIZEQF
STRCONV
UDINTCNV
UINTCONV
ULINTCNV
USINTCNV
WORDCONV
Filter To Motion String Timers (USER)
Functions Groups Groups Functions Function (Libraries)
blocks
ANLGIN DATA CONCAT TOF (Contains
ﬁi%IT é§%68gg Eﬁ??RS EEhETE ¥8N llbrary'hst
MIN BIO_PERF MOVE INSERT when you use
MOVE COMM MOVE_SUP LEFT the UDFB or
MUX JKTHERM QUE LEN
SEL NETWORK RAT IOMOV LWR_CASE TASK fea-
PID REF MID tures_)
READFDBK SERC-SLV REPLACE
RTDTEMP SERC_SYS RIGHT
SOCKETS UPR_CASE
STEPPER
Xclock
Functions
CLOCK
GETDAY
SERVOCLK

When you create SERCOS and/or Servo Setup files, a new library named by you is
added alphabetically to the list of libraries.

In Table 1- 2 the function/blocks found under the groups are shown. When there is
no list of function/blocks shown, there is only one function in that group. Access-

1-4 Chapter 2 Function/Function Block Description

ing that name inserts the function in your network. One example is the

BOOL2BYT function in the datatype group.

Arith groups

Table 1-2.
ARITH DATETIME TRIG
ABS ADT T ACOS
ADD A_TOD_T ASIN
DIV S_DT DT ATAN
MOD S DT T C0S
MUL SDD EXP
NEG S_T0D_T LN
SQRT S_TOD_TO LOG
SUB SIN
TAN
Datatype groups
BOOL2BYT BYTECONV DINTCONV DWORDCNV D_TCONV INTCONV LINTCONV LREALCNV LWORDCNV
BYT2BOOL DINT2DW DWOR2BYT DATE2STR INT2DINT LINT2DI LREAZ2LI LWOR2BYT
BYTE2DW DINT2INT DWOR2DI DT2DATE INT2LINT LINT2INT LREAZLW LWOR2DW
BYTE2LW DINT2LI DWOR2LW DT2STR INT2SINT LINT2LR LREAZRE LWOR2LI
BYTE2SI DINT2RE DWOR2RE DT2T0D INT2UINT LINT2LW LREA2ULI LWOR2LR
BYTE2USI DINT2SI DWOR2UDI D_TOD2DT INT2WORD LINT2SI LWOR2ULI
BYTE2WO DINT2UDI DWOR2WO TIM2UDIN LINT2ULI LWOR2WO
TIME2STR
TOD2STR
INUM2STR SIZEOF IREALCONV SINTCONV |STRCONV |UDINTCNV |UINTCONV ULINTCNV [USINTCNV IWORDCONV
REAL2DI SINT2BYT| [STR2D T UDINZDI UINT2INT| [uLINgL USINZBYT| [WORD2BYT
REALZDI SINT2DI STR2NOM UDINZDIN UINT2UDI| |ULINZLR USINZSI WORD20W
REALZLR SINTZINT| | STR2USI UDINZRE UINTZ0LI| |OCINZLW USIN2STR| ~ |WORDZINT
REALZUDI SINT2LI UDINZTIM| |UINTZ2USI| |UCINZUDI| |USINZUDI| |WORDZLW
SINT2USI UDINZUT UINT2W0 ULINZUL USIN2UI WORD2UT
UDINZULI ULIN2UST| |USINZULI
UDINZUSI
lo groups
IANLGIN IANLGOUT BAT_OK? BIO_PERF COMM JKTHERM NETWORK PID READ- RTDTEMP SOCKETS STEPPER
FDBK
A_INCHIT| [ANLGINIT BIO_PERF| [ASSIGN ATMPCHIT| [NETCLS ARTDCHIT| [1PACCEPT| [STEPCNTL
AZINCHRD| |ANLG_OUT 10_CFG | |CLOSE AIMPCHRD| |NETFRE ARTDCHRD| | IPCLOSE STEPINIT
AZINVDIT CONFIG ATMPNDIT | |NETMON ARTDVDIT| |IIPCONN STEPSTAT
AZIN_WNC BELFIL NETOPN IPHOSTID| [STEP CMD
DIRECT NETRCV IPIPZNAM| [STEPZPOS
FRESPACE NETSND IPLISTEN
OPEN ETSTA IPNAZIP
READ IPREAD
RENAWE IPRECV
SEEK IPSEND
STATUS 1PSOCK
WRITE IPWRITE
Chapter 2 Function/Function Block Description 1-5

ARITH group

Motion groups

IDATA ERRORS INIT MOVE MOVE_SUP QUE RATIOMOV REF SERC_SLV SERC_SYS
CAPTINIT C_ERRORS CLOSLOOP DISTANCE ACC_DEC ABRTALL GR_END FAST_REF SCS_ACKR SCR_CONT
CAPTSTAT C_RESET CLSLOOP? POSITION CAM_OUT ABRTMOVE RATIOCAM LAD_REF SCS_CTRL SCR_ERR
COORD2RL C_STOP OPENLOOP VEL_END HOLD FAST_QUE RATIOPRO PART_CLR SCS_RECV SCR_PHAS
FU2LU C_STOP? SCA_CLOS VEL_STRT HOLD_END Q_AVAIL? RATIOSLP PART REF SCS_REF SC_INIT
LU2FU E_ERRORS STRTSERV IN_POS? Q_NUMBER RATIOSYN REF_DNE? SCS_SEND
READ_SV E_RESET MEASURE RATIO_GR REF_END SCS_STAT
READ_SVF E_STOP NEWRATIO RATIO RL SCA_ACKR
SCA_CTRL E_STOP? NEW_RAT REP_END SCA_RFIT
SCA_RCYC P_ERRORS RATTOSCL SYN_END SCA_REF
SCA_RECV P RESET GIST
SCA_SEND SCA_ERST R_PERCEN
SCA_WCYC TME_ERR? SCA_PBIT
STATUSSV SCURVE
TUNEREAD
TUNEWRIT
WRITE SV
WRIT_SVF

Arithmetic Category

ARITH group

The functions in the ARITH group perform the familiar operations of addition,
subtraction, multiplication, division, modulo (remainder), absolute value, square
root, and negate (opposite) value.

CAUTION

If an underflow or overflow error occurs when one of these arithmetic
functions executes, the output at OK will not energize. The value at
OUT will be unpredictable.

Function Description Page
ABS Gives the absolute value of a number. 2-3
ADD Adds from 2 to 17 numbers. 2-5
DIV Performs the division operation and returns the quotient. 2-83
MOD Performs the division operation and returns the remainder. 2-176
MUL Multiplies from 2 to 17 numbers. 2-178
NEG Returns the opposite value of a number. 2-181
SQRT Determines the square root of a number. 2-406
SUB Performs the subtraction operation on 2 numbers. 2-433

1-6 Chapter 2 Function/Function Block Description

DATETIME group

DATETIME group

The functions in the DATETIME group are used to add or subtract TIME duration
and/or TIME_OF_DAY type variables or constants. The D#, T#, TOD#, and DT#
characters are part of the result in the output variables, except for STRINGS.

When one of these functions executes, if an error occurs, the output at OK does not
energize, and the value of the variable at OUT will be:

TIME duration: T#0 TIME_OF_DAY: TOD#0:0:0 DATE: D#1988-01-01
DATE_AND_TIME: DT#1988-01-01-00:00:00STRING: null (Iength 0)

For every output variable, its value cannot exceed the largest value allowed for the
largest time increment, and it cannot be less than zero for the smallest time incre-
ment. Other values "roll over".

For example, if the largest increment is days, the output value must not exceed 49.
If the smallest increment is seconds, the output value must not be less than O sec-

onds. However, 24 hours becomes 1 day for a DATE_AND_TIME variable

(whose largest increment is years).

Function Description Page

A_DT_T |Adds DATE_AND_TIME to TIME and outputs a 2-25
DATE_AND_TIME sum.

A_TOD_T |Adds TIME_OF_DAY to TIME and outputs a TIME_OF_DAY sum. 2-34

S_DT_ DT [Subtracts a DATE_AND_ TIME from a DATE_AND_TIME and out-|{ 2-435
puts a TIME duration value.

S DT T Subtracts TIME from a DATE_AND_TIME and outputs a 2-436
DATE_AND_TIME.

S D D Subtracts a DATE from a DATE and outputs a TIME duration value. 2-437

S_TOD_T |Subtracts TIME from TIME_OF_DAY and outputs TIME_OF_DAY. 2-438

S_TOD_TO [Subtracts TIME_OF_DAY from TIME_OF_DAY and outputs a 2-439
TIME duration value.

Chapter 2 Function/Function Block Description 1-7

TRIG group

TRIG group

The functions in the TRIG group perform trigonometric or transcendental func-

tions.
Function Description Page
ACOS Calculates the arc cosine. 2-5
ASIN Calculates the arc sine. 2-17
ATAN Calculates the arc tangent. 2-19
COS Calculates the cosine. 2-64
EXP Calculates the exponent. 2-95
LN Calculates the natural log. 2-158
LOG Calculates the log. 2-159
SIN Calculates the sine. 2-398
TAN Calculates the tangent. 2-440

1-8 Chapter 2 Function/Function Block Description

Binary

TRIG group

Category

The functions in the Binary library perform two types of operations:

1. Logical or Boolean operations
2. Bit shifting and rotating operations

Logic functions

Bit shifting and rotating functions

The logic functions evaluate the input values on a bit by bit basis, and place results
for each bit into the corresponding bit of the output variable. In general, bit x of
every input variable is evaluated and a result is put into bit x of the output variable.

The bit shifting and rotating functions “move” the values of bits. The values are
shifted or rotated to the left or right.

Function Description Page
AND Performs the boolean AND operation on from 2 to 17 numbers. 2-6
NOT Complements the bits of a number. 2-195
OR Performs the boolean inclusive OR operation on from 2 to 17 numbers. 2-200
ROL Rotates n bits from left to right (most significant to least significant 2-341
positions).

ROR Rotates n bits from right to left (least significant to most significant 2-342
positions).

SHL Shifts all bits of a number n positions to the left, discarding n bits on 2-396
the left (most significant), and inserting n Os on the right (least signifi-
cant).

SHR Shifts all bits of a number n positions to the right, discarding n bits on 2-397
the right (least significant), and inserting n Os on the left (most signifi-
cant).

XOR Performs the boolean exclusive OR operation on from 2 to 17 numbers. 2-487

Chapter 2 Function/Function Block Description 1-9

TRIG group

Counters Category

The function blocks in the Counter library serve as counters.

Function Description Page
Block
CTD Counts down from a specified value and then energizes an output. 2-64
CTU Counts up to a specified value and then energizes an output. 2-65
CTUD Counts up or down from a specified value and then energizes the 2-65
appropriate output.
1-10 Chapter 2 Function/Function Block Description

BOOL2BYT group

Datatype Category

The Datatype library contains all the functions that convert one data type to
another.

BOOL2BYT group
The BOOL2BYT group converts a boolean data type.

Function Description Page
BOOL2BYT [Changes the data type from boolean to byte. 2-39
BYTECONYV group

The BYTECONYV group converts byte data types.

Function Description Page
BYT2BOOL [Changes the data type from byte to boolean 2-40
BYTE2DW (Changes the data type from byte to double word. 2-40
BYTE2LW (Changes the data type from byte to long word. 2-41
BYTE2SI Changes the data type from byte to short integer. 2-41
BYTE2USI [Changes the data type from byte to unsigned short integer. 2-42)
BYTE2WO (Changes the data type from byte to word. 2-42)

Chapter 2 Function/Function Block Description 1-11

DINTCONYV group

DINTCONV group
The DINTCONYV group converts double integer data types.

Function Description Page
DINT2DW | Changes the data type from double integer to double word. 2-74
DINT2INT |Changes the data type from double integer to integer. 2-75
DINT2LI Changes the data type from double integer to long integer. 2-76
DINT2RE Changes the data type from double integer to real. 2-77
DINT2SI Changes the data type from double integer to short integer. 2-78
DINT2UDI |Changes the data type from double integer to unsigned double 2-79

integer.
1-12 Chapter 2 Function/Function Block Description

DWORDCNY group

DWORDCNYV group
The DWORDCNYV group converts double word data types.

Function Description Page
DWOR2BYT |Changes the data type from double word to byte. 2-87
DWOR2DI Changes the data type from double word to double integer. 2-88
DWOR2LW |Changes the data type from double word to long word. 2-89
DWOR2RE Changes the data type from double word to real. 2-90,
DWOR2UDI |Changes the data type from double word to unsigned double integer. 2-91
DWOR2WO |[Changes the data type from double word to word. 2-92

Chapter 2 Function/Function Block Description 1-13

D_TCONYV group

D_TCONV group
The D_TCONYV group converts date and time data types.

Function Description Page
DATE2STR (Changes the DATE value to a STRING value. 2-71
DT2DATE Outputs the DATE from a DATE_AND_TIME value. 2-84
DT2STR Changes the DATE_AND_TIME value to a STRING value. 2-85
DT2TOD Outputs the TIME_OF_DAY from a DATE_AND_TIME value. 2-86
D_TOD2DT [Concatenates DATE and TIME_OF_DAY values and outputs a 2-86)

DATE_AND_TIME value.
TIM2UDIN [Changes the data type from TIME to unsigned double integer. 2-441
TIME2STR [Changes a TIME duration value to a STRING value. 2-442
TOD2STR (Changes a TIME_OF_DAY value to a STRING value. 2-444
1-14 Chapter 2 Function/Function Block Description

INTCONV group

INTCONYV group
The INTCONYV group converts integer data types.

Function Description Page
INT2DINT [Changes the data type from integer to double integer. 2-123
INT2LINT [Changes the data type from integer to long integer. 2-124
INT2SINT (Changes the data type from integer to short integer. 2-125
INT2UINT [Changes the data type from integer to unsigned integer. 2-126
INT2WORD (Changes the data type from integer to word. 2-127

Chapter 2 Function/Function Block Description 1-15

LINTCONYV group

LINTCONYV group
The LINTCONYV group converts long integer data types.

Function Description Page
LINT2DI Changes the data type from long integer to double integer. 2-152
LINT2INT [Changes the data type from long integer to integer. 2-153
LINT2LR Changes the data type from long integer to long real. 2-154
LINT2LW [Changes the data type from long integer to long word. 2-155
LINT2SI Changes the data type from long integer to short integer. 2-156
LINT2ULI |Changes the data type from long integer to unsigned long integer. 2-157
1-16 Chapter 2 Function/Function Block Description

LREALCNYV group

LREALCNYV group
The LREALCNYV group converts long real data types.

Function Description Page
LREA2LI Changes the data type from long real to long integer. 2-160,
LREA2LW Changes the data type from long real to long word. 2-161
LREA2RE Changes the data type from long real to real. 2-162
LREA2ULI Changes the data type from long real to unsigned long integer. 2-163

Chapter 2 Function/Function Block Description 1-17

LWORDCNYV group

LWORDCNYV group
The LWORDCNYV group converts long word data types.

Function Description Page
LWOR2BYT |Changes the data type from long word to byte. 2-165
LWOR2DW |Changes the data type from long word to double word. 2-166
LWOR2LI Changes the data type from long word to long integer. 2-167
LWOR2LR Changes the data type from long word to long real. 2-168
LWOR2ULI |Changes the data type from long word to unsigned long integer. 2-169
LWOR2WO |Changes the data type from long word to word. 2-170

1-18

Chapter 2 Function/Function Block Description

NUMZ2STR group

NUMZ2STR group
The NUM2STR group converts a numeric data type.

Function Description Page
NUM2STR |Changes the data type from numeric to STRING. 2-196,

Chapter 2 Function/Function Block Description 1-19

REALCONY group

REALCONYV group
The REALCONYV group converts real data types.

Function Description Page
REAL2DI Changes the data type from real to double integer. 2-321
REAL2DW |Changes the data type from real to double word. 2-322
REAL2LR [Changes the data type from real to long real. 2-323
REAL2UDI [Changes the data type from real to unsigned double integer. 2-324

1-20 Chapter 2 Function/Function Block Description

SINTCONYV group

SINTCONYV group
The SINTCONYV group converts short integer data types.

Function Description Page
SINT2BYT |Changes the data type from short integer to byte. 2-399
SINT2DI Changes the data type from short integer to double integer. 2-400
SINT2INT Changes the data type from short integer to integer. 2-401
SINT2LI Changes the data type from short integer to long integer. 2-402
SINT2USI Changes the data type from short integer to unsigned short integer.| 2-403

Chapter 2 Function/Function Block Description 1-21

SIZEOF group

SIZEOF group

The SIZEOF group contains one function.

Function Description Page
SIZEOF [Reports the size in bytes of the variable name listed at the IN input. 2-404
1-22 Chapter 2 Function/Function Block Description

STRCONYV group

STRCONYV group
The STRCONYV group converts string data types.

Function Description Page
STR2D_T Changes the data type from STRING to date and time. 2-428
STR2NUM |Changes the data type from STRING to numeric. 2-429
STR2USI Changes the first character of STRING to unsigned short integer 2-430)

(ASCII code).
Chapter 2 Function/Function Block Description 1-23

UDINTCNYV group

UDINTCNYV group
The UDINTCNYV group converts unsigned double integer data types.

Function Description Page

UDIN2DI Changes the data type from unsigned double integer to double inte- 2-452
ger.

UDIN2DW |Changes the data type from unsigned double integer to double 2-453
word.

UDIN2RE |Changes the data type from unsigned double integer to real. 2-454

UDIN2TIM [Changes the data type from unsigned double integer to time. 2-455

UDIN2UI Changes the data type from unsigned double integer to unsigned 2-456
integer.

UDIN2ULI [Changes the data type from unsigned double integer to unsigned 2-457
long integer.

UDIN2USI [Changes the data type from unsigned double integer to unsigned 2-458
short integer.

1-24 Chapter 2 Function/Function Block Description

UINTCONYV group

UINTCONYV group
The UINTCONYV group converts unsigned integer data types.

Function Description Page

UINT2INT Changes the data type from unsigned integer to integer. 2-459

UINT2UDI (Changes the data type from unsigned integer to unsigned double 2-460
integer.

UINT2ULI Changes the data type from unsigned integer to unsigned long 2-461
integer.

UINT2USI Changes the data type from unsigned integer to unsigned short 2-462
integer.

UINT2WO Changes the data type from unsigned integer to word. 2-463

Chapter 2 Function/Function Block Description 1-25

ULINTCNV group

ULINTCNV group
The ULINTCONYV group converts unsigned long integer data types.

Function Description Page

ULIN2LI Changes the data type from unsigned long integer to long integer. 2-464

ULIN2LR Changes the data type from unsigned long integer to long real. 2-465

ULIN2LW |Changes the data type from unsigned long integer to long word. 2-466

ULIN2UDI [Changes the data type from unsigned long integer to unsigned dou- 2-467
ble integer

ULIN2UI Changes the data type from unsigned long integer to unsigned inte- 2-468
ger

ULIN2USI |Changes the data type from unsigned long integer to unsigned short 2-469
integer

1-26 Chapter 2 Function/Function Block Description

USINTCNYV group

USINTCNV group
The USINTCNYV group converts unsigned short integer data types.

Chapter 2 Function/Function Block Description

Function Description Page

USIN2BYT [Changes the data type from unsigned short integer to byte. 2-471

USIN2SI Changes the data type from unsigned short integer to short integer. 2-472

USIN2STR (Changes the data type from unsigned short integer (ASCII code) to| 2-473
the first character in STRING.

USIN2UDI (Changes the data type from unsigned short integer to unsigned dou-| 2-474
ble integer.

USIN2UI Changes the data type from unsigned short integer to unsigned inte-| 2-475
ger.

USIN2ULI [Changes the data type from unsigned short integer to unsigned long| 2-476
integer.

1-27

WORDCONYV group

WORDCONYV group
The WORDCONYV group converts word data types.

Function Description Page
WORD2BYT [Changes the data type from word to byte. 2-479
WORD2DW (Changes the data type from word to double word. 2-480)
WORD2INT (Changes the data type from word to integer. 2-481
WORD2LW (Changes the data type from word to long word. 2-482
'WORD2UI Changes the data type from word to unsigned integer. 2-483

Evaluate Category

The functions in the Evaluate library compare numbers. The comparisons are:

equal to = greater than > greater than or equal to =
not equal to # less than < less than or equal to <
Function [Description Page
EQ Compares from 2 to 17 numbers and energizes an output if all numbers 2-94
are equal to each other.
GE Compares from 2 to 17 numbers and energizes an output if all numbers| 2-116
are greater than or equal to successive numbers.
GT Compares from 2 to 17 numbers and energizes an output if all numbers| 2-119
are greater than successive numbers.
LE Compares from 2 to 17 numbers and energizes an output if all numbers| 2-148
are less than or equal to successive numbers.
LT Compares from 2 to 17 numbers and energizes an output if all numbers| 2-164
are less than successive numbers.
NE Compares 2 numbers and energizes an output if they are not equal to 2-180
each other.
1-28 Chapter 2 Function/Function Block Description

WORDCONYV group

NOTES ON STRING EVALUATIONS

If String 1=129
and String2=1234

then String 1 > String 2

If two strings have different lengths and the characters in the shorter
string match the characters in the longer string, then the shorter string
is less than the longer one.

If String 1 =123
and String2=1234

then String 1 < String 2

Another example is shown below. String 1 is less than String 2 be-
cause the ASCII value of upper case letters is less than the value of
lower case letters.

If String 1 = TIME

and String 2 = Time

then String 1 < String 2

Chapter 2 Function/Function Block Description

1-29

WORDCONYV group

Fbinter Category

The function/function blocks in the Fbinter library allow you to interface with field
bus communications via the DeviceNet hardware module.

Function [Description Page

FB_CLS [Closes communications with the field bus. 2-107

FB_OPN Opens communications with the field bus placing the DeviceNet mod-| 2-108
ule in the RUN mode.

FB_RCV [Receives all data from the configurator file indicated by Tag names. 2-109

FB_SND [Sends data indicated by Tag names in the configurator file. 2-110

FB_STA |Allows you to check if the DeviceNet module is communicating with 2-111
the nodes and to check field bus information.

Filter Category

The functions in the Filter library act as filters or sorters. They move the value of
one of the inputs into an output variable.

Function [Description Page
LIMIT Evaluates a number and outputs the number if it is within specified 2-151
limits, or outputs the upper or lower limit if the number is greater than
or less than the limit, respectively.

MAX Compares from 2 to 17 numbers and outputs the largest number. 2-172]

MIN Compares from 2 to 17 numbers and outputs the smallest number. 2-175

MOVE Places from 1 to 17 numbers into output variables of the same type(s). 2-177

MUX Evaluates from 2 to 17 numbers and outputs one of the numbers based| 2-179
on the value of an independent number.

SEL Evaluates 2 numbers and outputs one of them based on the state of a 2-394

boolean input.

1-30 Chapter 2 Function/Function Block Description

WORDCONYV group

1/0 Category

The functions in the I/O library initialize and send/receive data to/from:
¢ Analog input module
e Analog and 4-20mA output modules
e Controls, ports, files, devices, serial communications module
¢ J-K thermocouple module
e PID loops
¢ Encoder module (background read)
e RTD module
e Sockets

e Stepper module

Chapter 2 Function/Function Block Description 1-31

ANLGIN group

ANLGIN group

The ANLGIN group contains functions that work with the analog input module.

Function Description Page

A_INCHIT Initializes a channel on an analog input module. 2-27

A_INCHRD |Reads or samples the voltage or current occurring at a channel on 2-30,
an analog input module.

A_INMDIT Initializes an analog input module. 2-33

A_IN_MMC |Outputs the digital value of an analog input for the MMC. 2-26

1-32 Chapter 2 Function/Function Block Description

ANLGOUT group

ANLGOUT group

The ANLGOUT group contains functions that work with the analog or 4-20mA
output module.

Function Description Page

ANLGINIT Initializes an analog or 4-20mA output module. 2-7

ANLG_OUT |Sends a value (to be converted to voltage or current) to a channel 2-9
on an analog or 4-20mA output module.

Chapter 2 Function/Function Block Description 1-33

BAT_OK? group

BAT OK? group

The BAT_OK? group has one function that allows you to check the battery of the

control from the ladder.

Function [Description Page
BAT OK? Checks the battery from the ladder. 2-35
1-34 Chapter 2 Function/Function Block Description

BIO_PERF group

The BIO_PERF group has two function/function blocks: one that allows you to
check the performance of the block I/O modules in your system and one that ini-
tializes the configuration of the block system.

Function ﬂ)escription Page

BIO_PERF Checks the performance of block I/O modules. 2-36

10_CFG Initializes the block I/Oconfiguration, checks the status, and inhibits| 2-129
the block system when blocks are added or removed.

Chapter 2 Function/Function Block Description 1-35

COMM group

COMM group

The function blocks in the COMM group are used to transfer (read/write) data
between any of the following:

User Port

on the PiC900

PiC RAMDISK Files

PiC FLASHDISK Files

Strings, Arrays, Structures

DOS Workstation Files
Serial Communications Module

Function [Description Page

Block

ASSIGN Sets up the channels on the serial communications module to work like 2-17
the User Port for communications.

CLOSE Closes the communication channel between the LDO and a DOS file, 2-54
RAMDISK file, FLASHDISK file, User Port, or a serial communica-
tions channel.

CONFIG [Establishes protocol between the LDO and User Port or a serial com- 2-58
munications channel. Must execute after OPEN and before READ,
WRITE, or STATUS.

DELFIL Deletes files from the PiC900 RAMDISK or PiCPro. 2-73

DIRECT Reads PiC RAMDISK or FLASHDISK directory information. 2-80)

FRESPACE |Checks amount of available disk space there is on the PiC RAMDISK 2-115
or FLASHDISK.

OPEN Opens the communication channel between the LDO and a DOS file, 2-197
RAMDISK file, FLASHDISK file, User Port, or a serial communica-
tions channel. Must execute before CONFIGURE, READ, WRITE,
STATUS, or SEEK.

READ Reads data from a DOS, RAMDISK, or FLASHDISK file, User Port, 2-281
or a serial communications channel and places it into a STRING,
Array, Structure, Array Element, or Structure member.

RENAME |Renames a file on the PiC RAMDISK or PiCPro. 2-337

SEEK Positions a pointer in a RAMDISK or FLASHDISK file before a read/| 2-392
write is performed.

STATUS Outputs the number of bytes in the input buffer of User Port or a serial| 2-407
communications channel.

'WRITE Writes data from a memory area to a DOS file, RAMDISK file, User 2-484
Port, or a serial communications channel.

1-36 Chapter 2 Function/Function Block Description

JKTEMP group

OPEN

USER yes
PORT 27 »| CONFIG

STATUS

SEEK

CLOSE

JKTEMP group

The JKTEMP group contains functions that work with the JK thermocouple mod-
ule.

Function Description Page
ATMPCHIT Initializes a channel on a J-K thermocouple module. 2-20

ATMPCHRD [Reads or senses the temperature or voltage occurring at a channel 2-22)
on a J-K thermocouple module.

ATMPMDIT [nitializes a J-K thermocouple module. 2-24

Chapter 2 Function/Function Block Description 1-37

NETWORK group

NETWORK group

The function blocks in the NETWORK group are used to perform communication
operations among NEXNET networked PiC900s.

Function Description Page
NETCLS Closes the communication channel between the PiC900 in which it| 2-182
is executed and all other networked PiC900s.
NETFRE Used after data from a transaction has been received (NETRCV) to| 2-183
clear the input buffer.
NETMON Monitors network activity for diagnostic purposes. 2-184
NETOPN Opens the communication channel between the PiC900 in which it| 2-185
is executed and all other networked PiC900s.
NETRCV Receives or reads data that was sent by another PiC900. 2-187
NETSND Sends data to another PiC900 or all PiC900s in the network. 2-189
NETSTA Tells how many bytes are in the input buffer to be received by one 2-191
or more NETRCVs.
PiC1 PiC2
PiC1 added to netwark FiC2 added to netwark
METZPM METZPM
—— = -
R ook —- BRI L i serId5 data.
received dala data aceepted
METSTA L — = = e MNETSND
I I
FiC1 reads datsa Soan LDO
METRCY
L
Fi1 gets I*ea.-:l':,-'t-:-
accapt more dats,
METFRE
I
Soan LDO & usze
receivad datsa,
1-38 Chapter 2 Function/Function Block Description

PID group

The PID group has one function block that performs PID control.

Function Description Page
PID Performs proportional, integral, and derivative control. 2-203

Chapter 2 Function/Function Block Description 1-39

READFDBK group

READFDBK group

The READFDBK group has one function that reads an encoder or 12 channel
resolver module on a scan time basis (background).

Function Description Page

READFDBK |Performs background read on encoder or 12 channel resolver 2-283
module.

1-40 Chapter 2 Function/Function Block Description

RTDTEMP group

RTDTEMP group
The RTDTEMP group contains functions that work with the RTD module.

Function Description Page

ARTDCHIT |Initializes a channel on a RTD module. 2-12

ARTDCHRD |Reads or senses the temperature occurring at a channel on a RTD 2-14
module.

ARTDMDIT |Initializes a RTD module. 2-16

Chapter 2 Function/Function Block Description 1-41

SOCKETS group

SOCKETS group

The socket function blocks are used to communicate from application to application using
Giddings & Lewis’s implementation of the BSD socket interface.

Function fl)escription Page

IPACCEPT [Used by the TCP server to accept incoming connect requests. 2-130

IPCLOSE Used by an application to terminate a communication session for 2-131
the socket specified at HNDL.

IPCONN Used by a client application to connect to a remote server by speci-| 2-132
tying the remote endpoint address for a socket.

IPHOSTID (Optional and not required to be used. 2-133

IPIP2ZNAM |Allows the application to obtain the host name when you supply 2-134
the IP address.

IPLISTEN Used to make a socket passive. 2-135

IPNAM2IP |Allows the application to obtain an IP address when you supply the| 2-136
host name.

IPREAD Allows you to read input data sent between a client function and a 2-137
remote server.

IPRECV Used to get a packet of data sent between a client function and a 2-138
remote server.

IPSEND Used to send data between client function and remote servers. 2-139

IPSOCK Used to obtain a data structure and assign it to a specific communi- 2-140
cation resource.

IPWRITE Used to send data between client function and remote servers. 2-141

1-42 Chapter 2 Function/Function Block Description

STEPPER group

STEPPER group

The STEPPER group contains functions that work with the stepper module.

Function fDescription Page

STEPCNTL [Sends a control word to the stepper motion control module 2-410
(SMCM).

STEPINIT Initializes an axis as a stepper axis. 2-414

STEPSTAT [Reads the data on the status of the stepper axis. 2-416

STEP_CMD [Sends a profile command and its related data to the command 2-419
queue of the SMCM to run a step profile.

STEP_POS [Reads the position of a stepper axis. 2-427

Motion Category

The motion functions are available with PiCServoPro. They allow you to perform

motion control tasks.

In addition to the standard motion functions, there are two servo functions made by
you with the Servo setup program and the PiC Profile program. Refer to those

chapters for additional information.

IMPORTANT

For parameters in these functions such as feedrates, accelerations, de-
celerations, position, distance, etc., you must enter ladder units (LU).
Ladder units were defined by you for your application in the scaling
data section of setup.

When you have ladder units equal to feedback units (FU) in setup,
then you are entering feedback units in the ladder.

Often a range of values in FU is listed with function inputs. (See in-
dividual functions in Chapter 2.) If ladder units # to feedback units,
be sure to convert LU to FU to check that you are in range.

Chapter 2 Function/Function Block Description

1-43

DATA group

DATA group

The data functions allow you to read, write, or check the status of certain variables
and characteristics.

Function Description Page
CAPTINIT Initializes what data is to be captured each servo interrupt and 2-46,
where it is to be stored.
CAPTSTAT [Provides the ability to start and stop the capturing of data from the 2-52]
ladder.
COORD2RL [(Calculates profile segments used for circular/linear interpolation. 2-60
Used with the RATIO_RL function.
READ_SV Allows you to read the following variables in your ladder: 2-295
(read servo) 1 actual position 28 TTL feedback
2 move type 29 reference switch position
3 command position 30 filter time constant
4 position error 31 filter error limit
5 filter error 32 velocity compensation flag
6 command velocity 33 filter lag
7 position change 34 position change (sev intrpts)
8 feedback last 35 part reference offset
9 fast input position 36 software upper limit
10 regist/ref position change37 software lower limit
11 consecutive bad marks 38 commanded position
12 rollover on position (before slow speed filter is applied)
13 slave offset incremental 39 following error limit
14 master offset incremental40 in-position band
15 slave offset absolute 41 current segment number
16 master offset absolute 42 slave distance into segment
20 fast input distance 43 master distance into segment
21 reversal not allowed 44 set iteration command
22 fast input position (SW) 45 user iteration command
23 position (SW) w fastin 46 set PID command
24 registration switch 47 user PID command
25 fast queuing 48 disable servo software
26 synchronized slave start 50 override endlimit check
27 backlash compensation 51 SERCOS command position
55 Queued move type
FU2LU Converts feedback units to ladder units. 2-115
LU2FU Converts ladder units to feedback units. 2-164
READ_SVF |Allows you to read any of the READ_SV variables faster. All val- 2-320
(read servo ues that involve velocity or distance are in feedback units and
fast) updates rather than ladder units and minutes.
SCA_CTRL |[Writes control bits to the MDT for a servo axis. 2-348
1-44 Chapter 2 Function/Function Block Description

DATA group

SCA_RCYC

Reads cyclic data from the AT for a servo axis.

2-354

SCA_RECV

Allows you to receive information from the service channel sec-
tion of SERCOS communication for a servo axis.

2-356

SCA_SEND

Allows you to send information to the service channel section of
SERCOS communication for a servo axis.

2-362

SCA_STAT

Monitors the ready-to-operate drive mode, diagnostic trouble-
shooting, or two real-time status bits returned from the drive.

2-364

SCA_WCYC

'Writes cyclic data to the MDT for a servo axis.

2-365

STATUSSV
(status servo)

Allows you to check the status of the following characteristics
from the word output of the STATUSSV function:

move started

fast input occurred

fast input on

good mark detected

bad mark detected

DIST + TOLR exceeded
fast input rising

2-408

TUNEREAD

Provides the ability to read tuning parameters from the ladder.
(See TUNEWRIT for list of parameters.)

2-448

TUNEWRIT

Provides the ability to write the following tuning parameters from
the ladder.

Proportional Gain
Integral Gain
Derivative Gain
Offset

Slow Speed Filter

Feed Forward Percent

2-449

Chapter 2 Function/Function Block Description

1-45

DATA group

(Wwrite servo
fast)

values that involve velocity or distance are in feedback units and

updates rather than ladder units and minutes.

WRITE_SV |Allows you to write the following variables from your ladder: 2-485
(write servo) 1 actual position (Time axis only)
6 command velocity (Time axis only)

11 consecutive bad marks

12 rollover on position

13 slave offset incremental

14 master offset incremental

15 slave offset absolute

16 master offset absolute

17 slave offset filter

18 master offset filter

19 fast input direction

21 reversal not allowed

23 position (SW) w fast in

24 registration switch

25 fast queuing

26 synchronized slave start

27 backlash compensation

28 TTL feedback

30 filter time constant

31 filter error limit

32 velocity compensation flag

34 position change over several interrupts

36 software upper limit

37 software lower limit

39 following error limit

40 in-position band

44 set iteration command

45 user iteration command

46 set PID command

47 user PID command

48 Disable servo software

50 Override endlimit check
WRIT_SVF |Allows you to write any of the WRITE_SV variables faster. All 2-486

1-46

Chapter 2 Function/Function Block Description

ERRORS group

There are three types of errors that affect an axis as described below.

1. C-stop (controlled-stop) errors
When a C-stop occurs, the following happens:

e The axis remains in servo lock and the axis is brought to a controlled stop at the
rate specified by the controlled stop ramp in setup.

e The active and next queues are cleared.
e The FAST_QUE mode is canceled when the C-stop is reset.
2. E-stop (Emergency-stop) errors

When an E-stop occurs, the following happens:

The system is out of servo lock.

zero voltage is sent to the analog outputs.

The active and next queues are cleared.
The FAST_QUE mode is canceled when the E-stop is reset.

If it is a loss of feedback E-stop error, then the machine reference must be
redone.

In most respects, you are in a condition immediately following initialization with
the exception of the queue number. The queue number does not start over but con-
tinues from where it left off when the E-stop occurred.

Remember that the queue number is assigned by the software from 1 to 255. When
255 is reached, it rolls over to 1.

3. Programming errors

These errors occur during master/slave moves or a FAST_QUE call. They may
prevent the move from being placed in the queue (or if the move is in the queue,
abort the move) or they may prevent the OK on the function from being set.

There is a fourth type of error connected to the entire system called a timing error.
It is monitored by the TME_ERR? function.

4. Timing error

All the servo calculations for one interrupt must be completed in the time frame
selected by you in setup before the next interrupt can perform its calculations. If
they are not, this timing error occurs and the ERR output of the TME_ERR? func-
tion is set.

Chapter 2 Function/Function Block Description 1-47

ERRORS group

IMPORTANT

Always set an E-stop on all axes when a timing error occurs.

NOTE

The C-stop, E-stop, and Programming errors can all be viewed in the
tune section of the Servo setup program. See Appendix C in the Soft-
ware Manual for more information.

Function Description Page
C_STOP Sets a controlled stop on the axis. 2-68
(controlled stop)

C_ERRORS Indicates what C-errors have occurred at the word output. 2-66
(controlled stop errors)

C_RESET Resets a C-stop error. 2-68
(controlled stop reset)

C_STOP? Asks if there is a C-stop in effect for designated axis. 2-69
(controlled stop?)

E_STOP Sets an emergency stop on the axis. 2-99
(emergency stop)

E_ERRORS Indicates what E_errors have occurred at the word output. 2-96
(emergency stop errors)

E_RESET Resets an E-stop error. 2-98
(emergency stop reset)

E_STOP? Asks if there is an E-stop in effect for designated axis. 2-100
(emergency stop?)

P_ERRORS Indicates what programming errors have occurred at the 2-219
(programming errors) |word output.

P_RESET Resets a programming error. 2-222)
(programming error

reset)

SCA_ERST Resets internal E-errors for a SERCOS system. 2-351
TME_ERR? Asks if the time required to carry out the servo calculations | 2-443

(timing error)

exceeds the allotted interrupt time.

1-48

Chapter 2 Function/Function Block Description

INIT group

INIT group

The functions in the INIT group allow you to initialize the servos and be ready for
motion commands from the ladder.

Function Description Page
CLOSLOOP |Closes the position loop for the designated axis. 2-55
(close loop)

CLSLOOP? | Asks if the position loop for the designated axis is closed. 2-56
(close loop?)

OPENLOOP | Opens the position loop for the designated axis. 2-199
(open loop)

SCA_CLOS |Closes the position loop in a SERCOS system. 2-347
STRTSERV |Used with the user-defined setup function to initialize setup data.| 2-431
(start servo)

Chapter 2 Function/Function Block Description 1-49

MOVE group

MOVE group

The functions in the MOVE group cause motion to begin or end. The moves are
not master/slave moves.

The other functions that can cause motion are found in the RATIOMOYV and REF
groups. They are the master/slave moves and the fast input (FAST_REF) and lad-
der (LAD_REF) reference functions used to perform a machine reference.

Function Description Page
POSITION Moves an axis at a specified feedrate to an endpoint. 2-218
(position)

DISTANCE Moves an axis a specified distance at a specified feedrate. 2-82
(distance)

VEL_STRT Moves an axis at a specified feedrate and direction. 2-478
(velocity start)

VEL_END Ends a velocity start move. 2-477
(velocity end)

1-50 Chapter 2 Function/Function Block Description

MOVE_SUP group

MOVE_SUP group

The functions in the MOVE_SUP group allow you to make adjustments to the

moves.
Function [Description Page
ACC_DEC Allows you to change the acc/dec rates entered in setup from 2-4
(acceleration/ the ladder.
deceleration)
CAM_OUT Allows you to turn on discrete I/O points for a specified dis- 2-43
(cam output) tance during the rollover on position cycle.
HOLD Stops the iteration of the current move. 2-120
(feedhold)
HOLD_END Resumes the move that was halted with the HOLD function. 2-121
(feedhold end)
IN_POS? Asks the question “Is the active move in position?” 2-128
(in position?)
MEASURE Enables the fast input response when not using registration or 2-173
(measure) referencing.
NEWRATIO Allows you to change the ratio of a RATIO_GR or RATIOSYN| 2-192
move or the default ratio of the RATIOSLP move.
NEW_RATE Allows you to change the feedrate of the moves in the queue. 2-194
(new feedrate)
RATIOSCL Allows you to scale the slave and/or master axis in RATIO- 2-241
CAM, RATIOSLP, and the master axis in RATIO_RL moves.
REGIST Sets the axis position to a defined value when a fast input 2-327
(registration) occurs.
R_PERCEN Allows you to change the feedrate by a percentage for all 2-343
(feedrate percent) moves connected to an axis.
SCA_PBIT Initializes the SERCOS fast input. 2-352
SCURVE Allows a master time axis to follow an s-curve velocity profile | 2-386
minimizing the amount of jerk that can occur in a trapezoidal
velocity profile.
Chapter 2 Function/Function Block Description 1-51

QUE group

QUE group

There are two queues used by the servo software to manage moves for an axis. One
is the active queue which holds the move that is currently active. The other is the
next queue which is the move that is ready and waiting to proceed when the active
queue move is completed. The functions in this group affect the moves in the
queues.

The servo software assigns a queue number to any motion function which has a
QUE output. The numbers are assigned sequentially from 1 to 255. When 255 is
reached, the number rolls over to 1.

Function

Description

Page

ABRTMOVE
(abort move)

Aborts the move identified by the number entered in its QUE input.

2-2)

ABRTALL
(abort all)

Aborts the moves in both queues.

2-2)

FAST_QUE
(fast input
queue)

Manages the queues based on the occurrence of a fast input.

2-101

Q_NUMBER
(queue num-
ber)

Gives the number of the move that is in the active queue.

2-224

Q_AVAIL?
(queue avail-
able?)

Asks the question “Is a queue available for the specified axis?”

2-223

1-52

Chapter 2 Function/Function Block Description

RATIOMOYV group

RATIOMOV group

The functions in this group cause motion to begin or end. They involve master/
slave ratio moves. The RATIOPRO function requires another function (or func-
tions) made by you with the PiC Profile program that defines the ratio profile you
want to use.

NOTE: The RATIOPRO function can be used in PiCPro for Windows but it can
only be edited in PiCPro for DOS. The profile editor is not included in PiCPro for
Windows.

The other functions that can cause motion are found in the MOVE and REF group.

Function Description Page
GR_END Ends a ratio gear (or ratio syn) move. 2-118
(gear end)
RATIOCAM |A master/slave move where each segment of the profile has a con- 2-225
(ratio cam stant ratio.
profile)
RATIOPRO |A master/slave move where the slave axis will follow the master 2-235
(ratio profile) jaxis at a varied ratio and a positional relationship is established.
RATIOSLP |A master/slave move where the ratio in each segment of the profile 2-245
(ratio slope) [can vary linearly.
RATIOSYN |A master/slave move where the slave axis will follow the master 2-258
(ratio synchro- jaxis at a constant ratio and a positional relationship between the
nization) master and slave axes is established.
RATIO_GR |A master/slave move where the slave axis will follow the master 2-268
(ratio gear) [axis at a constant ratio.
RATIO_RL |A master/slave move where the slave axis will follow the master 2-272
(ratioreal) jaxis in a profile that can be a trigonometric function or a polyno-
mial using floating point variables.
REP_END [Ends profiles set up to repeat in the RATIOPRO function. 2-339
(repeat end)
SYN_END [Ends a ratio syn (or ratio gear) move by specifying a drop point for 2-434
(synchroniza- fthe slave axis.
tion end)
Chapter 2 Function/Function Block Description 1-53

REF group

The functions in the reference group allow you to do machine or part referencing.
A machine reference provides position information to the PiC900 with respect to
the machine. It is a fixed dimensional reference used to establish a repeatable point
of reference between servo initializations. The PiC900 bases its position calcula-
tions on this position information. Motion may occur when performing a machine
reference.

A part reference is a floating dimensional reference. It establishes a position based
on the location of a part, not the machine. No motion occurs when performing a
part reference. The axis has been moved into position before the reference occurs.

Function Description Page
FAST_REF Performs a machine reference based on a fast input. 2-103
(fast input refer-
ence)
LAD_REF Performs a machine reference from the ladder. 2-146
(ladder refer-
ence)
PART_CLR Cancels the part reference dimension supplied by the 2-201
(part reference [PART_REF function.
clear)
PART_REF Performs a part reference on the designated axis. 2-202
(part reference)
REF_DNE? Asks the question “Is the machine reference cycle complete?” 2-325
(reference
done?)
REF_END Ends the ladder machine reference. 2-326
(ladder reference
end)
SCA_ACKR Acknowledges the reference cycle for a servo SERCOS axis. 2-346
SCA_REF Runs a reference cycle on a servo SERCOS axis. 2-358
SCA_RFIT Initializes the fast input on a SERCOS drive and monitors the 2-360
reference switch or index mark position.
1-54 Chapter 2 Function/Function Block Description

SERC_SLV group

SERC_SLV group

The functions in the SERCOS slave group allow you to work with the SERCOS
slave function/function blocks.

Function Description Page
SCS_ACKR Acknowledges the SERCOS reference cycle. 2-378
(SERCOS slave
acknowledge
reference)
SCS_CTRL Controls the bits in the MDT control word. 2-373
(SERCOS slave
control)
SCS_RECV Receives information from the service channel section of the 2-376
(SERCOS slave SERCOS communication.
receive)
SCS_REF Runs a reference cycle on the SERCOS slave axis. 2-378
(SERCOS slave
reference)
SCS_SEND Sends information to the service channel section of the SER- 2-380
(SERCOS slave |COS communication.
send)
SCS_STAT Monitors the ready-to-operate drive mode, diagnostic trouble- 2-382
(SERCOS slave shooting, or two real-time data bits returned from the drive.
status)

Chapter 2 Function/Function Block Description 1-55

SERC_SYS group

SERC_SYS group

The functions in the SERCOS system group allow you to work with SERCOS
rings and to start the SERCOS system.

Function Description Page
SCR_CONT Allows you to continue through SERCOS phases if you have 2-366
(SERCOS ring |halted after phase 2 to send additional IDNs.
continue)

SCR_ERR Identifies ring errors that can occur during the transfer of IDNs. 2-367
(SERCOS ring

error)

SCR_PHAS Identifies the current SERCOS phase. 2-371
(SERCOS ring

phase)

SC_INIT Copies the initialization data into all interface boards. 2-345
(SERCOS start)

String Category

The functions in this group operate on variables which have a STRING data type.
Most of these functions return a STRING as an output. The variable assigned to
receive this output STRING must be specified as an input variable - on the left
side. Assigning the variable on the right side is optional, but if used, it must be the
same variable as the input variable. This characteristic is unique to all functions

which have a STRING as an output, including functions not in this group.

The output at OK will not energize and the output STRING will be null (have
length zero) if an error occurs. A list of errors is in Appendix B of the software

manual.
Function Description Page
CONCAT Concatenates 2 STRINGs. 2-57
DELETE Deletes characters from a STRING. 2-72
FIND Searches for a STRING within another STRING and if found, 2-114
outputs its location.
INSERT Inserts a STRING into another STRING. 2-122
LEFT Places a specified number of characters from the left side of a 2-149
STRING into a variable.
LEN Returns the length of a STRING. 2-150
1-56 Chapter 2 Function/Function Block Description

SERC_SYS group

LWR_CASE |Converts all the characters in a string to lower case characters. 2-171

MID Places a specified number of characters from the middle of a 2-174
STRING into a variable.

REPLACE Places a STRING within another STRING, replacing one or more| 2-338
characters.

RIGHT Places a specified number of characters from the right side of a 2-340
STRING into a variable.

UPR_CASE |Converts all the characters in a string to upper case characters. 2-470)

Timers Category

The function blocks in the Timer library are used to energize and de-energize out-
puts (coils and control relays) after a duration of time. The time, as it elapses, can
be viewed on the monitor with real time animation. The elapsed time value can be
used (elsewhere) in the module but its value cannot be reset.

Function Block |Description Page|
TOF De-energizes an output after a duration of time. 2-445
TON Energizes an output after a duration of time. 2-446
TP Energizes an output for a duration of time. 2-447

Xclock Category

The two functions in the Xclock library are used for clock or calendar functions.

Function Description Page
CLOCK Outputs from the PiC900 the current time and date, or sets the 2-53
PiC900s time and date.
GETDAY [Outputs the number of the day of the week or day of the year. 2-117
SERVOCLK |[Allows a task to run on the servo clock when no servos are running.| 2-395
Chapter 2 Function/Function Block Description 1-57

SERC_SYS group

NOTES

1-58 Chapter 2 Function/Function Block Description

CHAPTER 2
Function/Block Descriptions

Chapter 2 describes all the functions available with PiCPro/PiCServoPro in alpha-
betical order. Each heading contains:

e The name of the function as it appears in PiCPro
e The title of the function (underneath the name)

e The name of the function menu group (in right-hand corner) to which each
function belongs.

Below the heading is an illustration of each function. To the right are listed the
inputs and outputs for the function with data types in parentheses. The description
of each function is beneath this information.

PROGRAMMING NOTE

Functions with an EN input are usually enabled either by a transitional
(one-shot) contact if the function should execute one time or by logic
that will hold the function on if it should execute every scan.

Typically, one-shot any function in the Motion library that affects or
causes motion.

Also, one-shot any function that has a request (REQ) instead of an en-
able (EN) input. REQ inputs are found on function blocks. A function
block may not complete its operation in one scan.

The EN or REQ inputs that are typically transitioned are labeled "Typ-
ically one-shot" and those that should always be transitioned are la-
beled "One-shot" in the descriptions that follow.

NOTE

You must have a math coprocessor installed on your PiC900//90 CPU
module to perform any functions involving any 64 bit registers, loga-
rithmic, exponential, trigonometric, and floating point mathematical
operations.

NOTE ON ALPHABETICAL ORDER

When an underscore character (_) occurs within the name of a func-
tion, that function is placed after those without an underscore. For ex-
ample, RATIO_GR will be found affer RATIOSYN.

Chapter 1 Function/Function Block Description CHAPTER 2-1

ABRTALL

ABRTALL
Abort All Motion/QUE
agrTALL | Imputs: EN (BOOL) - enables execution (Typically one-shot)
1N 0K AXIS (USINT) - identifies axis (servo)
JIAXIS Outputs: OK (BOOL) - execution completed without error

The ABRTALL function aborts the moves in both queues for the specified axis.

It is also used to ensure that no move can begin unexpectedly when a programming
error occurs with the FAST_QUE function. See also the FAST_QUE entry.

ABRTMOVE
Abort Move Motion/QUE
ABRTVOVE | Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N 0K AXIS (USINT) - identifies axis (servo)
JAXIS QUE (USINT) - number of move to abort from queue
JQUE Outputs: OK (BOOL) - execution completed without error

The ABRTMOVE function aborts the move identified by the number at QUE.

If the move to be aborted is in the active queue, it will be removed freeing that
queue for another move. If there is a move in the next queue, it will begin execut-
ing immediately. If there is no move in the next queue, the axis will decel to a stop
at the rate specified in servo setup. If the move to be aborted is in the next queue,
it will be removed freeing that queue for another move. If the move is not in either
queue, it cannot be aborted.

IMPORTANT

2-1.

When aborting a move, it is important to note that the aborted move
is abandoned at the point it is at and the next move is entered imme-
diately. This is different than ending a move such as velocity start
(VEL_STRT) with a velocity end (VEL_END) as illustrated in Figure

CHAPTER 2-2

Chapter 2 Function/Function Block Description

ABS

Figure 2-1. Comparing velocity end and abort move functions

f= uelociy sdarim o In e acdve quene.
B = Aprdon mouein fieney quene.

Exarmple 1-Sequencing moves witha Exarmple 2 - Sequencing moves with
velocity ennd function an aboart rove function
b b
£ £ |
£l oai E E & i E
! : Thme
Hocr i m e
uncion
atwe
RRRARRREERERASRARRARRARRRE R RARRRRRGARREERT |
I exarnple 1, awvelocity start rmove In BXAM p! g _2, a m-‘elu:ncgit*;f start rove
[&)izin the active queue. ‘Whenthe [4)i3 again in the active queue.
welociby end functionis called in the Whentheabort move function iz
ladder, rove &will decelatthe calledinthe ladder, move &will be
specified rate. The position move al:ng:n_rted_. The position move [I_E!]
[B] waitingin the next queue waltinginthe next queue begins
beqgins. irrer e diak ely.
=] =]
AR
ABS
Absolute Value Arith/ARITH
ABS Inputs: EN (BOOL) - enables execution
1N 0K IN (NUMERIC) - number to find absolute value of

IN ouTl=Outputs: OK (BOOL) - execution completed without error
I
OUT (same type as IN) - absolute value of number

The ABS function places the absolute value (non-negative value) of the variable or
constant at IN into the variable at OUT. For example,

If IN=-5, then OUT =5
If IN =10, then OUT =10
The absolute value Ix| of a number, x, is:

x ifx =20
x ifx <O

IxI
x|

Chapter 2 Function/Function Block Description CHAPTER 2-3

ACC_DEC

ACC DEC
Acceleration/Deceleration Motion/MOVE_SUP

AcC pec | Imputs: EN (BOOL) - enables execution (Typically one-shot)
1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS ACCL (UDINT) - acceleration rate for axis (entered in
IaccL LU/MIN/SEC)
1pecL DECL (UDINT) - deceleration rate for axis (entered in
LU/MIN/SEC)

Outputs: OK (BOOL) - execution complete

The ACC_DEC function allows the acc/dec rates for the specified axis to be
changed. When used in your ladder program, the acc/dec values in this function
override those entered in setup. If the STRTSERYV function is called again reini-
tializing the servo data, then the system will default to the setup values.

This function does not affect the move in progress. It only applies to moves that
have not been queued.

IMPORTANT

If you are only changing one of the rates (acceleration or deceleration)
and want to maintain the setup rate for the other, you must enter the
setup value for the rate you do not want to change at the ACCL or
DECL input of the function.

There are some limits on setting the acc/dec rates so that invalid data is not
entered.

e The acc/dec rate is limited to 32,000 FU/iteration/iteration. If a larger num-
ber is entered, the default is 32,000 FU/iteration/iteration.

e The acc/dec rate cannot be set to 0. If a O is entered, the default is to 1 FU/
iteration/iteration.

e The acc rate cannot be more than 10 times the dec rate. If this is attempted,
the dec rate is increased to 1/10 the acc rate.

¢ The resolution of the internal conversion of LU/MIN/SEC is 1 FU/ITER/
ITER. This resolution is adequate for most applications. However, if your
application requires long accel or decel rates, you may notice some inaccu-
racies in the rates due to this resolution.

CHAPTER 2-4 Chapter 2 Function/Function Block Description

ADD

Acos A

Arc Cosine Arith/TRIG

ACOS Inputs: EN (BOOL) - enables execution

1N ok L COS (REAL/LREAL) - cosine value

cos ANGLL Outputs: OK (BOOL) - execution completed without error
ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at COS and ANGL
must match, i.e. if COS is REAL, then ANGL must be
REAL.

The ACOS function calculates the arc cosine of the cosine entered at COS. The
result is the angle at ANGL.

ADD
Addition Arith/ARITH

ADD Inputs: EN (BOOL) - enables execution
1N 0K - IN1 (NUMERIC or TIME duration) - addend
JINT SuME IN2 (same type as IN1) - addend
JIN? Outputs: OK (BOOL) - execution completed without error

SUM (same type as IN1) - sum of addends

The ADD function adds the value of the variable or constant at IN2 to the value of
the variable or constant at IN1, and places the result in the variable at SUM. This
is an extensible function that can add up to 17 numbers.

X IN1
+Y + IN2
Z SUM

Chapter 2 Function/Function Block Description CHAPTER 2-5

AND

AND
And Binary/AND

AND Inputs: EN (BOOL) - enables execution
1N 0K = INT (BITWISE) - number to be ANDed
N1 ouTkR IN2 (same type as IN1) - number to be ANDed
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN1) - ANDed number

The AND function ands the variable or constant at IN1 with the variable or con-
stant at IN2, and places the results in the variable at OUT. This is an extensible
function which can AND up to 17 inputs.

The AND function places a one in bit x of the output variable when bit x of all
input variables (first variable and second variable and, etc.) equals 1. In all other
cases (bit x of one or more operands equals 0), a 0 is placed in bit x of the output
variable.

Example of AND function (on three inputs)

11000011 value at IN1
11111111 value at IN2
10001111 value at IN3
10000011 value at OUT

CHAPTER 2-6 Chapter 2 Function/Function Block Description

ANLGINIT

ANLGINIT “

Analog Initialization lo/ANLGOUT

ALGINiT| Inputs: EN (BOOL) - enables execution (One-shot)

1N 0K = RACK (USINT) - identifies rack where the module resides
JRACK ERRl- SLOT (USINT) - identifies slot where the module resides
dsLoT Outputs: OK (BOOL) - execution completed without error

ERR (USINT) - # 0 if and only if error occurs

The ANLGINIT function is used to initialize either a £10 VDC output module, a
4-20 mA output module, a block 4-20 mA output module, or a block +10 VDC
output module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog output module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog output module, RACK must be set to 100.
For the MMC, RACK must be set to 0.

For the standard analog output module, the input value at SLOT (3 up to 13) spec-
ifies in which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the
CPU or I/O driver module.

For block analog output modules, the input value at SLOT (1 - 77) is set to 1 for
the module connected to the PiC CPU, 2 for the module connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

If an error occurs the output at OK is not energized and the output at ERR equals
1-4:

ERR [Description
1 [The input at RACK is out of range

2 [The input at SLOT is out of range
3 |Not used
4 [The module at the location specified is not an anlaog output module

Chapter 2 Function/Function Block Description CHAPTER 2-7

ANLGINIT

Output +10 VDC Module

If the channels on the output 10 VDC module will be used for open loop control
only, then it is necessary to initialize the module with the ANLGINIT function. It
is not necessary to enter a user-defined setup function containing all the setup data
needed for closed loop control or input only axes.

If some of the channels are used for closed loop control or input only and some for

output only, then the servo initialization procedure is followed and the ANLGINIT
function is not used.

Output 4-20 mA Module

The ANLGINIT function must always be called to initialize the 4-20mA module
and the block 4-20 mA output module.

CHAPTER 2-8 Chapter 2 Function/Function Block Description

ANLG_oOUT

ANLG_OUT A

Analog Output lo/ANLGOUT

ANLG_OUT Inputs: EN (BOOL) - enables execution

1EN oK - RACK (USINT) - identifies rack where the module
resides

+{RACK OPEN —

lstor SLOT (USINT) - identifies slot where the module
resides

4 CHAN

CHAN (USINT) - identifies channel

VALU (INT) - output value (entered in output units as
defined below)

Outputs: OK (BOOL) - execution completed without error

OPEN (BOOL) - set if the current loop is opened
(applies to 4-20mA module only)

4 VALU

The ANLG_OUT function identifies the rack and slot locations of the +10 VDC
output module and the channel (1 - 8), the 4-20 mA output module and the channel
(1 - 6), the block 4-20 mA output module and the channel (1 - 4), or the £10 VDC
output block module to be used.

The input value at RACK specifies the rack in which the module resides. For a
standard analog output module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog output module, RACK must be set to 100.
For the MMC, RACK must be set to 0.

For the standard analog output module, the input value at SLOT (3 up to 13) spec-
ifies in which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the
CPU or I/O driver module.

For block analog output modules, the input value at SLOT (1 - 77) is set to 1 for
the module connected to the PiC CPU, 2 for the module connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

The input value at CHAN (1 - 8 for the output £10 VDC module, 1 - 6 for the 4-
20 mA module, and 1 - 4 for the block 4-20 mA module and for the MMC) speci-
fies the number of the channel to read.

Chapter 2 Function/Function Block Description CHAPTER 2-9

ANLG_OUT

Output 10V DC Module

The analog output value at VALU is entered in £10V DC output units according to
the chart below:

Enter +10VDC output units to get Output volts
+32767 +11V
+29790 +10V
+14894 +5V

0 ov
-14894 -5V
-29790 -10V
-32767 -11vV

There are 2979 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between +11 volts.

The OPEN output is never set with an analog output module.

MMC and Block Output +10 VDC Module

The analog output value at VALU is entered in £10 VDC output units according to
the chart below:

Enter +10VDC output units to get Output volts
+32767 +10V
+16384 +5V

0 +0V
-16384 -5V
-32767 -10V

There are 3276.7 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between =10 volts.

The OPEN output is never set with an analog output module.

CHAPTER 2-10 Chapter 2 Function/Function Block Description

ANLG_oOUT

Output 4-20 mA Module

The analog output value at VALU is entered in 4-20mA output units according to
the chart below:

Enter 4-20ma output units to get Output mA
+32767 +20mA
+22527 +15mA
+12288 +10mA

0 to -32768 4mA

There are 2048 output units per mA. Use this number to calculate the number of
output units you need for any current not listed above between 4 and 20 mA.

The OPEN output is set with a 4-20mA module whenever the current loop is
opened. This will occur when the load impedance exceeds the resistance calcu-
lated as follows:

For the Block 4-20 mA Output Module:

Vexr—2.5V
20mA - Keoa
For the 4-20 mA Module:
Vexr— 3.6V
20mA = Rioap

Chapter 2 Function/Function Block Description CHAPTER 2-11

ARTDCHIT

ARTDCHIT

Analog RTD Channel Initialization

lo/RTDTEMP

ARTDCHIT
HEN oK
{RACK ERR
4SLOT
- CHAN
- RNGE

Inputs: EN (BOOL) - enables execution (One-shot)
RACK (USINT) - rack where module resides
SLOT (USINT) - slot where module resides
CHAN (USINT) - channel to initialize

RNGE (USINT) - temperature range
Outputs:OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if error occurs

The ARTDCHIT function initializes a channel on the analog input RTD (resistance
temperature detector) module. It establishes the sensitivity of the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.

The input at RNGE (1 - 3) specifies the temperature range at this channel.

Value to enter 50 Ohm RTD 100 Ohm RTD
at RNGE
1 N/A -200°C to 50°C
(-328°F to1562°F)

2 -200°C to 850°C -200°C to 266°C
(-328°t01562°F) (-328°F to 510.85°F)

3 -200 to 266°C -200°C to 0°C
(-328°F to 510.8°F) (-328°F to 32°F)

CHAPTER 2-12

Chapter 2 Function/Function Block Description

ARTDCHIT

The output at OK is not energized and the value at ERR equals 1- 6, or 9 if an error “
occurs.

ERR [Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an RTD module.
The input at CHAN is out of range.

There is a module hardware fault.

The input at RNGE is invalid.

O QU |W[N -

NOTE: This function works in conjunction with the ARTDMDIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once (the input at EN should be a one-
shot) after the ARTDMDIT function is executed, and before the ARTDCHRD
function is executed.

Chapter 2 Function/Function Block Description CHAPTER 2-13

ARTDCHRD

ARTDCHRD
Analog RTD Channel Read lo/RTDTEMP
wgcﬁ Inputs: EN (BOOL) - enables execution
1N 0K = RACK (USINT) - rack where module resides
JRACK VALU - SLOT (USINT) - slot where module resides
1S10T ERRL CHAN (USINT) - channel to read
4 CHAN FAHR (BOOL) - Fahrenheit or Celsius
4 FAHR TYPE (USINT) - 50 Ohm or 100 Ohm RTD
{TYPE Outputs:OK (BOOL) -energized if and only if ERR =0

VALU (INT) - temperature
ERR (USINT) - # 0 if and only if error occurs

The ARTDCHRD function block must be declared in the software declaration
table. You assign a name (NAME) to it at that time. This function block outputs
the temperature sensed at a channel of the RTD module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.

The input at FAHR specifies degrees Fahrenheit if it is enabled. If it is not enabled
then the output will be in degrees Celsius. (F =1.8C + 32)

The input at TYPE (0 - 1) specifies the type of RTD you are using.
0 50 Ohm RTD
1 100 Ohm RTD
The output at VALU holds the temperature in the degrees * 10 specified.

CHAPTER 2-14 Chapter 2 Function/Function Block Description

The output at OK is not energized, the value at VALU is unpredictable, and the

ARTDCHRD

output at ERR equals 1 - 8, 11, or 12 if an error occurs.

NOTE: Values outside the temperature limits (defined by ARTDCHIT) may be

read but should not be used for control purposes.

ERR

Description

The input at RACK is out of range.

A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an RTD module.

The input at CHAN is out of range.

There is a module hardware fault.

N QAN A W N -

The channel is being initialized. Try again later. NOTE: This error
can occur if you continually initialize a channel.

8

A linearization error occurred.

11

A temperature underflow occurred.

12

A temperature overflow occurred.

NOTE: This function works in conjunction with the ARTDCHIT and ARTDM-

DIT functions.

The ARTDCHIT function must be executed once after the ARTDMDIT function is

executed, and before the ARTDCHRD function block is executed.

Chapter 2 Function/Function Block Description CHAPTER 2-15

ARTDMDIT

ARTDMDIT
Analog RTD Module Initialization lo/RTDTEMP

ArTowpr7| Imputs: EN (BOOL) - enables execution (One-shot)

1N oK = RACK (USINT) - rack where module resides
RACK ERRI— SLOT (USINT) - slot where module resides
Isio7 USEC (UINT) - frequency of read

4 uSEC Outputs: OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - # 0 if and only if an error occurs

The ARTDMDIT function initializes an RTD module. It establishes the frequency
at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input at uSEC (2000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 10°/uSEC.)

If an error occurs the output at OK is not energized and the value at ERR equals 1 -
4, or 10.

ERR Description
1 The input at RACK is out of range.
2 Arack hardware fault occurred.
3 The input at SLOT is out of range.
4 The module at the location specified is not an RTD module.
10 The input at uSEC is out of range.

NOTE: This function works in conjunction with the ARTDCHIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once after the ARTDMDIT function is
executed, and before the ARTDCHRD function block is executed.

CHAPTER 2-16 Chapter 2 Function/Function Block Description

ASSIGN

N

Arc Sine Arith/TRIG

ASIN Inputs: EN (BOOL) - enables execution

1N ok L SIN (REAL/LREAL) - sine value

SIN ANGLL Outputs: OK (BOOL) - execution completed without error
ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at SIN and ANGL must
match, i.e. if SIN is REAL, then ANGL must be
REAL.

The ASIN function calculates the arc sine of the sine entered at SIN. The result is

the angle at ANGL.
ASSIGN
Assignment lo/COMM
Aslgl/i'\'\éll%l Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N oK = COMN (STRUCT) - common to the ASSIGN function
COWN FALL blocks. Used by the software to count the number of
1 B assignments made by the function block. The structure
{NAMZ ERR — has one member with data type INT (the default).
1RACK NAMZ (STRING) - name of device
1SL0T RACK (USINT) - master rack where serial communi-
4 CHAN cation module resides (0)

SLOT (USINT) - slot where module resides (3-13)
CHAN (USINT) - channel on the module (1-4)
Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - energized if ERR= 1-7; deenergized if
ERR =0

ERR (INT) - 0 if no errors occur; 1-7 if an error occurs

The ASSIGN function block is designed to work with the two or four channel
serial communications module. It assigns the name at the NAMZ input to a serial
communication device at the location designated at RACK, SLOT, and CHAN.

Chapter 2 Function/Function Block Description CHAPTER 2-17

ASSIGN

The name you place in the string at NAMZ can have up to eight characters and is
entered in the following format. For the example, the device is called Channell.

CHANNEL1:$00

This name is then used at the NAMZ input of the OPEN function block to assign a
handle to the device. The remaining I/O communication function blocks use this
handle to identify the device.

The important note below provides a list of names that cannot be used at NAMZ
input.

IMPORTANT

The following device names are reserved and may not be used in the
ASSIGN function block at the NAMZ input.

USER, RAMDISK, ERR, AUXCOM, CO, PRN, PICPRO,
FMDISK, AUX, MONCON, CI

The input value at RACK (0) specifies the rack in which the module resides. The
master or CPU rack is #0. The serial communications module is always located in
the master rack.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 4) specifies the number of the channel on the mod-
ule to read.

After the ASSIGN function block is called, each channel on the serial communica-
tions module functions like the USER port on the CPU module.

The COMN input is a structure declared in the software declarations table with one
member (INT data type). This is used by the software to count the occurrences of
the ASSIGN function block. If you exceed the number allowed by the serial com-
munications module, an error will occur.

The errors that can occur at the ERR output are listed below.

ERR Description
No error

Attempted to assign more than four devices

Name length either equals zero characters or has more than 10
characters including the two characters ":" and "$00"

3 Device creation error, operating system could not create this
device

N = O

4 |Vector not initialized;
the system EPROM does not support the ASSIGN function.

CHAPTER 2-18 Chapter 2 Function/Function Block Description

ATAN

5 Hardware already assigned

6 Not enough channels; “
attempted to assign channel 3 or 4 to a two channel module.

7 No module at assigned location

ATAN

Arc Tangent Arith/TRIG

ATAN Inputs: EN (BOOL) - enables execution

1N oKL TAN (REAL/LREAL) - tangent value

1TAN ANGLLE Outputs: OK (BOOL) - execution completed without error
ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at TAN and ANGL
must match, i.e. if TAN is REAL, then ANGL must be
REAL.

The ATAN function calculates the arc tangent of the tangent entered at TAN. The
result is the angle at ANGL. The range of ANGL is:

Noia
a

Chapter 2 Function/Function Block Description CHAPTER 2-19

ATMPCHIT

ATMPCHIT
Analog Temperature Channel Initialization lo/JKTHERM

atvpcrrt| Imputs: EN (BOOL) - enables execution (One-shot)
1N 0K = RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
Isio7 CHAN (USINT) - channel on the module
4 CHAN RNGE (USINT) - range of temperatures or channel sensi-
{RNGE tivity
Outputs: OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if an error occurs

The ATMPCHIT function initializes a channel on a J-K Thermocouple module. It
establishes the sensitivity for the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 -12) specifies the number of the channel to read.
The input at RNGE (1 - 4) specifies the temperature or voltage range that can be

read, where:
Value to enter| Range of values for J | Range of values for K type
type thermocouple* thermocouple*
1 -10° Cto280° C -35° Cto415° C
14° Fto536° F -31° Fto779° F
2 -35° Cto620° C -80° Cto820° C
-31° Fto1148° F -112° Fto1508° F
3 -150° Cto1200° C -200° Cto1300° C
-238° Fto2192° F -328° Fto2372° F
4 + 100 mV

*The temperature ranges apply over the temperature rating of the module. Tem-
perature values outside the specified range should not be used for control purposes.

CHAPTER 2-20 Chapter 2 Function/Function Block Description

ATMPCHIT

The output at OK is not energized and the value at ERR equals 1- 6, or 9 if an error
occurs.

ERR [Description

1 [The input at RACK is out of range.

IA rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog temperature module.

The input at CHAN is out of range.

There is a module hardware fault.

O DN AW

The input at RNGE is out of range.

NOTE: This function works in conjunction with the ATMPMDIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once (the input at EN should be a one-
shot) after the ATMPMDIT function is executed, and before the ATMPCHRD
function block is executed.

Chapter 2 Function/Function Block Description CHAPTER 2-21

ATMPCHRD

ATMPCHRD
Analog Temperature Channel Read lo/JKTHERM
_AWEHRE Inputs: EN (BOOL) - enables execution
1N 0K = RACK (USINT) - rack where module resides
JRACK VALU - SLOT (USINT) - slot where module resides
1S10T ERRL CHAN (USINT) - channel on the module
4 CHAN FAHR (BOOL) - Fahrenheit or Celsius
4 FAHR TYPE (USINT) - type of thermocouple or mV
{TYPE Outputs: OK (BOOL) - energized if and only if ERR =0
VALU (INT) - temperature or digital value of
mV
ERR (USINT) - # 0 if and only if an error
occurs

The ATMPCHRD function block must be declared in the software declaration
table. You assign a name (NAME) to it at that time. This function block outputs the
temperature or the voltage range sensed at a channel of the J-K Thermocouple
module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 12) specifies the channel to be sampled or read.

The input at FAHR specifies degrees Fahrenheit if it is enabled. If it is not enabled
then the output will be in degrees Celsius. (F =1.8C + 32)

The input at TYPE (0 - 2) specifies the type of thermocouple or specifies milli-

volts.
0 = Jtype
I = Ktype
2 = mV

If J or K type has been selected, then the VALU output holds the temperature (in
tenth of degrees) in either F or C.

CHAPTER 2-22 Chapter 2 Function/Function Block Description

ATMPCHRD

If mV is selected, the VALU output holds the interpolated digital value (-2048 to
2047) of the analog signal (-100 to +100mV).

Counts at| mV [The following formula can be used to calculate the
VALU mV (n) value from the counts at the VALU output.

22048 -100 _ [100 — (-100)]
n = [VALU = (22088)1 X 30— —50as)

+(~100)

J[For example, if the value at VALU was 1023 counts, then the
mV are calculated as follows:

n
200
n = [1023 +2048] x 7o — 100
+2047] +100 of
n = +49.98 mV

The output at OK is not energized, the value at VALU is unpredictable, and the
output at ERR equals 1 - 8, 11, or 12 if an error occurs.

NOTE: Values outside the temperature limits (defined by ATMPCHIT) can be
read but should not be used for control purposes.

ERR fDescription
1 (The input at RACK is out of range.
A rack hardware fault occurred.
The input at SLOT is out of range.
The module at the location specified is not an analog temperature module.
The input at CHAN is out of range.
There is a module hardware fault.

N NN AW

The channel is being initialized. Try again later.
INOTE: This error can occur if you continually initialize a channel.

8 |A linearization error occurred.

11 |A temperature underflow occurred. Indicates an open thermocouple.
INOTE: There is no open indication for grounded thermocouples.

12 |A temperature overflow occurred.

NOTE: This function works in conjunction with the ATMPCHIT and ATMPM-
DIT functions.

The ATMPCHIT function must be executed once after the ATMPMDIT function is
executed, and before the ATMPCHRD function block is executed.

Chapter 2 Function/Function Block Description CHAPTER 2-23

ATMPMDIT

ATMPMDIT
Analog Temperature Module Initialization lo/JKTHERM

atvevorT| Imputs: EN (BOOL) - enables execution (One-shot)
1N 0K = RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
Isio7 uSEC (UINT) - frequency of read
4 uSEC Outputs: OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if an error occurs

The ATMPDIT function initializes a J-K Thermocouple module. It establishes the
frequency at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input at uSEC (5000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 10°uSEC).

If an error occurs the output at OK is not energized and the value at ERR equals 1 -
4, or 10.

ERR ﬂ)escription

1

The input at RACK is out of range.

2

A rack hardware fault occurred.

3

The input at SLOT is out of range.

4

The module at the location specified is not an analog temperature module.

10

The input at uSEC is out of range.

NOTE: This function works in conjunction with the ATMPCHIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once after the ATMPMDIT function is
executed, and before the ATMPCHRD function block is executed.

CHAPTER 2-24 Chapter 2 Function/Function Block Description

A DT T

ADTT
Add date and time to time Arith/DATETIME
AT 7 | Inputs: EN (BOOL) - enables execution
1N 0K IN1 (DATE_AND_TIME) - addend
JINT ouT IN2 (TIME duration) - addend
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - result of add

The A_DT _T function adds the value of the constant or variable at IN1 to the
value of the constant or variable at IN2. The result is a DATE_AND_TIME value
that is put in the variable at OUT.

Table 2-1. Examples of Add DATE_and_TIME to TIME

'Value at IN1 'Value at IN2 [Value at OUT
DT#1990-09-25-00:00:00 [T#239s DT#1990-09-25-00:03:59
DT#1991-07-04-14:14:23 [T#23d10h22m [DT#1991-07-28-00:36:23

Chapter 2 Function/Function Block Description CHAPTER 2-25

A_IN_MMC

A_IN_ MMC

Analog input for the MMC

lo/ANLGIN

HEN

A_IN_MMC

Inputs:

EN (BOOL) - enables execution

okL Outputs: OK (BOOL) - execution completed

VALUF

VALU (INT) - digital value of analog input

NOTE: This function can only be used with the MMC, not a PiC CPU. The OK
will not be set if a PiC CPU is selected.

The A_IN_MMC function outputs the digital value of an analog input for the
MMC. The VALU output contains the counts of the analog input. You can con-
vert these counts to a voltage value using the formula shown below.

Countsat| V

VALU

+2047 +10 [The following formula can be used to calculate
the voltage value from the counts at the VALU
output.

+1024 +5

0 0 10V
Voltage = VALU(2—048 Counts)
-1024 +5
-2048 -10

CHAPTER 2-26

Chapter 2 Function/Function Block Description

A_INCHIT

A_INCHIT “

Analog Input Channel Initialize lo/ANLGIN

A INCHIT| Inmputs: EN (BOOL) - enables execution (One-shot)
i EN_ oK = RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
dsLoT CHAN (USINT) - channel to initialize
4 CHAN RNGE (USINT) - voltage range
4 RNGE BIPO (BOOQOL) - bipolar or unipolar
4BIPO 4mAO (BOOL) - 4/20 mA offset
14mA0 10ms (BOOL) - noise filter
110ms 100ms (BOOL) - noise filter
1106ms Outputs: OK (BOOL) - energized if and only if ERR =0

ERR (USINT) - # 0 if and only if error occurs

The A_INCHIT function initializes a channel on an analog input module. It estab-
lishes the range of voltage or current to be sampled and the amount of hardware
filter to be applied.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the

PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU

or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

The input value at CHAN (1 - 8 for the standard analog input module and 1 - 4 for
the block analog input module) specifies the number of the channel to read.

Chapter 2 Function/Function Block Description CHAPTER 2-27

A_INCHIT

The input at RNGE (1 - 8 for the standard analog input module and 1 - 2 for the
block analog input module) specifies the input voltage range at this channel as
shown below.

Enter Unipolar Range Bipolar Range
1 0- 10V -10 - 10V
2 0- 5V -5-5V
3 0- 2.5V -2.5- 2.5V
4 0-1.25V -1.25-1.25V
5 0-1V -1- 1V
6 0-.5V -5-.5V
7 0-.25V| -.25-25V|
8 0-.125V -.125 - 125V

The input at BIPO specifies bipolar if enabled. It specifies unipolar if it is not
enabled.

The input at 4mAOQO specifies that current is to be sampled. To read current (instead
of voltage) it is required that:

1. A jumper be connected from the (-) input to the 250 ohm resistor input, as
described in the Hardware Manual.

2. The input at RNGE equal 2 and the input at BIPO be a normally open con-
tact that is never set.

The input at 4mAO should have a wire or short connected to it for 4 to 20mA. The
input at 4mAO should not be enabled for O to 20 mA. These inputs are pictured

below.
4 -20 mA 0-20 mA
2 “»—{ RHGE 2 — RHGE
HEVERSET ' HEVERSET
— —BIPO — }——BIPO
' ’ HEVERSET
{4mao _ — b——4mao

The inputs at 10ms and 100ms specify the amount of noise filter. If neither input
is enabled then the default filter of 1 millisecond is applied. If the input at 10ms is
enabled then a 10ms filter is applied. If the input at 100ms is enabled then a 100ms
filter is applied. If both inputs are enabled then a 110ms filter is applied.

Note: The 10, 100, and 110 ms filters are not available for the block analog input
modules.

CHAPTER 2-28 Chapter 2 Function/Function Block Description

A_INCHIT

If an error occurs the output at OK is not energized and the output at ERR equals 1

-7:

ERR [Description

1

The input at RACK is out of range.

IA rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog input module.

The input at CHAN is out of range.

There is a channel hardware fault.

N NN AW N

The input at RANG is out of range.

Note: This function works in conjunction with the A_INMDIT (module initial-

ize) and A_INCHRD (channel read) functions.

The A_INMDIT and the A_INCHIT functions must execute one time
(the input at EN should be a one-shot), in either order, before the

A_INCHRD function block executes.

Chapter 2 Function/Function Block Description

CHAPTER 2-29

A_INCHRD

A_INCHRD
Analog Input Channel Read lo/ANLGIN
_M\IAIEIC% Inputs: EN (BOOL) - enables execution
1N 0K = RACK (USINT) - rack where module resides
JRACK VALU - SLOT (USINT) - slot where module resides
1SLOT ERR|- CHAN (USINT) - channel to read
4 CHAN Outputs: OK (BOOL) -energized if and only if ERR =0

The A_INCHRD function block outputs the digital value of an analog input to a

channel on the analog input module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,

#2 is the rack connected to # 1, etc.

VALU (INT) - digital value of analog input
ERR (USINT) - # 0 if and only if error occurs

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the
PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU

or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for

the module connected to module #2, etc.

The input value at CHAN (1 - 8 for a standard analog input module and 1 - 4 for a
block analog input module) specifies the number of the channel to read.

The output at VALU holds the digital value of the signal occurring when this func-

tion block is enabled. The range of values is shown below:

Analog Input Module Unipolar Bipolar
12-bit resolution 0 to 4095 -2048 to 20477
14-bit resolution 0to 16383 -8192 to 8191

This value is interpolated for the voltage or current range specified by the

A_INCHIT function.

CHAPTER 2-30 Chapter 2 Function/Function Block Description

A_INCHRD

If an error occurs the output at OK is not energized and the output at ERR =1 - 7.

ERR fl)escription
1 (The input at RACK is out of range.
A rack hardware fault occurred.

The input at SLOT is out of range.

The module at the location specified is not an analog input module.

The input at CHAN is out of range.

QN AW

Either there is a channel hardware problem, the module was not initialized,
or the module is being continually initialized.

7 [Initialization is not complete.

NOTE: This function works in conjunction with the A_INMDIT (module initial-
ize) and A_INCHIT (channel initialize) functions.

The A_INMDIT and A_INCHIT functions must execute one time, in either order,
before the A_INCHRD function block executes.
Examples

The information below will help you to calculate the device signal if you know the
value at VALU or to calculate the VALU if you know the device signal.

Input Range Resolution Device Signal VALU=
4-20mA 12 bits [=16mA (VALU/4095) + 4mA | (I-4mA) 4095/16mA
4-20mA 14 bits | [= 16mA (VALU/16383) + 4mA | (I-4mA) 16383/16mA
0-20mA 12 bits I =20mA (VALU/4095) 1 (4095/20mA)
0-20mA 14 bits [=20mA (VALU/16383) 1 (16383/20mA)

Any voltage| 12 bits V = Range* (VALU/4095) V (4095/Range*)

range™ 14 bits V = Range* (VALU/16383) V (16383/Range*)

*The voltage ranges for unipolar and bipolar inputs are listed below.

Unipolar Input Range Bipolar Input Range
0to 10 V] 10V -10 to 10 V| 20V
Oto5 V| 5V S5tos5V 10V
0to2.5V 2.5V 251025V 5V
0to 1.25V| 1.25 V| -1.25t01.25V 25V
Oto1V 1V -1to 1V 2V
0to 0.5V 05V -05t00.5V 1V
0t00.25V 0.25 V| -0.25t0 0.25 0.5V
0t00.125 V| 0.125 V| -0.1251t0 0.125 V| 0.25V

Chapter 2 Function/Function Block Description

CHAPTER 2-31

A_INCHRD

For a 12-bit unipolar example, if the value at VALU was 2948 counts and the range is .125 (0
to .125), then the voltage is calculated as follows:

_0.125x2948

V= 1005 - 0.09v

For a 14-bit unipolar example, if the value at VALU was 11796 counts and the range is .125 (0
to .125), then the voltage is calculated as follows:

0.125x 11796

16333 0.09v

Vv

For the 12-bit bipolar example, if the value at VALU was -1228 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:

_10x-1228

V= 4095 -3V

For the 14-bit bipolar example, if the value at VALU was -4915 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:

10X -4915

V= 16383 -3V

For a 4-20 mA example, if the value at VALU was 2047 counts, then the current is calculated
as follows:

I = 16mA (2047 +4095) + 4mA= 12mA

CHAPTER 2-32 Chapter 2 Function/Function Block Description

A_INMDIT

A_INMDIT “

Analog Input Module Initialization lo/ANLGIN

A npr7| Imputs: EN (BOOL) - enables execution (One-shot)
| EN_ 0K |- RACK (USINT) - rack where module resides
JRACK ERRl- SLOT (USINT) - slot where module resides
4SLOT uSEC (UINT) - frequency of read
4 uSEC Outputs: OK (BOOL) -energized if and only if ERR =0

ERR (USINT) - # 0 if and only if an error occurs

The A_INMDIT function initializes an analog input module when using a PiC
CPU. It establishes how frequently the module samples or reads voltage or current
input. NOTE: If using an MMC CPU, use the A_IN_MMC function.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the

PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU

or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

The input at uSEC (800 - 65535) specifies in microseconds how frequently the
module reads or samples the input. The sample frequency in hertz equals 10%
uSEC.

Note: When using the Servo Module Encoder with Analog Input or the block
analog input module the range is 800 - 32767.

Chapter 2 Function/Function Block Description CHAPTER 2-33

A TOD_ T

If an error occurs the output at OK is not energized and the value at
ERR equals 1 - 5:

ERR [Description
1 [The input at RACK is out of range.
A rack hardware fault occurred.
The input at SLOT is out of range.
The module at the location specified is not an analog input module.
The input at uSEC is out of range.

0N AW

NOTE: This function works in conjunction with the A_INCHIT (channel initial-
ize) and A_INCHRD (channel read) functions.

A_INMDIT and A_INCHIT must execute one time (the input at EN should be a
one-shot), in either order, before A_INCHRD executes.

ATOD T
Add time of day to time Arith/DATETIME

A o0 7 | Imputs: EN (BOOL) - enables execution
JEN oK |- IN1 (TIME_OF_DAY) - addend
JINT ouTk IN2 (TIME duration) - addend
JIN2 Outputs: OK (BOOL) - execution complete

OUT (TIME_OF_DAY) - result of add

The A_TOD_T function adds the value of the constant or variable at IN1 to the
value of the constant or variable at IN2. The result is a TIME_OF_DAY value that
is put in the variable at OUT. The number of days in the TIME value at IN2 must
equal O or an error occurs. Any value for milliseconds is truncated.

Examples of add TIME_OF_DAY to TIME
Value at IN1 Value at IN2 Value at OUT
TOD#11:43:12 T#0d4h10m36ms TOD#15:53:12
TOD#23:59:54 T#3s TOD#23:59:57

CHAPTER 2-34 Chapter 2 Function/Function Block Description

BAT_OK?

BAT OK?

Battery OK? lo/BAT OK? “

[BAT 0K? | Inputs: EN (BOOL) - enables execution

JEN ok |-Outputs: OK (BOOL) - execution completed without error

I

The BAT_OK? function tests the condition of the battery during the ladder scan.
When there is power flow to the EN and the battery is good, the OK will be set.

Chapter 2 Function/Function Block Description CHAPTER 2-35

BIO_PERF

BIO PERF
Block I/O Performance lo/BIlO_PERF

E'(\JN\FQERF— Inputs: EN (BOOL) - enables execution
- STRT (BOOL) -starts the capture of performance

{EN 0K~ information
4 STRT STOP (BOOL) -stops the capture of performance
lstop information

PTR - a pointer to an array of structures holding per-

1PTR formance information for up to 77 block modules
1RETR RETR (BOOL) - enables the retry quantity
Jary QTY (USINT) - number of retries for the system to use

when attempting to communicate with each block
Outputs:
OK (BOOL) - execution completed

The BIO_PERF function block assists you in troubleshooting a block I/O system.
The function block monitors the number of good read/writes versus the number of
bad read/writes to the block modules. It also allows you to change the default num-
ber of four times that the system attempts to read/write a given block module
before a failure occurs.

As an example of troubleshooting, if one block module in your system has several
more retries than the others, check to see if the module is wired correctly or is
located near a source of excessive noise.

NOTE: You can decrease the effect of transient noise by increasing the retry
count. However, remember that excessive retries can result in system degradation.

CHAPTER 2-36 Chapter 2 Function/Function Block Description

BIO_PERF

Data Structure Members

The members of the structure required for the array of structures at the PTR
input are described below.

IMPORTANT

The structure entered in the software declarations table for the PTR
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each
member of the structure must be as shown in order for the software to
recognize the information.

Member Type Description

TOTREAD UDINT The number of reads attempted for this block module
(Total Reads)

BADREAD UDINT The number of retries made while reading from this
(Bad Reads) block module

TOTWRITE UDINT The number of writes attempted for this block module
(Total Writes)

BADWRITE UDINT The number of retries made while writing to this block
(Bad Writes) module

The following ladder example illustrates how the BIO_PERF function block can
be incorporated into your ladder. Note that the retry quantity (QTY) is enabled
after the performance monitor has been enabled and consequently will take effect
during the second scan of the ladder.

Chapter 2 Function/Function Block Description CHAPTER 2-37

BIO_PERF

Figure 2-2. Network Example using BIO_PERF Function Block

ElHetwork #
EHABLE
(s)
E]Hetwork #2
-BIOPERF ——
BIO_PERF
0K
- EH OK - (5 +—
EHABLE
| p | - STRT
DISABLE
| p | - STOP

DATAD) }— PTR
RETRY
|P ——— RETR

QTY 7 QTY

ElMetwork #3

RETRY
(s

CHAPTER 2-38 Chapter 2 Function/Function Block Description

BOOL2BYT

BOOL2BYT
Boolean to Byte Datatype/BOOL2BYT

BooLzey7| Imputs: EN (BOOL) - enables execution

JEN 0K |- INO to IN7 (BOOL) - bits to convert

1INe ouT = Outputs:OK (BOOL) - execution completed without error
JINT OUT (BYTE) - converted value

41IN2
4IN3
41 IN4
1IN
4 ING
4 IN7

The BOOL2BYT function transfers the values of the 8 bits at INO through IN7 into
the byte variable at OUT. The value at INO becomes the least significant (right-
most) bit of the output variable.

Example

IN7 [IN6 | INS | IN4 | IN3 | IN2 |IN1 |INO| OUT
0] 07]0]0O0 1 1 1 1 |00001111

Chapter 2 Function/Function Block Description CHAPTER 2-39

BYT2BOOL

BYT2BOOL

Byte to Boolean

Datatype/BYTECONV

BYT2BOOL
HEN oK
4IN 0UTO
ouT?
ouT2
ouT3
ouT4
0uTS
ouTe
outT7

__Outputs:

Inputs:

EN (BOOL) - enables execution
IN (BYTE) - byte to convert

OUTO to OUT7 (BOOL) - converted values

OK (BOOL) - execution completed without error

The BYT2BOOL function transfers the 8-bit value of the input at IN into the 8

boolean variables specified at OUTO through OUT7. The least significant (right-

most) bit becomes OUTO.

Example
IN OUT7 | 0UT6 | OUT5 | OUT4 | OUT3 | OUT2 | OUT1 | OUTO
11110000 1 1 1 1 0 0 0 0
BYTE2DW
Byte to Double Word Datatype/BYTECONV
syTezow | Imputs: EN (BOOL) - enables execution
1N 0K |- IN (BYTE) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error

The BYTE2DW function changes the data type of the value at IN from a byte to a
double word. The leftmost 24 bits of the double word are filled with zeros. The

OUT (DWORD) - converted value

result is placed in the variable at OUT.

CHAPTER 2-40

Chapter 2 Function/Function Block Description

BYTE2SI

BYTE2LW

Byte to Long Word Datatype/BYTECONV “

BYTE2LW Inputs: EN (BOOL) - enables execution

1N oKL IN (BYTE) - value to convert
1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The BYTE2LW function converts a byte into a long word. The leftmost 56 bits of
the long word are filled with zeros. The result is placed in a variable at OUT.

BYTE 2SI
Byte to Short Integer Datatype/BYTECONV

BYTEZSI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (BYTE) - value to convert

1IN ouTl=Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The BYTE2SI function changes the data type of the value at IN from a byte to a
short integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description CHAPTER 2-41

BYTE2USI

BYTE2USI
Byte to Unsigned Short Integer Datatype/BYTECONV

BYTE2UST Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (BYTE) - value to convert

1IN ouT|l=Outputs: OK (BOOL) - execution complete
OUT (USINT) - converted value

The BYTE2USI function changes the data type of the value at IN from a byte to an
unsigned short integer. The result is placed in the variable at OUT.

BYTE2WO
Byte to Word Datatype/BYTECONV

BYTEZWO Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (BYTE) - value to convert

1IN ouTl=Outputs: OK (BOOL) - execution complete
OUT (WORD) - converted value

The BYTE2WO function changes the data type of the value at IN from a byte to a
word. The leftmost eight bits of the word are filled with zeros. The result is
placed in the variable at OUT.

CHAPTER 2-42 Chapter 2 Function/Function Block Description

CAM_ouTt

CAM OUT
Cam Output (Programmable Logic Switch) Motion/MOVE_SUP
cam out | Inputs: EN (BOOL) - enables execution -
EN oKk AXIS (USINT) - identifies axis (servo, digitizing, or
time)
AXIS OUT}
ON (DINT) - value the output is to turn on at (entered
ON .
in LU)
OFF If ON is outside the range of -536,870,912 to
SLOT 536,870,911 FU, the OK will not be set.
PNT OFF (DINT) - value the output is to turn off at (entered

If OFF is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

SLOT (USINT) - identifies output module slot

PNT (USINT) - identifies output point (1 - 16 or 1 - 32)
on the output module in SLOT.

NOTE: When calling CAM_OUT more than once for
the same slot, be sure the point number is unique.
Never enter a point number more than once for the
same slot.

DABL (BOOL) - disables the cam output when set
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - gives the logic status of the output

The CAM_OUT function is used to turn on a discrete output point for a specified
distance during the rollover on position cycle for the axis. It performs like a pro-
grammable logic switch (PLS). The outputs are updated on an interrupt basis.

With a PiC CPU, the following conditions must be met in order to turn an output
on using the CAM_OUT function. The CAM_OUT function can also be used
with the MMC CPU. Even though the outputs can be shared, they cannot be used
in more than one place.

e 16 or 32 point output module must be in the PiC location identified in
SLOT.
NOTE: If you have a PiC CPU with firmware prior to version 10.2, the out-
puts on these modules can be used for cam outputs only. Choose “Empty” as
the output module used with the CAM_OUT function in the hardware dec-
larations table. This ensures that the outputs will not be turned off at the end
of each scan

Chapter 2 Function/Function Block Description CHAPTER 2-43

CAM_ouTt

SLOT must be a valid slot number for your PiC900/90 or MMC configura-
tion. (For a PiC900/90 rack, from 3 up to 13 depending on the size of the
rack you have.

For the MMC, SLOT must be 2.)

NOTE: The CAM_OUT function works on output modules only. It does
not work on input/output modules.

If SLOT equals zero, no physical output will be used.
Rollover on position must be on for the axis identified in AXIS.

The ON and OFF values must be less than the rollover on position value.
ON must not equal OFF.

e A zero must be entered in DABL.

When using 32 points with the CAM_OUT, the table below shows the values to
enter at PNT.

32 pt 2-16pt
module modules
Enterat PNT | Enterat PMNT
ForSLOT=0 1 1 1
2 2 2
3z 6 16
RA] S (55

You can use less than 32 or 16 points on any module.

Three possible combinations for the CAM_OUT function inputs are shown in the
table that follows. The first combination is what is required to turn both the func-
tion and module output on.

The second combination will turn the function output on but not the module output
because SLOT = 0.

The third combination with DABL set to “1” disables the output from both the
function and the module and also removes it from any foreground calculations.
This is the recommended way to disable a cam output since it saves CPU time.
AXIS, SLOT, and PNT must have valid data entered before a cam output can be
disabled.

Each of these combinations assume that ON # OFF. If ON = OFF, then there
would be no function or module output but CPU time would be used.

NOTE

Once a point is assigned to an axis it cannot be reassigned to a differ-
ent axis unless the servos are reinitialized.

CHAPTER 2-44

Chapter 2 Function/Function Block Description

CAM_ouTt

Table 2-2. Cam input combinations and results

If these Cam function | Then the function OUT, module
inputs are: output, and CPU time use are:
Function | Module Use
SLOT DABL ouT Output | CPU time
SLOT#0 | DABL=0 YES YES YES
SLOT=0 | DABL=0 YES NO YES
* DABL =1 NO NO NO

An * means that any valid data may be entered at the designated input.
Outputs are updated on an interrupt basis.

From 1 to 32 outputs (identified at PNT) can be turned on by calling the
CAM_OUT function once for each output desired. The distance during which
each output remains on can vary by changing the values in ON and OFF in each
function.

Examples of turning on an output for varying distances is illustrated in Figure 2-
3. If the rollover on position cycle equals 1,000 LU and the value entered in ON is
100 and the value entered in OFF is 200, then the output will remain on during 100
units of travel as shown on the left.

If the value entered in ON is 200 and the value entered in OFF is 100, then the out-
put will remain on for 900 units as shown on the right.

Figure 2-3. Cam ON/OFF representation

Enclosed ares represents
distance autput is o

A o]y
100 200

LU SR]

Chapter 2 Function/Function Block Description CHAPTER 2-45

CAPTINIT

CAPTINIT

Data Capture Initialization

Motion/DATA

capTIniT | Inputs:
Ien k)
{SRCE ERRL

lary

{DEST

1s17E

Outputs:

EN (BOOL) - enables execution (One-shot)

SRCE (ARRAY OF STRUCT) - an array of structures
to define what data is to be captured.

QTY (USINT) - the number of variables (from 1 to 8)
to be captured. (Same as the number of array elements

in SRCE or the number of structure members in
DEST.))

DEST (ARRAY OF STRUCT) - an array of structures
to store the captured data.

SIZE (UINT) - the number of array elements in DEST
which represents the number of data samples to take.

OK (BOOL) - set if no errors in structure data

ERR (USINT) - no error if ERR = 0; error if ERR # 0.
Errors are listed below.

This section contains information on how to capture data in the PiC ladder so that
it can be displayed on the workstation screen. If you are capturing data directly
from the ladder once per scan, then the variables can be put into an array of struc-
tures using the READ_SV function. If you are capturing data from servo inter-
rupts, then you use the two functions, CAPTINIT and CAPTSTAT, to get the
variables into an array of structures, as shown in Figure 2-4.

The communication function blocks are used to create a binary file that can be sent
to the PiC RAMDISK or the workstation.

CHAPTER 2-46 Chapter 2 Function/Function Block Description

CAPTINIT

Figure 2-4. Tasks for data capture

Data from servo interrupts
[use CAPTINIT and CAPTSTAT functions)

CAPTINIT CAPTSTAT
M kT L ok
J{SFCE BR} {5TRT ELEM|
Jary {0MCE
40E3T
J5IZE

. Fic90n
Uze the communicakion RANDISE
: function blocks o creake a
Store in an
binawy file bo sand b
arvay of —" ;
sHuChReS the PiC900 F!.*.r_-.-'[:lISH ar
woHdskakion.
F 4.' Yarkstation

Crata From variables in the LD
[use READ SV function]

RED S
{m ok
JARIS RSLT
{IYR

BRI E-30C

Chapter 2 Function/Function Block Description CHAPTER 2-47

CAPTINIT

The CAPTINIT function defines the data you want to capture each servo interrupt
and where the data will be stored.

CAUTION

Itis very important that the values entered at QTY and SIZE equal the
number of variables you are capturing and the number of samples you
are taking respectively. If not, the results are unpredictable.

ERR # [Description
No error

1 [The CAPTSTAT function has not stopped capturing data from a
previous data capture initialization.

2 An axis number in the structure is invalid.

3 [The limit of eight variables in the array of structures has been
exceeded.

4 |Parameter number in the structure is out of range.

5 The CAPTINIT function was called before the STRTSERV func-
tion was called.

The SRCE input array of structures

An array of structures is used at the SRCE input of the CAPTINIT function. There
is one array element for each variable to capture. Each array element is a structure
with two members; AXIS which identifies the servo or digitizing axis the variable
applies to and VAR which identifies the variable you want to capture. A maximum
of eight variables can be captured within one array of structures. The variables are
described in the table below.

CHAPTER 2-48 Chapter 2 Function/Function Block Description

CAPTINIT

Table 2-3. Data Capture

Var Name Type

1 |Actual position
The actual position of the device with reference reset applied. DINT
Units are feedback units.

(Variable 1 in READ_SV.)

2 |Fast input occurred
On for one interrupt. Bit 00001000 of this byte. BYTE
(Same as bit 00000010 out of STATUSSV.)

3 |Commanded position
The commanded position sent to the servo upgrade. Units are feed- DINT
back units.

(Variable 3 in READ_SV.)

NOTE: This is the same as actual for a digitizing axis.

4 [Position error
The error between the filtered output and the actual. Units are feed DINT

back units.
(Variable 4 in READ_SV.)

NOTE: With a SERCOS axis, this value will differ from servo vari-
able 4 by the number of feedback units traveled in four servo
updates. For an exact reading of position error with a SERCOS
axis, read Following Distance IDN 189 from the drive.

5 [Slow Velocity Filter error
The accumulated value in the slow velocity filter. Units are feed- | DINT
back units.

(Variable 5 in READ_SV.)

6 |(Command change
The command delta for this interrupt after filter. Units are feedback| [NT
units per upgrade.

(Variable 6 in READ_SV.)

"7 |Position change
The change in actual position for this upgrade. Units are feedback | INT
units per upgrade. (Variable 7in READ_SV.)

8 [Feedback position
The 24 bit counter from the hardware. Top byte is always 0. Units| DINT
are feedback units.

(Variable 8 in READ_SV.)

9 |Prefilter commanded position
The commanded position prior to the filter. Units are feedback DINT
units.

NOTE: This is the same as actual for a digitizing axis.

10 [Prefilter command change
The command delta for this interrupt before filter. Units are feed- | [NT

back units.

Chapter 2 Function/Function Block Description CHAPTER 2-49

CAPTINIT

11 [Remaining master offset
The accumulated master offset. Units are feedback units. DINT

12 [Remaining slave offset
The accumulated slave offset. Units are feedback units. DINT

13 |[Command change
The command delta for this interrupt after filter. Units are feedback| DINT
units per upgrade.
(Variable 6 in READ_SV.)
14 [Position change

The change in actual position for this upgrade. Units are feedback | DINT
units per upgrade. (Variable 7in READ_SV.)
15 [Prefilter command change

The command delta for this interrupt before filter. Units are feed- | DINT
back units.

IMPORTANT

The structure you enter in the software declarations table for the
SRCE input must have the members entered in the order shown be-
low. The data type for each member of the structure must be as shown
in the Type column in order for the software to recognize the infor-
mation.

In the example shown below, there are three variables to be read; the actual posi-
tion of Axis 1 (1), the position change of Axis 1 (7), and the actual position of Axis

49 (1).
E L Tvp 110 Pt. Init. Mal.=
SOURCE@) SOURCE(1) SOURCE2)
E STRCT(A. 2]
SARIS LEINT 1 1 44
R LEINT 1 7 i
B0 STRACT
h
RR] 55

CHAPTER 2-50 Chapter 2 Function/Function Block Description

CAPTINIT

The DEST input array of structures

DEST is the array of structures which is the destination of the captured data. There
is one array element for each data sample. A data sample occurs each interrupt and
will capture as many variables as indicated at SRCE. Each structure contains one
member for each variable captured. In the above example, there are three vari-
ables and therefore there needs to be three structure members. Each structure
member must be the correct type to accommodate the variable captured. The type
of each variable is listed under the Type column in the variable table above.

In the example, the array of structures could look like this:

Hame Type A, | O Point | h
DESTIM STRUCTCD..89)
POz DiIrT
DELTA IMT
POS48 DIMT
EMD_STRUCT

This array of structures accommodates 100 data samples. Captured data is stored
sequentially into the array until the end is reached (element 99 in the example).
Then the data will wrap around and begin to fill the array again unless ONCE has
been set in the CAPTSTAT function. Use the ELEM output of the CAPTSTAT
function to find out the next element in the array that will be written to.

Chapter 2 Function/Function Block Description

CHAPTER 2-51

CAPTSTAT

CAPTSTAT
Data Capture Status Motion/DATA

WTATP Inputs: EN (BOOL) - enables execution

1N 0K STRT (BOOL) - a positive transition will start the
data capture process. A zero will stop the data cap-

{STRT ELEWE ture process.
ONCE ONCE (BOOL) - set to fill the array of structures
L 1

one time.
Outputs: OK (BOOL) - set if no errors in structure data

ELEM (UINT) - the number of the next array ele-
ment that will be written to. (0 is the first element
in an array.)

NOTE: If the CAPTINIT function is not called before this function, the OK will
not be set and ELEM will = 0.

The CAPTSTAT function provides the ability to start and stop the capturing of data
from the ladder.

CHAPTER 2-52 Chapter 2 Function/Function Block Description

CLOCK

CLOCK
Clock Xclock/CLOCK
CLOCK Inputs: EN (BOOL) - enables execution
1N 0K IN (DATE_AND_TIME) - clock set value
JIN ouT SET (BOOL) - causes set or extract
JSET Outputs: OK (BOOL) - execution completed without error
—

OUT (DATE_AND_TIME) - value extracted

The CLOCK function is used to get the current date and time from the PiC, or to
enter a date and time into the PiC.

If power flow exists at SET, then the PiC clock is set with the value of the variable
at IN. The value at IN is also placed into the variable at OUT.

If power flow does not exist at SET, then the (current) PiC date and time are
extracted from the PiC clock and placed in the variable at OUT.

Typically, the CLOCK function is used in a read only mode. The example below
shows how to set this up. Put the same variable name on IN and OUT. Place a
Normally Open contact that is never set at the SET input.

Example

CLOCK
READ

——PF——EH oK |

VALUE N OUT | VALUE
HEVER
— ——sET

Chapter 2 Function/Function Block Description CHAPTER 2-53

CLOSE

CLOSE
Close lo/COMM
%VI%EE Inputs: REQ (BOOL) - enables execution (One-shot)
JREQ DONE |- HNDL (INT) - output from OPEN function block
1uNDL FAIL = Outputs: DONE (BOOL) - energized if ERR =0
ERR |~ not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0

not energized if ERR =0

ERR (INT) - 0 if data transferred successfully;
0 if data transfer unsuccessful

See Appendix B in the software manual for ERR codes.

The CLOSE function block closes the communication channel between the LDO
and either a workstation file, a PiC RAMDISK file, a PiC FMSDISK file, or User
Port.

The device or file at HNDL is closed, terminating the transfer of data from/to the
file/device. Execution of this function block frees a mode (or 2 modes for read and
write or append). It also empties the read and write buffers.

CLOSE is used in conjunction with the CONFIG, OPEN, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

CHAPTER 2-54 Chapter 2 Function/Function Block Description

CLOSLOOP

CLOSLOOP
Close Loop Motion/INIT
cLostoop | Imputs: EN (BOOL) - enables execution (One-shot)
1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The position loop for the designated axis is closed when the CLOSLOQOP function
is activated. The commanded position of the axis will be compared to the actual
position of the axis. The difference between the two is the following error. The
PID calculations will respond to the error by telling the analog output to send a
corrective voltage signal to the drive. The drive will move the axis toward the
commanded position. Any further disturbance in axis position will initiate a simi-
lar corrective response. This function must be included in any closed loop servo
application.

See also OPENLOOP.

Chapter 2 Function/Function Block Description CHAPTER 2-55

CLSLOOP?

CLSLOOP?
Close Loop? Motion/INIT
cLstoop? | Imputs: EN (BOOL) - enables execution
1N 0K AXIS (USINT) - identifies axis (servo)
1ax1s cLspl Outputs: OK (BOOL) - set if axis is closed loop and initialized
CLSD (BOOL) - set if the axis loop is closed, cleared

if the axis loop is open or the OK is not set

The CLSLOOP? function allows you to inquire whether or not the loop for an axis
is closed. The axis you are inquiring about is identified at the AXIS input. The
CLSD output indicates whether the axis loop is closed or not.

The axis will be closed only if you have previously called the CLOSLOOP func-

tion for this axis. The axis will be open if you have called the OPENLOOP func-
tion or an E-stop error is in effect. This function may be called at any time and in
any task.

NOTE: If using this function with a SERCOS system, the CLSD output is report-
ing the state of the SERCOS drive rather than the internal state of motion.lib.

CHAPTER 2-56 Chapter 2 Function/Function Block Description

CONCAT

CONCAT
Concatenate String/CONCAT
concar | Imputs: EN (BOOL) - enables execution
1N 0K |- OUT (STRING) - concatenated STRING
10UT---0uT = IN1 (STRING) - STRING input
JIN1 IN2 (STRING) - STRING input
4IN2 Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The CONCAT function merges two STRING variables together. The variable at
IN2 is placed directly after the variable at IN1 and the resulting STRING is placed
in the variable at OUT.

This is an extensible function which can concatenate up to 17 STRINGs. The
STRING at IN17 is placed after the STRING at IN16, which is placed after the
STRING at IN15, etc. The variables at IN2 through IN17 must be unique from the
variable at OUT.

An error occurs:

If the length of IN1 > length of OUT
If the length of IN2 > length of OUT
If the length of IN1 + length of IN2 > length of OUT
If IN2, or IN3, ... or IN17 = OUT

Example of Concatenate Function

Var at IN1

Value at IN2

Value at IN3

Var at OUT

string1

string?2

string3

string I string2string3

Chapter 2 Function/Function Block Description

CHAPTER 2-57

CONFIG

CONFIG
Configure lo/COMM
%Ié,\NAIEIG Inputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONE |- HNDL (INT) - output from OPEN function block
JHNDL FAIL CFGZ (STRING) - configuration data
1CFGZ ERR|-Outputs: DONE (BOOL) - energized if ERR =0

not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transferred successfully;
0 if data transfer unsuccessful

The CONFIG function block establishes the communication parameters for the
PiC User Port (only) and the handle specified by the input at HNDL. To configure
User Port, create a STRING variable and connect it at the CFGZ input. Enter the
parameters in the order shown. Each parameter value must be separated by a com-
mand.

Baud rate

Parity

Data bits | Stop bits | Synch mode | Terminator

9600,

8, 1, N $00

String = 9600,N,8,1,N$00

NOTE: To use all default values, create a string variable of length O with no initial
value. To use one or more (but not all default values), insert a comma for each
value that is omitted as shown below.

Baud rate

Parity

Data bits | Stop bits | Synch mode | Terminator

b

N,

)) N $00

String = ,N,,,N$00

CHAPTER 2-58

Chapter 2 Function/Function Block Description

CONFIG

Table 2-4. Parameters for CONFIG string

Parameter Acceptable Default Description
values value
Baud Rate [110, 300, 600, Number of bits per second that are transferred - a
1200, 2400, 9600 baud rate above 9600 requires hardware sync
4800, 9600, mode
19200
Parity E - if # of 1s in lower 7 bits is odd, then bit 8 is
E - Even set to 1
O -Odd N O - if # of 1s in lower 7 bits is even, then bit 8 is
N - None set to 1
N - no parity checking
Data Bits (7 or 8 3 Number of bits that are to be interpreted as data
Stop Bits 2(for 110 |After the transmission of every byte, pause for
1 or 2 baud) the time it takes to send 1 or 2 bits before trans-
L(for other [Mitting the next byte
bauds)
Synch Mode R - the PiC will stop sending if <CTRL-S> or
XOFF is received and resume sending when
N - None <CTRL-Q> or XON is received.
S - Send S - the PiC will send a <CTRL-S> when input
R - Receive N needs to be suspended and a <CTRL-Q> when
B-BothS & R input is to resume.
H - Hardware H - clear to send (CTS) and request tq send
(RTS) are connected between the devices to pre-
vent overruns.
RS422/485 T -When using RS422/485 communications and
Mode the 2- or 4-channel serial communications mod-
ule, including a "T" in the CFGZ string as shown
below disables the transmitter when there are no
T - Transmitter | characters to transmit.
Disabled String = 9600,N,8,1,N,T$00
This allows implementation of a two-wire party
line configuration with RS485 communication
links.
Terminator $00 None Characters that signal end of data.

CONEFIG is used in conjunction with the CLOSE, OPEN, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

Chapter 2 Function/Function Block Description

CHAPTER 2-59

COORD2RL

COORD2RL

Coordinate to Real Motion/DATA
coorozrL | Imputs: EN (BOOL) - enables execution
EN ok L CNFG (STRUCTURE) - provides setup data for move
CNFG ERR} MOVE (STRUCTURE) - provides part program data for
MOVE move
ACTV ACTV (WORD) - identifies axis for each segment output
SEG SEGI1 - (STRUCTURE) - provides segment output for

i | the first axis. Function can be extended for 15 additional

axes SEG outputs.
Outputs: OK (BOOL) - execution completed without error
ERR (INT) - # 0 if and only if an error occurs.

The COORD2RL function is a math conversion function requiring servo initializa-
tion and a math coprocessor on the PiC CPU. It is an extensible function that cal-
culates a profile segment (output SEG1 through SEG16) for up to 16 axes from the
information provided in the CNFG and MOVE inputs.

NOTE: Of
can be used

The CNFG

the 32 servo axes available, only servo axes numbered 1 through 16
with this function.

input is a structure holding setup data. The MOVE input is a structure

containing part program information such as endpoints, velocities, move times,
circle centerpoints, etc.

The COORD2RL math conversion function is used with the RATIO RL function.

IMPORTANT

softw

The structures entered in the software declarations table for CNFG,
MOVE, and SEG1 must have the members entered in the order listed
in the tables that follow. The data type entered in the Type column
for each member of the structure must be as shown in order for the

are to recognize the information.

CHAPTER 2-60

Chapter 2 Function/Function Block Description

COORD2RL

Table 2-5. COORD2RL structure memebers at the CNFG input

Member Type Description
TMAXRT DINT Enter the time axis rate. 1000 units/sec is recommended
(time axis rate) for most applications.
TOLR DINT Enter in ladder units the limit on the circle endpoint
(tolerance) your application will accept before an error is reported.
FLAGS WORD Bit 0 is the only bit currently in use.
(flags)

1914131211 10 9 &

v E T4

-
[

0 = no velocity check

1
HEEEEEEEEEEEEEE

1 = velocity check

0
|
|— All remaining bits (1-15) should

be set to zero.
AR EIE:

Table 2-6. COORD2RL structure memebers at the MOVE input

Member Type Description
LINEAR WORD Identify from 1 to 16 axes that will be used for linear moves.
(linear axes)
CIRCLE WORD Identify two axes that will be used for circular moves.
(circular axes)
DEPART WORD Identify from 1 to 16 axes that will be used for third axis
(departure axes) departure moves.
INOTE: Third axis departure is accomplished by slaving the
third axis to the same time axis as the two axes doing the cir-
cle.
RTTM BYTE Selects rate or time.
(rate or time) 00 = rate 80 (hex) = time
DIR BYTE Selects the direction a circular move will take.
(direction) 00 = CW 80 (hex) = CCW
VALUE DINT Define the rate or time (based on what was selected at RTTM
(rate or time value) above).
Rate is entered in LU/min.
Time is entered in msec.
AX1CP DINT Enter the centerpoint for the first axis (lowest number) entered
(First axis center- in CIRCLE.
point)
AX2CP DINT Enter the centerpoint for the second axis (highest number)
(Second axis center- entered in CIRCLE.
point)
ENDPTS DINT (0-15) [Enter in an array the endpoints for all axes being used.

(1-16 endpoints)

Chapter 2 Function/Function Block Description

CHAPTER 2-61

COORD2RL

Table 2-7. COORD2RL structure members at the SEG ouput

Member Type Description
MASTER DINT The segment master distance
(master distance)
SLAVE DINT The segment slave distance
(slave distance)
LEN LREAL The length of the cycle
(cycle length/K71)
AMPL LREAL The amplitude of the wave
(amplitude/K2)
STANGL LREAL The starting angle of the wave
(starting angle/K3)
SPARE LREAL Declare this in your structure since it may be used in the future
(unused) for additional features.
FLAGS DWORD Bits 0 through 4 are currently being used.
(flags) (See explanation at the REAL input of RATIO_RL.)

CHAPTER 2-62 Chapter 2 Function/Function Block Description

COORD2RL

The table below defines the outputs that can appear at the ERR output of the
COORD2RL function.

Table 2-8. COORD2RL ERRs

|ERR Output

0 [No error
1 [No bits were set in the LINEAR, CIRCLE, or DEPART members of the MOVE
structure.

2 [The same bit was set in the LINEAR and CIRCLE members of the MOVE struc-
ture. An axis cannot be linear and circular at the same time.

3 [The same bit was set in the DEPART and CIRCLE members of the MOVE struc-
ture. An axis cannot be departure and circular at the same time.

4 [The same bit was set in the LINEAR and DEPART members of the MOVE struc-
ture. An axis cannot be linear and departure at the same time.

5 [Setif other than O or 2 bits were set in CIRCLE. Two bits must always be set in
order to do a circular move.

6 (The ACTYV input indicated a fewer number of axes than the number connected to
the inputs labeled at SEG.

7 |Abitis setin LINEAR, CIRCLE, or DEPART that does not have a corresponding
bit in ACTV.

8 [The time or rate value is negative. These must be positive numbers only.

9 [The time or rate value is zero.

10 [The rate was too high or the time was too low to calculate.

11 [The rate was too low or the time was too high to calculate.

12 |An axis that was selected was not initialized by the user function.

13 [The STRTSERYV function was not called. No axes have been initialized.

14 [The circle endpoint limit you entered in the CNFG structure for TOLR has been
exceeded.

Ixx [Distance calculated using scaling was too positive to fit in the 32 bit value.
xX is the axis number.

2xx [Distance calculated using scaling was too negative to fit in the 32 bit value.
xXx is the axis number.

3xx |Velocity exceeded the maximum feedrate defined in servo setup.
NOTE: Valid profile data is still produced if this error occurs.

Chapter 2 Function/Function Block Description CHAPTER 2-63

Ccos

COS
Cosine Arith/TRIG
oS Inputs: EN (BOOL) - enables execution
1N ok L ANGL (REAL/LREAL) - angle value (in radians)
IANGL cost Outputs: OK (BOOL) - execution completed without error
COS (REAL/LREAL) - cosine calculated
NOTE: The data types entered at ANGL and COS must
match, i.e. if ANGL is REAL, then COS must be REAL.
The COS function calculates the cosine of the angle entered at ANGL. The result
is placed at COS.
CTD
Count Down Counters/CTD
B %‘é’gE 7] Imputs: CD (BOOL) - initiate count down
i) ol LD (BOOL) - load PV to CV
11D oV = PV (INT) - preset value
Ipv Outputs: Q (BOOL) - execution completed for count down to 0

CV (INT) - count value

The CTD function block counts down to -32768 from the preset value in the vari-
able or constant at PV. The count value at CV is decremented by one whenever a 0
to 1 transition occurs at CD.

Whenever the count is < zero, the output at Q is energized.

The value at PV is loaded into the value at CV when power flow occurs at LD.

CHAPTER 2-64 Chapter 2 Function/Function Block Description

CTUD

CTU
Count Up Counters/CTU
B %'%ME 71 Imputs: CU (BOOL) - initiate count up
{cu ol R (BOOL) - reset counter to zero
1R oV PV (INT) - preset value
dpv Outputs: Q (BOOL) - execution complete for count up to preset
value
CV (INT) - count value
The CTU function block counts up from zero to +32767. The count value at CV is
incremented by one whenever a 0 to 1 transition occurs at CU.
Whenever the count is = the preset value at PV, the output at Q is energized.
The value at CV is reset to zero when power flow occurs at R.
CTUD
Count Up/Count Down Counters/CTUD

B WE] Imputs: CU (BOOL) - initiate count up

lcu lk CD (BOOL) - initiate count down

e ok R (BOOL) - reset counter to zero

1R oVl LD (BOOL) - load PV to CV

4LD PV (INT) - preset value

4PV Outputs: QU (BOOL) - execution complete for count up

QD (BOOL) - execution complete for count down
CV (INT) - count value
The CTUD function block counts between +32767 and -32768.

The count value at CV increments by one whenever a transition occurs at CU. The
count value at CV decrements by one whenever a 0 to 1 transition occurs at CD.

Whenever CV is = PV, QU is energized; whenever CV is <0, QD is energized.

When power flow occurs at R, the value at CV resets to zero and QD is energized.
When power flow occurs at LD, the value at PV is loaded into CV and QU is ener-
gized.

Note: Only one boolean input at a time should be energized.

Chapter 2 Function/Function Block Description CHAPTER 2-65

C_ERRORS

C ERRORS
Controlled Stop Errors Motion/ERRORS

C trroRs | Imputs: EN (BOOL) - enables execution

| E& oKL AXIS (USINT) - identifies axis (servo)
AXIS ERRSE Outputs: OK (BOOL) - execution complete
ERRS (WORD) - indicates errors

The ERRS output on the C_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error. The low byte of the word is where the individual errors are
located.

High byte Low byte
The table that follows gives the C-stop errors and their locations.

NOTE: The C_ERRORS can also be viewed from the tune section of the Servo
setup program. The “E” is what appears on the tune screen in Servo setup.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

CHAPTER 2-66 Chapter 2 Function/Function Block Description

C_ERRORS

Table 2-9. Controlled stop errors

Bit Location Hex
Error Description (low byte) Value
(Decimal)”
87165432 |(inLDO)
Part reference Move was in progress when a part ref- |E 8080
error erence or a part clear function was (32896)
called.
Part reference 'When the dimension for the part refer-| [E 8040
dimension error ence was converted to feedback units, (32832)
it was too big to fit into 29 bits.
Distance or posi- [When the dimension for the move was E 8020
tion move dimen- iconverted to feedback units, it was too (32800)
sion error big to fit into 31 bits.
Feedrate error®* [When the feedrate for the move was E 8010
converted to feedback units per servo (32784)
up-grade, it was too big to fit into 32
bits or it exceeds the velocity limit
entered in setup.
Machine referenceWhen the dimension for the machine E 8008
dimension error [reference was converted to feedback (32776)
units, it was too big to fit into 29 bits.
User-defined 'When this bit is set, a user-defined C- E 8004
C-stop stop has occurred. (32772)
Negative The command position exceeded the E | [8002
software limit user-defined negative software end (32770)
exceeded limit.
Positive The command position exceeded the E 8001
software limit user defined positive software end (32769)
exceeded limit.

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

**This error can occur with feedrate override, new feedrate, position, distance,
velocity, or machine reference moves.

Chapter 2 Function/Function Block Description

CHAPTER 2-67

C_RESET

C RESET
Controlled Stop Reset Motion/ERRORS

C reseT | Imputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The C_RESET function resets the controlled stop condition and the errors that
caused it. You must always reset any C-stop error that occurs.

C_STOP
Controlled Stop Motion/ERRORS
C STOP Inputs: EN (BOOL) - enables execution
iEEN ok L AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The C_STOP function will bring the specified axis to a controlled stop based on
the controlled stop ramp entered in setup. Any further movement by the axis will
be prevented until the C-stop condition is reset.

CHAPTER 2-68 Chapter 2 Function/Function Block Description

C_STOP?

Controlled Stop? Motion/ERRORS

C STOP? Inputs: EN (BOOL) - enables execution

lv ol AXIS (USINT) - identifies axis (servo)

AXIS csTPl Outputs: OK (BOOL) - execution completed without error
CSTP (BOOL) - indicates a C-stop is active when set

The C_STOP? function asks if there is a C-stop in effect for this axis.

Chapter 2 Function/Function Block Description CHAPTER 2-69

C_STOP?

NOTES

CHAPTER 2-70 Chapter 2 Function/Function Block Description

DATE2STR

DATE2STR
Date to String Datatype/D TCONV

DaTezsTr| Imputs: EN (BOOL) - enables execution
JEN 0K |- OUT (STRING) - output STRING
JouT---0uT IN (DATE) - value to be converted “
JIN Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The DATE2STR function converts the value in the variable or constant at IN to a
STRING and places the result in the variable at OUT.

Example of DATE to STRING

Var at IN Value at OUT
D#1995-11-01 1995-11-01

Chapter 2 Function/Function Block Description 2-71

DELETE

DELETE
Delete String/DELETE
DELETE Inputs: EN (BOOL) - enables execution
{EN 0K = OUT (STRING) - output STRING
10UT---0uT = IN (STRING) - input STRING
JIN L (INT) - length
HL P (INT) - position (cannot equal 0)
4P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The DELETE function is used to delete characters from a STRING. It deletes
characters from the variable at IN. The input at L specifies how many characters
to delete, starting at the position specified by the input at P. The resulting (left-
over) STRING is placed into the variable at OUT.

An error occurs if any of the following is true:
P=20

P > 255

P > length of IN

L > 255
Length of IN - L > length of OUT

Example of delete function

Var at IN Value at L Value at P Var at OUT
stringlong 4 7 string

2-72 Chapter 2 Function/Function Block Description

DELFIL

DELFIL
Delete File lo/COMM

B‘é'\{'EIL 71 Inputs: REQ (BOOL) - enables execution (One-shot)

REQ DONE} NAMZ (STRING) - a string containing the complete
pathname
NAMZ FAIL}
| Outputs: DONE (BOOL) - energized if ERR =0

ol not energized if ERR # 0

. |
FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transferred successfully
0 if data transfer unsuccessful

See Appendix B in the software manual for error codes.

The DELFIL function block allows you to delete a file from the RAMDISK or
from PiCPro.

At the NAMZ input, enter the complete pathname to delete a file in PiCPro.

With a subdirectory, Without a subdirectory,
PICPRO:c:\sub\filename.ext$00 O PICPRO:c:filename.ext$00

Or enter the following to delete a file on the RAMDISK.

With a subdirectory, Without a subdirectory,
RAMDISK:sub\filename.ext$00 °' RAMDISK:filename.ext$00

An empty subdirectory can be deleted with the DELFIL function also.
NOTE: The DELFIL function block cannot be used with the FMSDISK.

Chapter 2 Function/Function Block Description 2-73

DINT2DW

DINT2DW
Double Integer to Double Word Datatype/DINTCONV

DINTZDW Inputs: EN (BOOL) - enables execution
1EN oK |- IN (DINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The DINT2DW function changes the data type of the value at IN from a double
integer to a double word. The result is placed in the variable at OUT.

2-74 Chapter 2 Function/Function Block Description

DINT2INT

DINT2INT
Double Integer to Integer Datatype/DINTCONV

DINT2INT Inputs: EN (BOOL) - enables execution

1N 0K |- IN (DINT) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (INT) - converted value

The DINT2INT function changes the data type of the value at IN from a double
integer to an integer. The leftmost 16 bits of the double integer are truncated. The
result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-75

DINT2LI

DINT2LI
Double Integer to Long Integer Datatype/DINTCONV

DiNT2LL | Inputs: EN (BOOL) - enables execution

1N 0K = IN (DINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The DINT2LI function converts a double integer into a long integer. The sign bit
of the DINT is extended into the leftmost 32 bits of the long integer. The result is
placed in a variable at OUT.

2-76

Chapter 2 Function/Function Block Description

DINT2RE

DINT2RE
Double Integer to Real Datatype/DINTCONV

DiNtz2re | Imputs: EN (BOOL) - enables execution

JEN 0K |- IN (DINT) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (LINT) - converted value

The DINT2RE function converts a double integer into a real. The result is placed
in a variable at OUT.

Chapter 2 Function/Function Block Description 2-77

DINT2SI

DINT2SI1
Double Integer to Short Integer Datatype/DINTCONV

DINTZSI Inputs: EN (BOOL) - enables execution
1EN oK |- IN (DINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The DINT2SI function changes the data type of the value at IN from a double inte-
ger to a short integer. The leftmost 24 bits of the double integer are truncated. The
result is placed in the variable at OUT.

2-78 Chapter 2 Function/Function Block Description

DINT2UDI

DINT2UDI
Double Integer to Unsigned Double Integer Datatype/DINTCONV

DINT2UDI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (DINT) - value to convert
1IN ouTl Outputs: OK (BOOL) - execution complete “

OUT (UDINT) - converted value

The DINT2UDI function changes the data type of the value at IN from a double
integer to an unsigned double integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-79

DIRECT

DIRECT
Directory lo/COMM
I D'}Ié'\EAET 71 Imputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEL BEG (BOOL) - enable to start at beginning of direc-
tory. Disable to step through directory.
{1BEG FAILf
loin emal DIR (STRING) - a string containing the directory
name
- NAME - NAME
NAME (STRING) - (see below)
4{DTST-DTST ¢
S17t DTST (STRING) - (see below)
SDIR Outputs: DONE (BOOL) - energized if ERR =0
1 I not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transferred successfully
0 if data transfer unsuccessful

NAME (STRING) -

a string containing the filename

DTST (STRING) - a string containing the date/time

string

SIZE (DINT) - gives the size of the file
SDIR (BOOL) - set if NAME output is a subdirectory

See Appendix B in the software manual for error codes.

The DIRECT function block allows you to read RAMDISK or FMSDISK file
directory information from the ladder.

The directory name is entered at DIR using one of the formats shown below.

To list contents of a |To list the contents [When the main directory is not the
subdirectory, enter the [of the current di- |current directory and you want to list
name of the subdirecto-|rectory, enter the |the contents of the main directory ,
'When ry at sub in the following: enter the following:
using: following:
RAM- | RAMDISK:sub\$00 | RAMDISK:$00 RAMDISK:*.%#$00
DISK
FMSDISK| FMSDISK:sub\$00 [FMSDISK:$00 FMSDISK:*.%#$00
Set the BEG input in order to start at the beginning of the directory.
2-80 Chapter 2 Function/Function Block Description

DIRECT

Transition the REQ input. This places the first file in NAME, the date/time in
DTST, and the file size in SIZE. (SDIR is set when the name at the NAME output
is a subdirectory.)

Turn the BEG off to step through the remaining files in the directory. When the
last file is reached, you can go back to the beginning by setting BEG again.

Chapter 2 Function/Function Block Description 2-81

DISTANCE

DISTANCE

Distance

Motion/MOVE

pistance | Imputs: EN (BOOL) - enables execution (One-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or time)
IAXIS QUEL RATE (UDINT) - feedrate at which motion occurs
1raTE (entered in LU/MIN)
p1st DIST (DINT) - indicates incremental move distance
(entered in LU)

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of distance move for queue

The DISTANCE function moves an axis a specified distance at a specified fee-
drate. When the distance move is used with a time axis, the S_CURVE function
must be called first.

2-82

Chapter 2 Function/Function Block Description

DIv

DIV
Divide Arith/ARITH

DIV Inputs: EN (BOOL) - enables execution
JEN 0K = DVND (NUMERIC or TIME duration) - dividend

DVND QUOT = DVSR (same type as DVND if DVND is numeric;
DINT if DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error
QUOT (same type as DVND) - quotient

- DVSR

The DIV function divides the value of the variable or constant at DVND by the
value of the variable or constant at DVSR, and places the result in the variable at
QUOT. If there is a remainder it is not returned. See the MOD function.

X DVND
+Y DVSR
Z QUOT

Chapter 2 Function/Function Block Description 2-83

DT2DATE

DT2DATE

Date and Time to Date

Datatype/D TCONV

DT2DATE
HEN oK
1IN out

Inputs: EN (BOOL) - enables execution
IN (DATE_AND_TIME) - value to extract from

| Outputs: OK (BOOL) - execution completed without error

OUT (DATE) - extracted date

The DT2DATE function extracts the DATE from the DATE_AND_ TIME value in
the variable or constant at IN, and places it into the variable at OUT. Any time val-

ues (hours,

minutes, seconds) are truncated.

Example of DATE_AND_TIME to DATE

Var at IN Value at OUT
DT#1993-05-13:00:37:44| D#1993-05-13

2-84

Chapter 2 Function/Function Block Description

DT2STR

DT2STR
Date and Time to String Datatype/D TCONV
072s7R | Imputs: EN (BOOL) - enables execution
iEEN 0K = OUT (STRING) - STRING output
JouT---0UuT = IN (DATE_AND_TIME) - value to extract from
JIN Outputs: OK (BOOL) - execution completed without error “

OUT (same variable as OUT input)

The DT2STR function converts the value in the variable or constant at IN into a
STRING, and places the result in the variable at OUT.

Example of DATE_AND_TIME to STRING

Var at IN Value at OUT
DT#1993-05-13:00:37:44 | 1993-05-13:00:37:44

Chapter 2 Function/Function Block Description 2-85

DT2TOD

DT2TOD
Date and Time to Time of Day Datatype/D TCONV

DT27T0D Inputs: EN (BOOL) - enables execution

1N oK = IN (DATE_AND_TIME) - value to extract from
JIN out Outputs: OK (BOOL) - execution completed without error
OUT (TIME_OF_DAY) - extracted value

The DT2TOD function extracts the TIME_OF_DAY from the variable or constant
at IN, and places the result in the variable at OUT. Any date values (year, month,
day) are truncated.

Example of DATE_AND_TIME to TIME_OF_DAY

Var at IN Value at OUT
DT#1993-05-13:00:37:44 TOD#00:37:44

2-86 Chapter 2 Function/Function Block Description

DWOR2BYT

DWOR2BYT
Double Word to Byte Datatype/DWORDCNV

Dworzey7| Imputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error “

OUT (BYTE) - converted value

The DWOR2BYT function changes the data type of the value at IN from a double
word to a byte. The leftmost 24 bits of the double word are truncated. The result
is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-87

DWOR2DI

DWOR2DI
Double Word to Double Integer Datatype/DWORDCNV

DWORZDI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (DWORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The DWOR2DI function changes the data type of the value at IN from a double
word to a double integer. The result is placed in the variable at OUT.

2-88 Chapter 2 Function/Function Block Description

DWOR2LW

DWOR2LW
Double Word to Long Word Datatype/DWORDCNV

oworzLw | Imputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error “

OUT (LWORD) - converted value

The DWORD2LW function converts a double word into a long word. The left-

most 32 bits of the long word are filled with zeros. The result is placed in a vari-
able at OUT.

Chapter 2 Function/Function Block Description 2-89

DWOR2RE

DWOR2RE
Double Word to Real Datatype/DWORDCNV

DWORZRE Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert
1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (REAL) - converted value

The DWORD2RE function converts a double word into a real. The result is placed
in a variable at OUT.

2-90 Chapter 2 Function/Function Block Description

DWOR2UDI

DWOR2UDI
Double Word to Unsigned Double Integer Datatype/DWORDCNV

DWOR2UDI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error “
OUT (UDINT) - converted value

The DWOR2UDI function changes the data type of the value at IN from a double
word to an unsigned double integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-91

DWOR2WO

DWOR2WO
Double Word to Word Datatype/DWORDCNV

DWORZWO Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (DWORD) - value to convert
1IN ouTl Outputs:OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The DWOR2WO function changes the data type of the value at IN from a double
word to a word. The leftmost 16 bits of the double word are truncated. The result
is placed in the variable at OUT.

2-92

Chapter 2 Function/Function Block Description

D_TOD2DT

D _ TOD2DT

Concatenate Date and Time of Day

Datatype/D TCONV

D_TOD2DT Inputs: EN (BOOL) - enables execution
1N 0K |- IN1 (DATE) - value to be combined
JINT oUTk IN2 (TIME_OF_DAY) - value to be combined
J1IN? Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - concatenated value

The D_TOD2DT function concatenates (combines) the value of the variable or
constant at IN1 with the value of the variable or constant at IN2. The resultis a
DATE_AND_TIME value that is placed in the variable at OUT.

Example of concatenate DATE and TIME_OF_DAY

Var at IN

Value at IN2

Value at OUT

D#1995-01-02

TOD#03:04:05

DT#1995-01-02-03:04:05

Chapter 2 Function/Function Block Description

2-93

EQ

EQ

Equal To

Evaluate/EQ

EQ Inputs: EN (BOOL) - enables execution

1N 0K |- IN1 (ANY except BOOL or STRUCT) - value to be com-
pared

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are equal

The EQ function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

If all input values are equal, the coil at OUT is energized. If one or more values
are not equal, the coil at OUT is not energized.

2-94

Chapter 2 Function/Function Block Description

EXP

EXP
Exponential Arith/TRIG

EXP Inputs: EN (BOOL) - enables execution
1N ok L LN (REAL/LREAL) - natural log value
1IN Numl Outputs: OK (BOOL) - execution completed without error

NUM (REAL/LREAL) - the number whose natural log
is entered at LN

NOTE: The data types entered at LN and NUM must
match, i.e. if LN is REAL, then NUM must be REAL.

The EXP function is the inverse of the LN function which calculates the natural
log of a number.

Chapter 2 Function/Function Block Description 2-95

E_ERRORS

E_ERRORS
Emergency Errors Motion/ERRORS

E ERRORS Inputs: EN (BOOL) - enables execution

1EN oKL AXIS (USINT) - identifies axis (servo or digitizing)
AXIS ERRSL Outputs: OK (BOOL) - execution completed without error
ERRS (WORD) - identifies errors

The ERRS output on the E_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error. The low byte of the word is where the individual errors are
located.

High byte Low byte

NOTE: The E_ERRORS can also be viewed from the View List section of the
Servo setup program.

The table that follows gives the E-stop errors and their locations.

In this table, Bit Location column indicates which bit is set in the low or high byte
of the word connected to each error. The “E” is what appears on the View List in
Servo setup.

In this table, the Hex Value column represents the form the error is returned in
while monitoring the ERRS output of the function in your ladder program. The
error identified at the LSB position is loss of feedback. This is the only E-stop
condition for a digitizing axis. Use the E-STOP? and the E_RESET functions to
indicate and reset the E-stop condition.

2-96

Chapter 2 Function/Function Block Description

E_ERRORS

Table 2-10. Emergency Stop Errors.

Bit Location Hex *
Error Description (low byte) 'Value
(Decimal)
8171654 32 |1 |(inLDO)

(not used)
(not used)
SERCOS |Cyclic data synchronization error E 8020
error (32800)
SERCOS [SERCOS drive E-stop - Status word bit E 8010
error 13=1. (32784)
User-set |An E-stop defined by you with the E-stop E 8008

function has occurred. (32776)
Overflow |A slave delta overflow during runtime has E 8004
error occurred. This problem is most likely to (32772)

occur if you are moving at a high rate of

speed and/or the slave distance is very

large compared to the master distance.

There are two conditions that can set this

bit.

1. In FU, if the master moved position

times the slave distgnge enfered iscgggater

than 31 bits. MDIS

2. In FU, if the mastermoved X _SDIS

MDIS

is greater than 16 bits.
Excess 'When an excess following error has E | 8002
error occurred, the axis has exceeded the limit (32770)

entered in the Servo setup program as the

following error limit. This represents the

maximum distance the commanded axis

position can be from the actual axis posi-

tion.
Loss of A loss of feedback from the feedback E 8001
feedback |device has occurred. Available for servo (32769)

and digitizing axes.

NOTE: If an E-stop error occurs using the stepper axis module, the command to
the stepper will be zeroed. There is no loss of feedback or excess error with the
stepper axis.

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

Chapter 2 Function/Function Block Description 2-97

E_RESET

E_RESET
Emergency Stop Reset Motion/ERRORS

E reseT | Inputs:EN (BOOL) - enables execution (Typically one-shot)
1N oKL AXIS (USINT) - identifies axis (servo or digitizing)
JAXIS Outputs:OK (BOOL) - execution completed without error

The E_RESET function resets the E-stop condition and all the errors that caused it.
After an E-stop error occurs, you must always reset it. When the E_RESET func-
tion resets the E-stop condition, it also clears both the active and next queues for
the servo axis.

NOTE: The E_RESET function will close the loop if a CLOSLOOP function is
executed before the E_STOP.

2-98 Chapter 2 Function/Function Block Description

E_STOP

E_STOP
Emergency Stop Motion/ERRORS

E STOP Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The E_STOP function will open the servo loop and zero the analog output.

Chapter 2 Function/Function Block Description 2-99

E _STOP?

E_STOP?
Emergency Stop? Motion/ERRORS

E stop? | Imputs: EN (BOOL) - enables execution

1N oKL AXIS (USINT) - identifies axis (servo or digitizing)
AXIS ESTPL Outputs: OK (BOOL) - execution completed without error
ESTP (BOOL) - indicates an E-stop is active when set

The E_STOP? function asks if there is a E-stop in effect for this axis.

2-100 Chapter 2 Function/Function Block Description

FAST_QUE

FAST QUE
Fast Input Queue Motion/QUE

FAST que | Inmputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies axis to be affected by the fast
input (servo)

This can either be the same axis as FAST or a second axis.

FAST (USINT) - identifies axis with fast input
1{DIST NOTE: Fast input on axis feedback required.

DIST (DINT) - the distance the fast input axis must travel
after the fast input occurs (entered in LU)

Range of + 4,194,303 FU (A “0” may be entered if no dis-
tance needs to be covered by the fast input axis.)

4 AXIS
4 FAST

NOTE: A programming error will be generated if the axis
moves more than 65,535 FU in the opposite direction of
what is entered at DIST.

The FAST_QUE function allows you to manage the queues based on the occur-
rence of a fast input to the feedback module for an axis.

SERCOS NOTE: The function block SCA_PBIT must be called and com-
pleted successfully prior to calling the FAST_QUE function
with a SERCOS axis.

This function can be used to:

1. Start a move

2. Go from one move to another
If the first move completes before the fast input occurs, the second move will
begin just as if the FAST_QUE function had not been called.

3. End a move
If the fast input does not occur, the move will end in the normal way.

Using the fast input to trigger one of the above provides a faster response time than
is possible when managing the queues from the ladder.

The update rate entered in setup for the axis identified at AXIS and the axis identi-
fied at FAST must be the same.

NOTE: An internal bit remains on for eight updates after a fast input event occurs.
If the FAST_QUE is called during those eight updates, the bit is ignored until it
changes state again. Therefore, to ensure that you do not miss a fast input event,
there should always be nine or more updates between events. (One iteration equals
eight updates.)

Chapter 2 Function/Function Block Description 2-101

FAST_QUE

When the FAST_QUE is called, a “holding” mode for any of the three actions is in
effect until the following two conditions are met:

e The fast input on the axis identified at FAST occurs.
o The FAST axis has moved the designated distance entered at DIST.

The holding mode is cleared when both of these conditions are met and it is then
possible to manipulate the moves in the queue(s) in one of the following ways.

TO START A MOVE:
Step 1.Call the FAST_QUE function.

Step 2.Put the move to occur on the fast input in the active queue.

The move will start after the fast input occurs and the FAST axis has
moved the specified distance. If the fast input occurs before the
FAST_QUE is called, it will be ignored. You must call the FAST_QUE
before the fast input occurs.

TO MOVE FROM ONE MOVE TO ANOTHER:
Step 1.Put the first move in the active queue. It will begin.

Step 2.Call the FAST_QUE function.

Step 3.Put the second move in the next queue.

The first move will be aborted and the second move will begin after the fast
input occurs and the fast input axis has moved the specified distance.
Again, the FAST_QUE function must be called before the fast input occurs
or it will be ignored until the next fast input.

TO END A MOVE:
Step 1.Put the move in the active queue. It will begin.
Step 2.Call the FAST_QUE function.

Note:

The move will end when the fast in occurs and the axis moves the distance
entered at DIST. Do not put any move in the next queue until after the fast
input occurs. If you do, the second move will begin when the fast input
occurs as described above.

A programming error (P_ERRORS function) will occur on the axis identi-
fied at AXIS on the FAST_QUE function if the fast axis travels in the
wrong direction more than 65,535 FU. If the axis continued to move in the
wrong direction, a move could be started unexpectedly.

It is important that you ensure this does not occur. Do this by programming
an ABORTALL function at the occurrence of this programming error to
remove all moves from the queues.

The programming error must be reset with the P_RESET function.

The move will travel the distance specified in DIST and then you abort
the move. The total distance traveled beyond the fast input will equal the
DIST value plus whatever distance it takes to decel.

2-102

Chapter 2 Function/Function Block Description

FAST_REF

FAST_REF

Fast Input Reference (Machine Reference) Motion/REF

FAST Rer | Imputs: EN (BOOL) - enables execution (One-shot)
{EN okl AXIS (USINT) - identifi.es axis (servo or digitizing)
{axas auel NOTE: Fast input on axis feedback required.
{pLus PLUS (BOOL) - indicates direction of motion to refer-
ence switch
RATE
+ RATE (UDINT) - feedrate at which motion occurs
1DIM (entered in LU/MIN) “
OPTN DIM (DINT) - reference dimension for the nearest

resolver null or the next encoder index mark after the fast
input occurs. Itis entered in LU. If DIM is outside the
range of -536,870,912 to 536,870,911 FU, the OK will
not be set.

OPTN (WORD) - provides referencing options
Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of reference move for queue

The fast input reference is a machine reference. It will cause a servo axis to move
in the direction (PLUS) and at the feedrate (RATE) specified to the reference
switch. The reference switch is connected to the fast input on the feedback mod-
ule. When the switch closes, the position of the axis is recorded based on the near-
est null of the resolver or the next index mark of the encoder. The value entered at
DIM is assigned to this position.

If the axis is a digitizing axis or if "no motion" has been selected at OPTN (see
below), this function does not cause motion. You must use other methods of mov-
ing the axis to the reference switch. The inputs PLUS and RATE are ignored when
no motion is selected.

A fast reference done with the FAST REF function monitors the axis until a fast
input on the feedback module occurs. How the fast input responds is defined by
variable 19 in the WRITE_SV function. The default is to respond to the rising
edge. In contrast, the ladder reference (see LAD_REF and REF_END functions)
monitors the axis until the REF_END function is called in your ladder program.

When using a SERCOS axis, the function block SCA_RFIT must be called and
completed successfully prior to calling the FAST_REF function.

Note: If an encoder is the feedback device, the axis will continue to move after
the switch closes until the next index mark is seen.

Chapter 2 Function/Function Block Description 2-103

FAST_REF

The OPTN input provides the following options:

Option Binary value Hex value
1. Ignore index/null 00000000 00000001 0001
2. No motion 00000000 00000010 0002

If no option is desired, enter a “0.”

Option inputs

Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark of
an encoder or the null of a resolver during the reference cycle. If bit O is set to “1,”
the reference position assigned by DIM will be assigned to the position the axis is
at when the fast input makes its transition.

With an encoder, the axis will stop immediately after the fast input transitions. The
axis does not continue movement until the index mark is reached. NOTE: This
makes the reference switch position given with the READ_SV function invalid.
With a resolver, the reference switch position available with the READ_SV func-
tion is valid.

No motion

The no motion option allows a reference to occur without any motion. The axis is
put into a mode whereby it is watching for the conditions of a reference cycle.
Even though no move is placed in the queue, a queue must be available. A move
will be initiated by the ladder following the reference cycle.

Once the call is made, the reference complete flag goes low until the fast input
occurs and the index mark (unless “ignore index” option is active) is received. The
reference complete flag goes high once these events occur and the axis position
takes on the reference value at DIM.

If the move type is VEL, RATIO_GR, LAD_REF, or FAST_REF, the new axis
position assigned by the no-motion reference has no effect on the move itself.
With a DISTANCE move, the actual distance covered will be the same. If a no-
motion reference occurs during a position move, the endpoint will be reached.

If a no-motion reference is used during a RATIO_PRO move, the lock on point of
the slave axis to the master axis may be undefined. This is not recommended.

Note: A fast reference can also be performed on a digitizing axis. You must
cause the axis to move and the fast input to occur. Use variable 29 with
the READ_SV function to read the reference switch position.
REF_DNE? can also be used with digitizing axes.

Setting up a machine reference switch

A reference switch is needed for each axis requiring a machine reference. When
the switch is tripped, the position of the axis is indicated by the signal from the

2-104

Chapter 2 Function/Function Block Description

FAST_REF

feedback device coupled to the axis. The PiC references to the nearest null of a
resolver or the next index mark of an encoder. If the switch is improperly placed in
relation to the feedback device, a reference could take place that was one revolu-
tion off of the previous reference.

To ensure that you will always get an accurate repeatable reference, there are cer-
tain factors to keep in mind when setting up the reference switch:

e With encoders - the software calculations assign the reference value of the
function to the first index mark following switch closure. The reference
switch should be positioned so that the count bandwidth is within the range
of 25 to 75% of the total count. If the total count is 1000 per rev, the switch
location should be between 250 and 750 counts. See A in Figure 2-

5. below.

o With resolvers - the software calculations assign the reference value of the
function to the nearest null following the switch closure. The reference
switch should be positioned so that the count is greater than 3000 or less
than 1000. The switch location is incorrect if the resolver signal is between
10001 and 2999. See Figure 2-5 below.

Figure 2-5. Referencing positions for encoders and resolvers

750 250 3000 1000

99 3999

0 0
Index Mark Null

Machine reference
should occur in this half.

A B

Note that the referencing position is in different halves for the encoder and
resolver. That is because the encoder references to the next index mark and
you want to avoid referencing in the same half of the encoder revolution as
the index mark. The resolver references to the nearest null so you want to
avoid referencing around the half-rev point.

¢ After a machine reference is completed, the READ_SV functions function
(see servo data functions) can be used in your ladder to read the reference
switch position after the switch closes by entering variable 29 in the VAR
input and viewing the RSLT output in PiCPro. The RSLT output is in feed-

Chapter 2 Function/Function Block Description 2-105

FAST_REF

back units. For an encoder the reference switch position is the distance
between the switch closure and the index mark. For a resolver, the reference
switch position is the position of the resolver when the switch is closed.

If the reference switch position read from the READ_SV function is between 25%
and 75% for the total encoder count or less than 1000 or more than 3000 for a
resolver, than your reference switch is positioned properly to ensure accurate,
repeatable referencing.

If the position read is outside of these ranges you can change the position of the
feedback device when the switch transitions by either moving the reference switch
or the feedback device itself. Perform the machine reference again and read the
reference switch position to see if it is now within the range.

NOTE

If in adjusting the location of the reference switch or the feedback de-
vice, you find that the result of variable 29 increases when you expect
it to decrease after performing the machine reference, move the de-
vice in the opposite direction until the reading is acceptable.

One factor to keep in mind when performing a machine reference from the ladder
with the LAD_REF function is there can be a lag time between the actual closing
of the reference switch and the software calculations. This is caused by up to 32
ms of update time and up to 200 ms of scan time. (200 ms is the maximum time
limit for one scan before a loss of scan occurs.) This could have an affect on the
repeatability of your reference especially when referencing at high velocities. The
example which follows illustrates this.

Assume an axis using resolver feedback is moving at a velocity of 50000 counts
per minute (NOTE: 50000 C/MIN = .83333 C/ms). Looking at an example with
the maximum update and scan time

(32 ms + 200 ms) * .83333 C/ms = 193.333 or 193 C

If the READ_SV function gave a reading of 1000 C for the reference switch posi-
tion, the actual position of the device when the switch closed could be up to 1193
counts (or 807 counts if referencing in the negative direction).

By using a lower velocity, the number of counts is lowered. For example, if the
velocity is 5000 C/MIN, then the count is as follows (NOTE: 5000 C/MIN =
.08333 C/ms):

(32 ms + 200 ms) * 08333 C/ms = 193.33 or 193 C

The actual position of the reference could be up to 1019 counts (981 counts if ref-
erencing in the negative direction).

When the machine reference is done using the fast input with the FAST_REF func-
tion, the recording of the reference switch transition is not affected by what the

ladder scan is executing at the time. There is virtually no lag between the time the
reference occurs and the time it is recorded. This is a very accurate method of ref-

2-106

Chapter 2 Function/Function Block Description

FB_CLS

erencing. The only time consideration for the fast input is a short (50 us) turn-on

time.

Note: This function cannot be used with the stepper axis module.

FB CLS
Field Bus Close

Fbinter/FB_CLS

'C%(BJS(E: LS Inputs: REQ (BOOL) - enables execution (one-shot)

{REQ DONEL- SLOT (USINT) - slot number (use same slot number
entered for FB_OPN)

4{SLOT FAILR

- ERR

| Outputs: DONE (BOOL) - set when communications with the
field bus are closed

FAIL (BOOL) - set if an error occurred
ERR (INT) - error number

The FB_CLS function block is used to close communications with the Field Bus.
You must call the FB_OPN function block to re-establish field bus communica-

tions.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check
0 No error
1 No DeviceNet module was found at |Ensure that a DeviceNet module is installed in

the slot number entered at SLOT
input.

the correct slot.

Chapter 2 Function/Function Block Description 2-107

FB_OPN

FB OPN
Field Bus Open

Fbinter/FB_OPN

_F(BJP(%PJN Inputs: REQ (BOOL) - enables execution (one-shot)

{REQ DONEL- SLOT (USINT) - slot number (3 - 13 main rack only
available)

4SLOT FAIL|—

- ERR

mode.

| Outputs: DONE (BOOL) - set when DeviceNet module is in RUN

FAIL (BOOL) - set if an error occurred
ERR (INT) - error number

The FB_OPN function block is used to open communications with the field bus
placing the DeviceNet module in the RUN mode.

The ERR output will be # 0 if an error occurred.

the slot number entered at SLOT
input.

ERR# |Description What to do/check
0 No error
1 No DeviceNet module was found at |Ensure that the DeviceNet module is installed

in the correct slot.

2 No configuration file for this slot. |Ensure that you have a .UCT (configuration)
file with the same name as your .LDO file.
2-108 Chapter 2 Function/Function Block Description

FB_RCV

FB_RCV
Field Bus Receive Fbinter/FB_RCV

FB_RCV Inputs: EN (BOOL) - enables execution

1EN oK - SLOT (USINT) - slot number (use same slot number as
entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error
ERR (INT) - error number

SLOT ERR|-

The FB_RCYV function receives all data from the configurator file indicated by Tag
names.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check

0 No error

1 No DeviceNet module was found at |Ensure that the DeviceNet module is installed
the slot number entered at SLOT in the correct slot.
input.

Chapter 2 Function/Function Block Description 2-109

FB_SND

FB_SND
Field Bus Send Fbinter/FB_SND

FB_SND Inputs: EN (BOOL) - enables execution

1N 0K = SLOT (USINT) - slot number (use same slot number as
entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error
ERR (INT) - error number

SLOT ERR|-

The FB_SND function is used to send data indicated by Tag names in the configu-
rator file.

The ERR output will be # 0 if an error occurred.

ERR# |Description What to do/check

0 No error

1 No DeviceNet module was found at |Ensure that the DeviceNet module is installed
the slot number entered at SLOT in the correct slot.
input.

2-110 Chapter 2 Function/Function Block Description

FB_STA

FB STA
Field Bus Status Fbinter/FB_STA
FB_STA Inputs: EN (BOOL) - enables execution
1N 0K = SLOT (USINT) - slot number (use same slot number as
entered for FB_OPN)
4SLOT FAIL|—
ONLT Outputs: OK (BOOL) - execution completed without error
erR FAIL (BOOL) - set if an error occurred
STAT - ONLI (BOOL) - set if the DeviceNet module is commu-

nicating with nodes.
ERR (INT) - number of error
STAT (DWORD) - status information

The FB_STA function allows you to check if the Device Net module is communi-
cating with nodes and to check field bus status information.

The ERR output will be # 0 if an error occurred.

input.

ERR# |Description What to do/check
0 No error
1 No DeviceNet module was found at |Ensure that the DeviceNet module is installed

the slot number entered at SLOT in the correct slot.

The following tables define the value of status information that can appear at the
STAT output based on the double word format shown below.

MSB

LSB2 LSB1 LSBO0

NET_STATUS_FLAGS | NET_STATUS_CODE | IF_STATUS_FLAGS | IF_STATUS_CODE

NET_STATUS_FLAGS

NET_STATUS_FLAGS indicates various conditions related to the DeviceNet
module network interface. Each DeviceNet module supports a subset of the status
flags as appropriate.

Bit |Name

Description

0 |Warning

The communication error warning threshold has been exceeded.

NO_POWER |Bus power is not present.

2 |INO_BUS

Bus is not connected.

(Reserved)

Chapter 2 Function/Function Block Description 2-111

FB_STA

NET_STATUS_CODE

NET_STATUS_CODE indicates the status of the DeviceNet module network
interface. Each DeviceNet module supports a subset of the status codes as appro-

priate.
Value (Name Description
00 OFFLINE Network interface is offline.

01 OFFLINE_FAULT Network interface is offline due to a network fault.

02 OFFLINE_BAD_CF [Network interface is offline due to a configuration fault
G (invalid or duplicate station address, invalid baud rate,
invalid DIP-switch data, etc.)

03 ONLINE Network interface is online, no faults detected.
04 ONLINE_FAULT Network interface is online, one or more network services
has failed.

05 ONLINE_ACTIVE [Network interface is online and is exchanging data, no
faults detected.

Any failure of a secure service is reported.

06 ONLINE_IDLE Network interface is online and is exchanging data, one or
more services is receiving an idle indication, no faults
detected.

07 ONLINE_INACTIVE [Network interface is online, one or more previously active
services has been suspended, no faults detected.

08- (Reserved)
OFFh

2-112 Chapter 2 Function/Function Block Description

FB_STA

IF_STATUS_FLAGS

IF_STATUS_FLAGS indicates various conditions related to the DeviceNet mod-
ule end of the data exchange interface.

Bit Name Description

0 EVENT_LOST |An event was lost due to a full event queue. This flag is cleared
when the data exchange interface is closed.

1-7 (Reserved)

IF_STATUS_CODE

IF_STATUS_CODE indicates various conditions related to the DeviceNet module
data exchange interface.

Value |Name Description

00 CLOSED Data exchange interface is closed.

01 OPEN Data exchange interface is open.

02 HEARTBEAT_ |Data exchange interface is faulted due to heartbeat timeout.
FAULT (Same behavior as closed.)

03h - (Reserved)

OFFh

Chapter 2 Function/Function Block Description 2-113

FIND

FIND
Find

String /FIND

FIND | Inputs: EN (BOOL) - enables execution
1N 0K IN1 (STRING) - STRING to search
JINT ouT IN2 (STRING) - STRING to find
J1IN? Outputs: OK (BOOL) - execution completed without error
-
OUT (INT) - position

The FIND function is used to find a STRING that is contained in another STRING.
It searches within the variable at IN1 for the first occurrence of the variable at IN2.
If the STRING is found, the position of its first character is placed into the variable
at OUT. If the STRING is not found a zero is placed in the variable at OUT.

An error occurs if:

Length of IN1 = 0O
Length of IN2 = 0
Length of IN2 > length of IN1

Example of find function

Varat IN1 VaratIN2 Varat OUT
string1string2 ring 3

2-114

Chapter 2 Function/Function Block Description

FU2LU

FRESPACE
Free Space lo/COMM
-FR'E%MECE_ Inputs: REQ (BOOL) - enables execution (One-shot)
{rREQ DONEL NAMZ (STRING) - a string containing the complete
pathname
{NAMZ FAIL}
eral Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0
aryt
FAIL (BOOL) - energized if ERR # 0

not energized if ERR =0

ERR (INT) - 0 if data transferred successfully
0 if data transfer unsuccessful

QTY (DINT) - number of bytes available on the RAM-
DISK or FMSDISK

See Appendix B in the software manual for error codes.

The FRESPACE function block allows you to read at the QTY output how many
bytes of memory are available on the RAMDISK or FMSDISK.

At the NAMZ input, enter the following to check the available free space on the
RAMDISK or FMSDISK:

For RAMDISK RAMDISK:$00
For FMSDISK FMSDISK:$00

FU2LU
Feedback Units to Ladder Units Motion/DATA
FUZLU Inputs: EN (BOOL) - enables execution
1N 0K |- AXIS (USINT) - axis number (servo or digitizing)
IAXIS LU FU (DINT) - feedback unit value to convert
{FU Outputs: OK (BOOL) - execution completed without error

LU (DINT) - ladder unit value

The FU2LU function converts the feedback unit value at FU to its equivalent lad-
der unit value and places the result at LU.

Chapter 2 Function/Function Block Description 2-115

GE

Greater Than or Equal To Evaluate /GE

GE Inputs: EN (BOOL) - enables execution

1N 0K - INT (ANY except BOOL or STRUCT) - value to be

compared
N1 oUTR

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are greater than or
equal to successive values

The GE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17
If IN1 >1IN2 > 1IN3 >> IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

2-116

Chapter 2 Function/Function Block Description

GETDAY

GETDAY
Get Day Xclock/GETDAY

GeToay | Imputs: EN (BOOL) - enables execution
JEN 0K |- WEEK (BOOL) - determines day of week or year

WEEK DAY |- Outputs: OK (BOOL) - execution completed without error
DAY (UINT) - value extracted

The GETDAY function outputs the day of the week or the day of the year.

If power flow exists at WEEK, the (number of) the day of the week is output to the
variable at DAY. The numbers O - 6 correspond to Sunday - Saturday.

If power flow does not exist at WEEK, the (number of) the day of the year is out-
put to the variable at DAY. The numbers are from 1 - 365 or 366.

Chapter 2 Function/Function Block Description 2-117

GR_END

GR_END
Gear End Motion/RATIOMOV

GR END Inputs: EN (BOOL) - enables execution (One-shot)
1N ok L AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The GR_END function ends the ratio gear move. When it is called in the ladder,
the slave axis will stop moving immediately with no ramping.

A ratio gear move may also be stopped by aborting the move:

¢ with no move in the queue. The ratio gear move will ramp down at the
default deceleration rate and motion will stop.

OR

e with another move in the queue. The velocity will ramp to the new move
rate and continue with the new move or the velocity will step and continue
if a master/slave move is next.

NOTE: A gear ratio move may also be ended with a SYN_END function. It is
possible to specify the point at which the slave should drop out of synchronization
with SYN_END.

2-118 Chapter 2 Function/Function Block Description

GT

GT
Greater Than Evaluate/GT
GT Inputs: EN (BOOL) - enables execution
1N oK - INT (ANY except BOOL or STRUCT) - value
I oot to be compared
118 IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without
error

OUT (BOOL) - indicates if values are greater
than successive values

The GT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17
If IN1 > IN2 > IN3 > ...> IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

Chapter 2 Function/Function Block Description 2-119

HOLD

HOLD
Feed Hold Motion/MOVE_SUP

Inputs:EN (BOOL) - enables execution (Typically one-shot)
HOLD

1N ok L AXIS (USINT) - identifies axis (servo)

JAXIS Outputs:OK (BOOL) - execution completed without error

The HOLD function tells the iterator to stop iterating the current move on the spec-
ified axis. It will ramp down at the set decel rate. This function works with the dis-
tance, velocity, and position moves.

2-120 Chapter 2 Function/Function Block Description

HOLD _END

HOLD END
Feed Hold End Motion/MOVE_SUP

hoo eno | Imputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The HOLD_END function tells the iterator to resume iterating the current move
on the specified axis. It will ramp up at the set accel rate. This function works with
the distance, velocity, and position moves.

It works in conjunction with the feed hold function listed previously.

Chapter 2 Function/Function Block Description 2-121

INSERT

INSERT
Insert String/INSERT
INSERT | Inmputs: EN (BOOL) - enables execution
{EN 0K = OUT (STRING) - output STRING
10UT---0uT = IN1 (STRING) - STRING to insert into
1IN IN2 (STRING) - STRING to insert
4{IN2 P (INT) - position after which insert occurs
4P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The INSERT function is used to insert a STRING into another STRING. The vari-
able at IN2 is placed within the variable at IN1, starting after the position specified
by P. The resulting STRING is placed into the variable at OUT.

The variable at IN2 must be unique from the variable at OUT, or an error will
occur.

An error will also occur if:

P > 255

P > length of IN1

IN2 = OUT

Length of IN1 + length of IN2 > length of OUT

Examples of insert function
var at IN1 value at IN2 value at P var at OUT

stringstring2 | 6 string I string?2
stringstring2 1 0 Istringstring2

2-122 Chapter 2 Function/Function Block Description

INT2DINT

INT2DINT
Integer to Double Integer Datatype/INTCONV

INT2DINT Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (INT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The INT2DINT function changes the data type of the value at IN from an integer
to a double integer. The sign of the integer is extended into the leftmost 16 bits of
the double integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-123

INT2LINT

INT2LINT
Integer to Long Integer Datatype/INTCONV

inTzLinT | Inputs: EN (BOOL) - enables execution

JEN oK IN (INT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The INT2LINT function converts an integer into a long integer. The sign bit of the
INT is extended into the leftmost 48 bits of the long integer. The result is placed in
a variable at OUT

2-124

Chapter 2 Function/Function Block Description

INT2SINT

INT2SINT
Integer to Short Integer Datatype/INTCONV

INT2SINT Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (INT) - value to convert

1IN ouT|l=Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The INT2SINT function changes the data type of the value at IN from an integer to
a short integer. The leftmost 8 bits of the integer are truncated. The result is
placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-125

INT2UINT

INT2UINT
Integer to Unsigned Integer Datatype/INTCONV

INT2UINT Inputs: EN (BOOL) - enables execution

JEN 0K IN (INT) - value to convert

1IN outl=Outputs: OK (BOOL) - execution completed without error
I
OUT (UINT) - converted value

The INT2UINT function changes the data type of the value at IN from an integer
to an unsigned integer. The result is placed in the variable at OUT.

2-126

Chapter 2 Function/Function Block Description

INT2WORD

INT2WORD
Integer to Word Datatype/INTCONV

INT2WORD Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (INT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The INT2WORD function changes the data type of the value at IN from an integer
to a word. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-127

IN_POS?

IN_POS?

In Position

Motion/MOVE_SUP

N pos? | Imputs: EN (BOOL) - enables execution
JEN oKL AXIS (USINT) - identifies axis (servo or time)
AXIS INPSL Outputs: OK (BOOL) - execution completed without error

INPS (BOOL) - indicates if the axis is in position if it
is within the bandwidth established in setup and
including any filter following error and the propor-
tional gain position, and both queues are empty

The IN_POS? function asks the question “Are both the active and the next que
empty and is the position within the setup parameter?” If the output at INPS is set,
the axis is in position. If not, the axis is not in position.

For a TIME axis, the output at INPS will be set if a Distance, Position, or Velocity
move is not in progress.

2-128

Chapter 2 Function/Function Block Description

10_CFG

10 CFG
10 Configuration lo/10_CFG
I%IIWZEG_ Inputs: REQ (BOOL) - enables execution
REQ DONE} FUNC (USINT) - number of functions desired
FUNC FAIL} NUM (USINT) - number of elements in DATA
NUM ERR} DATA (BYTE ARRAY) - zero terminated array of
DATA i missing blocks
| Outputs: DONE (BOOL) - set if the block I/O system is config-
. ured
FAIL (BOOL) - set if the block I/O system is not con-
figured

ERR (UINT) - error number if function failed

The I0_CFG function block is used to initialize the configuration of the block I/O
system, to evaluate the block I/O system, and to inhibit the block I/O system

allowing you to add/remove blocks. Enter one of the following numbers in the
FUNC input to select what the function block will do:

FUNC Input [Function

Number
| Initialize the block 1/O configuration
2 Check the status of the block I/O system
3 Inhibit the block I/0O system

State of the DONE, FAIL and ERR outputs based on FUNC input
FUNC # DONE (if set) [FAIL (If set) ERR (If FAIL is set)

I (Initiate) Configured Cannot be configured Code for first I/O module that
cannot be configured

2(Evaluate) [Configured and (Cannot be configured or is (Code for first I/O module that

operational not operational cannot be configured or is not
operational
3(Inhibit) NA Not operational 0

The error number at the ERR output can be a master rack diagnostic code (22_) or
an expansion rack diagnostic code (3_ _) where the _ indicate the number of the
module. Note: Any block I/O modules in your system with a part number ending
with -00 cannot be used with this function block. These -00 modules must be
addressed consecutively in the hardware declarations starting with "1" and all
declared blocks must be physically in the system before scanning can occur.

Chapter 2 Function/Function Block Description 2-129

IPACCEPT

IPACCEPT
(IP Accept) lo/SOCKETS
IP%EEPT Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE HNDL (UINT) - socket handle from IPSOCK function
HNDL FAIL block
{1p2---1P2 IPZ (STRING) - holds the remote node IP address

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0

IPZ (STRING) -same area as IPZ input, with zero ter-
minated string inserted

ERR (INT) - error number if FAIL is set
HNDL (UINT) - new socket handle for connection

ERR
HNDL

The IPACCEPT function block is used by the TCP server to accept incoming con-
nect requests. It is used after the IPSOCK and the IPLISTEN function blocks. It
removes the next connect request from the queue (or waits for one), creates a new
socket for the connection, and returns a handle to that new socket.

The TCP/IP stack will check for an available connect request assigned to the
socket specified in HNDL. If a request is found, a new socket will be created. If no
request is found, the scan will continue until a request is found.

If a new socket cannot be created, the scan will continue until there is a socket
available.

The Host node address will be returned at IPZ.

Once the new socket is no longer needed, the application must call the IPCLOSE
function block in order to free that socket.

2-130 Chapter 2 Function/Function Block Description

IPCLOSE

IPCLOSE
(IP Close) lo/SOCKETS
Ié'glfogl Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE % HNDL (UINT) - socket handle from the IPSOCK
function block
HNDL FAIL |-
eral Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0

ERR (INT) - error number if FAIL is set

The IPCLOSE function block is used by an application to terminate a
communication session for the socket specified at HNDL. Any unread data at a
socket will be discarded. Once the IPCLOSE function block is called, the socket

handle is no longer valid and free to be reused by a subsequent IPSOCK or
IPACCEPT call.

Chapter 2 Function/Function Block Description 2-131

IPCONN

IPCONN
(IP Connection) lo/SOCKETS
?MCEOW Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE % HNDL (UINT) - socket handle from the IPSOCK
function block
HNDL FAIL |-
HoSZ ERR} HOSZ (STRING) - name or address of the target host,
zero terminated
PORT
PORT (UINT) - port number on the target host
L 1

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

The IPCONN function block is used by a client application to connect to a remote
server by specifying the remote endpoint address for a socket. If used with a TCP
socket, the three-way TCP handshake is initiated. If used with a UDP socket, it
simply fills in the target endpoint (address and protocol port).

The TCP/IP protocol stack will obtain the endpoint address for the named host and
connect to the requested protocol port (if the preceding call to the IPSOCK func-
tion block had the TYPE set to 1 for TCP).

In the absence of DNS/DHCP, the TCP/IP protocol stack will keep its own route
table to nearby neighbors for peer-to-peer connections.

2-132 Chapter 2 Function/Function Block Description

IPHOSTID

IPHOSTID
(IP Host Identification) lo/SOCKETS

IP%ETF' Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE} SLOT (USINT) - slot number of the resource
SLOT FAIL} CHAN (USINT) - channel number for this NAME
CHAN ERR} NAMZ (STRING) - name of this resource, zero termi-
NAMZ nated

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

The IPHOST function block is optional and not required to be used. It assigns a
name to a communication resource. If there are multiple communication resources
in use, the IPHOST function block must be called for each one so that a different
name is assigned to each resource.

The SLOT input is used to select the physical location of the TCP/IP communica-
tion module to use. There may be up to two in the system.

The CHAN input is used to select one of several possible communication
resources. The actual assignments will be an on-going, upward compatible assign-
ment of numeric assignment to a physical communication resource.

Channel Description

0 Default ethernet connection (currently BNC)
1 10-Base-T connection (twisted pair)

2 10-Base-5 connection (15-pin AUI)

3 10-Base-2 connection (BNC coax)

4 Modem port

The NAMZ input is used to assign a TCP/IP address to this resource. If a Domain
Name Server (DNS) or DHCP is in operation, a name may be inserted. Otherwise,
an IP address in dotted decimal notation is required. This input variable must be a
zero terminated string. The loop-back resource shall be predefined and named
localhost at address 127.0.0.1. Implementation of the localhost resource still
requires a TCP/IP protocol stack running on a communication module or ethernet
module.

Chapter 2 Function/Function Block Description 2-133

IPIP2NAM

IPIP2NAM
(IP IP to Name) lo/SOCKETS
IP%ZIP Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE IPZ (STRING) - IP address, zero terminated
IPZ FAIL CNT (INT) - Size of the HOSZ buffer
CNT ERR HOSZ (STRING) - receives the host name

HOSZ-HO0SZ} Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set
HOSZ (STRING) - receives the host name

The IPIP2NAM function block allows the application to obtain the host name
when you supply the IP address.

NOTE: You must have a DNS (Domain Name Server) configured in the system
and available on the network to use this function block.

2-134 Chapter 2 Function/Function Block Description

IPLISTEN

IPLISTEN
(IP Listen) lo/SOCKETS
IPﬁhI/lETEN Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE HNDL (UINT) - socket handle from the IPSOCK
function block
HNDL FAIL

QUE (UINT) - depth of queue (maximum of 5)

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

QUE ERR

The IPLISTEN function block is used to make a socket passive (i.e., ready to

accept incoming connect requests). It binds the socket defined in HNDL to the port

defined by the protocol port (PROT) when the socket is created with the IPSOCK -
function block. For UDP it binds and for TCP it binds and also prepares for con-

nects. It also sets the size of a queue used to buffer multiple connect requests while
a server processes the first one.

The socket specified in HNDL is prepared to service remote requests for a TCP
connection. The number of connect requests that may be buffered is defined by the
QUE input. The IPACCEPT function block can be used to remove connect
requests from the queue.

Chapter 2 Function/Function Block Description 2-135

IPNAM2IP

IPNAM2IP
(IP Name to IP) lo/SOCKETS
IP%ZIP Inputs: REQ (BOOL) - requests execution (One-shot)

HOSZ (STRING) - name of host, zero terminated
HOSZ FAIL CNT (INT) - size of the HOSZ buffer

CNT ERR IPZ (STRING) - receives the IP address

IPZ---1PZ} Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

IPZ (STRING) - IP address, zero terminated

REQ DONE

The IPNAM2IP function block allows the application to obtain an IP address when
you supply the host name.

NOTE: You must have a DNS (Domain Name Server) configured in the system
and available on the network to use this function block.

2-136

Chapter 2 Function/Function Block Description

IPREAD

IPREAD
(IP Read) lo/SOCKETS
WWE —— Inputs: REQ (BOOL) - enabl i -
TPREAD puts: Q() - enables execution (One-shot)
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAILF .
lont emal CNT (INT) - size of the buffer
18UrR-BUFRL BUFR (MEMORY AREA) - buffer to contain data
lorst Actl MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
1P MEMBER

OFST (UINT) - offset into buffer for data
PRI (BOOL) -priority of the function block
Outputs: DONE (BOOL) - execution completed without error -

FAIL (BOOL) - energized if and only if erris # 0

The IPREAD function block allows you to read input data sent between a client
function and a remote server. The data content is a stream of octets. As data is
received by the TCP/IP stack, it is appended to this stream. A read of this stream
will return the CN'T number of octets or the entire stream if it contains fewer octets
than CNT. The IPREAD function block is used with a TCP or UDP (connected)
socket. NOTE: When the socket is a UDP (connectionless) socket, use the
IPRECYV function block to get a packet of octets from a UDP socket.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task.

The ACT output will not always equal CNT and nothing can be learned if they are
not equal. ACT = 0 also means nothing.

Chapter 2 Function/Function Block Description 2-137

IPRECV

IPRECV
(IP Receive) lo/SOCKETS
?MFEECV Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE HNDL (UINT) - socket handle from the IPSOCK
function block
HNDL FAIL .
ONT ERR CNT (INT) - size of buffer area
BUFR BUFR BUFR (MEMORY AREA¥*) - buffer to contain mes-
sage
OFST ACT

OFST (UINT) - offset into message
IPZ (STRING) - place to receive node IP address
PRI (BOOL) - priority of the function

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

BUFR (MEMORY AREA¥*) - same area as BUFR
input
ACT (INT) - number of bytes stored in BUFR

IPZ (STRING) - same as IPZ input but holds the IP
address of the sending node

PORT (UINT) - port number in sending node

*MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

11pz---1P2
PRI PORT

The IPRECYV funtion block is used to get a packet of data sent between a client
function and a remote server. The data content is a complete packet of octets.

If there is a UDP packet waiting on the TCP/IP stack, this packet will be returned.
If there is no packet available, this function block will wait indefinitely until a
packet is received. Any time-out function must be implemented in the application
software. The IPRECV function block may be cancelled by closing the socket.

The PRI input sets the priority level at which the function block will be handled. A

high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task

The IPRECYV function block is used with a UDP (connectionless) socket. NOTE:
When the socket is a TCP or UDP (connected) socket, use the IPREAD function
block.

2-138 Chapter 2 Function/Function Block Description

IPSEND

IPSEND
(IP Send)

lo/SOCKETS

REQ DONE
HNDL FAIL
BUFR ERR
CNT
OFST
NAMZ

TPSEND |

PORT
PRI

Outputs:

REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

BUFR (MEMORY AREA) - buffer containing data-
gram

MEMORY AREA is a STRING, ARRAY, STRUC-

TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

CNT (INT) - size of buffer
OFST (UINT) - offset into message

NAMZ (STRING) - name or address of target node,
zero terminated

PORT (UINT) - port number in target node
PRI (BOOL) - priority

DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set

The IPSEND function block is used to send data between client function and
remote servers. The data content is a packet of octets.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task.

The IPSEND function block is used with a UDP (connectionless) socket. NOTE:
When the socket is a TCP or UDP (connected) socket, use the IPWRITE function
block.

Chapter 2 Function/Function Block Description

2-139

IPSOCK

IPSOCK
(IP Socket) lo/SOCKETS
?MSEOCK Inputs: REQ (BOOL) - requests execution (One-shot)
REQ DONE TYPE (USINT) - 0 = UDP CLIENT, 1 = TCP, 4 =
UDP SERVER
TYPE FAIL
PROT ERR PROT (UINT) - protocol port number

SLOT (USINT) - slot number

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if err is # 0
ERR (INT) - error number if FAIL is set
HNDL (UINT) - unique socket handle

SLOT HNDL

The IPSOCK function block is used to obtain a data structure and assign it to a
specific communication resource. When the REQ input is set, the input parameters
will be passed to the TCP/IP protocol stack defined by the SLOT input. The func-
tion will then wait for a response to the request. This may take multiple scans.

If a socket data structure is allocated, the DONE output will be set. The HNDL
output can then be used for further operations with this socket data structure. If an
error occurs, the FAIL output will be set and the ERR output will be set to the
error number.

The type of service (TCP, UDP Client, or UDP Server) and Protocol (PROT) are
required to bind the protocol to the socket. NOTE: Bind is done by the IPLISTEN
function block using the data entered in the TYPE and PROT inputs of the
IPSOCK function block.

The TCP/IP community assigns protocols via RFC 1060 (Assigned Numbers).

2-140 Chapter 2 Function/Function Block Description

IPWRITE

IPWRITE
(IP Write) lo/SOCKETS
VWIE —— Inputs: REQ (BOOL) - requests execution (One-shot)
IPWRITE puts: q
{REQ DONEL HNDL (UINT) - socket handle from the IPSOCK
function block
{HNDL FAIL}
laurr emal BUFR (MEMORY AREA) - buffer containing data
lorst actl MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
CNT MEMBER
PRI OFST (UINT) - offset into the buffer for data

CNT (INT) - number of bytes in the buffer

PRI (BOOL) - priority of the function
Outputs: DONE (BOOL) - execution completed without error -
FAIL (BOOL) - energized if and only if erris # 0

ERR (INT) - error number if FAIL is set
ACT (INT) - number of bytes appended

The IPWRITE function block is used to send data between client function and
remote servers. The data content is a sequence of octets. That sequence will be
appended to the stream of any other octets that have previouly been sent via this
function block.

The PRI input sets the priority level at which the function will be handled. A high
priority is indicated when PRI is set. To affect a high priority, the function block
should be in a ladder task.

The IPWRITE function block is used with a TCP or UDP (connected) socket.

Note: When the socket is a UDP (connectionless) socket, use the IPSEND
function block.

Chapter 2 Function/Function Block Description 2-141

IPWRITE

Overview of Using the Ethernet -TCP/IP Function Blocks

The following procedures summarize the various ways of using the IP function
blocks to accomplish certain operations with TCP or UDP.

Creating a TCP Server
The following procedure is used to setup a TCP server.

1. Call the IPSOCK function block. Enter a "1" (TCP) in the TYPE input of the
IPSOC function block. this creates a data structure that will be used to associate
this server with a specific TCP based protocol.

2. Call the IPLISTEN function block. This marks the socket as used by the server.
Incoming connect requests will be buffered up to the depth of the queue. They
are removed by an accept request.

3. Call the IPACCEPT function block. This obtains a new socket that can be
passed to a server TASK or used by the server in the application. The IPZ value
may be used to determine who issued the connect request.

4. When the server is done using [IPREAD and IPWRITE function blocks, the
IPCLOSE function block should be called to free the new socket that was cre-
ated.

5. Steps 3 and 4 can then be repeated. Step 3 can be called again before step 4 is
called if multiple connections are required. However it is the application’s
responsibility to make sure that each server uses the correct socket.

6. Once the ladder decides that the socket created by the IPACCEPT function
block is no longer required, call the IPCLOSE function block to free this socket.

7. Also, once the ladder decides that the server is no longer required, the IPCLOSE
operation should be called to free the original socket obtained in step 1.

Creating a TCP Client

The following procedure is used to setup a TCP client connection to a server. The
server must already be running for the operation to work.

1. Call the IPSOCK function block. Enter a “1” (TCP) in the TYPE input of the
IPSOCK function block. This creates a data structure that allows the client to
use a specific protocol.

2. Call the IPCONN function block. This connects the client with the requested
server on the requested node.

3. Call the IPREAD and IPWRITE function blocks to transfer data between the
client and the server.

4. When done transferring data, call the IPCLOSE function block to free the
socket obtained in step 1.

2-142 Chapter 2 Function/Function Block Description

IPWRITE

Creating a UDP Server (Connectionless)

The following procedure is used to setup a UDP server.

1. Call the IPSOCK function block. Enter a “4” (UDP Server) in the TYPE input
of the IPSOCK function block.This creates a data structure that will be used to
associate this server with a specific UDP based protocol.

2. Call the IPLISTEN function block.

3. Call the IPRECV function block. This provides a buffer that an incoming data-
gram can be read into. Upon receipt of a datagram, the response (if any) may be
generated and sent using the IPSEND function block. The sending node name
and port (IPZ and PORT) are available to be used in a response.

4. Call the IPSEND function block if necessary and return to step 3 or go to step 5.

5. When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

Creating a UDP Client (Connectionless)

The following procedure is used to setup a UDP client.

1. Call the IPSOCK function block. Enter a “0” (UDP Client) in the TYPE input of
the IPSOCK function block. This creates a data structure that will be used to
associate this client with a specific UDP based protocol.

2. Call the IPSEND function block with a message to be sent to the server.

3. Call the IPRECV function block if a response is expected. Go back to step 2 or
on to step 4. If a time-out occurs, decide whether to call the [IPRECV function
block again.

4. When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

NOTE: If there are multiple messages in transit, UDP clients and servers are not guar-
anteed that messages will be received or received in the same order as sent.

UDP Client (Connected)

1. Call the IPSOCK function block. Enter a “0” (UDP Client) in the TYPE input of
the IPSOCK function block.

2. Call the IPCONN function block to connect the client to the server.

3. Call the IPREAD and IPWRITE function blocks to read and write data to the
Server.

The UDP server is implemented in the same manner as a connectionless UDP

server (see above).
NOTE

The following books may be helpful as references when working with TCP/IP:

e Comer, D.E. (1991), Internetworkinging with TCP/IP Vol.I: Principals, Protocols, and Architecture. Prentice-
Hall, Englewood Cliffs, New Jersey. ISBN 0-13-468505-9

e Comer, D.E. (1993), Internetworking with TCP/IP Vol. I1I: Client-Server Programming and Applications.
Prentice-Hall, Englewood Cliffs, New Jersey. ISBN 0-13-474222-2

Chapter 2 Function/Function Block Description 2-143

IPWRITE

Ethernet-TCP/IP Errors

The following errors can be reported our of the ERR output on the IPXXXX function blocks.

ERR# |Description ERR# |Description

0 No error 40 Destination address required

1 Not owner 41 Protocol wrong type for socket

2 No such file or directory 42 Protocol not available

3 No such process 43 Protocol not supported

4 Interrupted system call 44 Socket type not supported

S 1/0O error 45 Operation not supported on socket

6 No such device or address 46 Protocol family not supported

7 Arg list too long 47 Address family not supported

8 Exec format error 48 Address already in use

9 Bad file number 49 Can’t assign requested address

10 No children 50 Socket operation on non-socket

11 No more processes 51 Network is unreachable

12 Not enough core 52 Network dropped connection on reset

13 Permission denied 53 Software caused connection abort

14 Bad address 54 Connection reset by peer

15 Directory not empty 55 No buffer space available

16 Mount device busy 56 Socket is already connected

17 File exists 57 Socket is not connected

18 Cross-device link 58 Can’t send after socket shutdown

19 No such device 59 Too many references: can’t splice

20 Not a directory 60 Connection timed out

21 Is a directory 61 Connection refused

22 Invalid argument 62 Network is down

23 File table overflow 63 Text file busy

24 Too many files open 64 Too many levels of symbolic links

25 Not a typewriter 65 No route to host

26 File name too long 66 Block device required

27 File too large 67 Host is down

28 No space left on device 68 Operation now in progress

29 Illegal seek 69 Operation already in progress

30 Read-only file system 70 Operation would block

31 Too many links 71 Function not implemented

32 Broken pipe 72 Operation cancelled

33 Resource deadlock avoided ~ |[1000 |There is a non-zero terminated string which
requires zZero termination.

2-144 Chapter 2 Function/Function Block Description

IPWRITE

34 No locks available 1001 ([There is a CNT input which is too large.

35 Unsupported value 1002 |The SLOT number requested does not contain
an Ethernet board.

36 Message size 1003 (Either the firmware does not support TCP/IP or
there is no Ethernet board in the rack.

37 Argument too large 1004 |The IPZ buffer is too small.

38 Result too large

Chapter 2 Function/Function Block Description 2-145

LAD_REF

LAD REF

Ladder Reference (Machine Reference) Motion/REF

2D R | Inmputs: EN (BOOL) - enables execution (One-shot)

EN ok L AXIS (USINT) - identifies axis to be referenced (servo
or digitizing)

PLUS (BOOL) - indicates direction of motion to refer-
ence switch

RATE (UDINT) - feedrate at which motion occurs
DIM (entered in LU/MIN)
OPTN

AXIS QUE}
PLUS
RATE

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when ref-
erence switch is set. It is entered in LU. If DIM is out-
side the range of -536,870,912 to 536,870,911 FU, the
OK will not be set.

OPTN (WORD) - provides referencing options
Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - queue number for reference move

The ladder reference is a machine reference done from the ladder. It will cause a
servo axis to move in the direction (PLUS) and at the feedrate (RATE) specified to
the reference switch* until the REF_END function is called in your ladder pro-
gram. In your ladder logic, the closing of the reference switch should enable
REF_END.

When the switch closes, the position of the axis is recorded based on the nearest
null of the resolver or the next index mark of the encoder. The value entered at
DIM is assigned to this position.

If the axis is a digitizing axis or if ‘no motion’ has been selected at OPTN (see
below), this function does not cause motion. You must use other methods of mov-
ing the axis to the reference switch. The inputs PLUS and RATE are ignored when
no motion is selected.

The ladder reference monitors the axis until the REF_END function is called in
your ladder program. In contrast, a fast reference (see FAST_REF) monitors the
axis until a fast input on the feedback module occurs.

When using a SERCOS axis, the function block SCA_RFIT must be called and
completed successfully prior to calling the LAD_REF function.

NOTE: If an encoder is the feedback device, the axis will continue to move after
the switch closes until the next index mark is seen.

2-146 Chapter 2 Function/Function Block Description

LAD_REF

The OPTN input provides the following options:

Option Binary value Hex value
Ignore index/null 00000000 00000001 0001
No motion 00000000 00000010 0002

If no option is desired, enter a “0.”

*See FAST_REF function for information on setting up a reference switch.

Option inputs

Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark of
an encoder or the null of a resolver during the reference cycle. If bit O is set to “1,”
the reference position assigned by DIM will be assigned to the position the axis is

at when the fast input makes its transition.

With an encoder, the axis will stop immediately after the fast input transitions. The
axis does not continue movement until the index mark is reached. NOTE: This
makes the reference switch position given with the READ_SV function invalid.

With a resolver, the reference switch position available with the READ_SV func-

tion is valid.

No motion

The no motion option allows a reference to occur without any motion. The axis is
put into a mode whereby it is watching for the conditions of a reference cycle.

Even though no move is placed in the queue, a queue must be available. A move

will be initiated by the ladder following the reference cycle.

Once the call is made, the reference complete flag goes low until the reference
switch input occurs and the index mark (unless “ignore index” option is active) is
received. The reference complete flag goes high once these events occur and the

axis position takes on the reference value at DIM.

If the move type is VEL, RATIO_GR, LAD_REF, or FAST_REF, the new axis
position assigned by the no-motion reference has no effect on the move itself.
With a DISTANCE move, the actual distance covered will be the same. If a no-
motion reference occurs during a position move, the endpoint will be reached.

If a no-motion reference is used during a RATIO_PRO move, the lock on point of
the slave axis to the master axis may be undefined. This is not recommended.

Note:

A ladder reference can also be performed on a digitizing axis. You must
cause the axis to move and the fast input to occur. Use variable 29 with
the READ_SV function to read the reference switch position.
REF_DNE? can also be used with digitizing axes. This function cannot
be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-147

LE

LE
Less Than or Equal To Evaluvate/LE
LE Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL or STRUCT) - value
I oot to be compared
N IN2 (same type as IN1) - value to be compared
. Outputs: OK (BOOL) - execution completed without
error
OUT (BOOL) - indicates if values are less than
or equal to successive values
The LE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.
For the inputs at IN1, IN2, ...IN17
If IN1 <IN2 <IN3 £...<IN17, the coil at OUT is energized.
Otherwise the coil at OUT is not energized.
2-148 Chapter 2 Function/Function Block Description

LEFT

LEFT
Left String String /LEFT
LEFT Inputs: EN (BOOL) - enables execution
1N 0K = OUT (STRING) - output STRING
JouT---0uT IN (STRING) - STRING to extract from
JIN L (INT) - length
HL Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The LEFT function is used to extract characters from the left side of a STRING.
The number of characters specified by the input at L are extracted from the left
side of the variable at IN and placed into the variable at OUT.

An error occurs if:
L > 255
L > length of OUT

Example of left function

Var at IN Value at . Var at OUT
string 1 string?2 7 string1

Chapter 2 Function/Function Block Description 2-149

LEN

LEN
Length String/LEN

LEN Inputs: EN (BOOL) - enables execution

1N 0K = STR (STRING) - input value

1STR LEN|=Outputs: OK (BOOL) - execution completed without error
LEN (INT) - length

The LEN function is used to return the length of a STRING. The number of char-
acters in the variable at STR is placed in the variable at LEN.

Example of length function

Declared length of string Value at STR ~ Value at LEN
10 string 6

2-150 Chapter 2 Function/Function Block Description

LIMIT

LIMIT
Limit Filter/LIMIT

BRI, Inputs: EN (BOOL) - enables execution

1N 0K |- MIN (ANY except BOOL and STRUCT)) - minimum
value

AMIN OUT|

1 IN (same type as MIN) - value to be limited

Iuax MAX (same type as MIN) - maximum value

Outputs: OK (BOOL) - execution completed without error
OUT (same type as MIN) - value within limits

The LIMIT function assigns a value to the variable at OUT that is within the lower
and upper limits you enter. The value at MIN (lower limit) must be less than the
value at MAX (upper limit). The value at OUT will be the value of the input at
either 1) IN, 2) MIN, or 3) MAX.

For the variables or constants assigned at IN, MIN, and MAX if:

MIN <IN £ MAX, then OUT = IN
IN > MAX, then OUT = MAX
IN < MIN, then OUT = MIN

Chapter 2 Function/Function Block Description 2-151

LINT2DI

LINT2DI
Long Integer to Double Integer Datatype/LINTCONV

LinTzor | Imputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN ouT|Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The LINT2DI function converts a long integer into a double integer. The left most
32 bits of the long integer are truncated. The result is placed in a variable at OUT.

2-152 Chapter 2 Function/Function Block Description

LINT2INT

LINT2INT
Long Integer to Integer Datatype/LINTCONV

LINT2INT | Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (INT) - converted value

The LINT2INT function converts a long integer into a double integer. The left
most 48 bits of the long integer are truncated. The result is placed in a variable at
OUT.

Chapter 2 Function/Function Block Description 2-153

LINT2LR

LINT2LR
Long Integer to Long Real Datatype/LINTCONV

LINT2(R | Imputs: EN (BOOL) - enables execution

1N ok L IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

The LINT2LR function converts a long integer into a long real. The result is
placed in a variable at OUT.

2-154 Chapter 2 Function/Function Block Description

LINT2LW

LINT2LW
Long Integer to Long Word Datatype/LINTCONV

LINTZLW Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The LINT2LW function converts a long integer into a long word The result is
placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-155

LINT2SI

LINT2SI1
Long Integer to Short Integer Datatype/LINTCONV
LinT2s1 | Imputs: EN (BOOL) - enables execution
1N ok L IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The LINT2SI function converts a long integer into a short integer. The left most
56 bits of the long integer are truncated. The result is placed in a variable at OUT.

2-156

Chapter 2 Function/Function Block Description

LINT2ULI

LINT2ULI
Long Integer to Unsigned Long Integer Datatype/LINTCONV

LINT2ULT Inputs: EN (BOOL) - enables execution

1N oKL IN (LINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LINT2ULI function converts a long integer into an unsigned long integer The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-157

LN

LN
Natural Log Arith/TRIG

N Inputs: EN (BOOL) - enables execution

1N oKL NUM (REAL/LREAL) - value

N INE Outputs: OK (BOOL) - execution completed without error
LN (REAL/LREAL) - natural log

NOTE: The data types entered at NUM and LN must
match, 1.e. if NUM is REAL, then LN must be REAL.

The LN function calculates the natural log of the number entered at NUM. The
result is placed at LN.

2-158 Chapter 2 Function/Function Block Description

LOG

LOG

Log Arith/TRIG

L0G Inputs: EN (BOOL) - enables execution

1N oKL NUM (REAL/LREAL) - value

Inm Logl Outputs: OK (BOOL) - execution completed without error
LOG(REAL/LREAL) - log of NUM

NOTE: The data types entered at NUM and LOG must
match, i.e. if NUM is REAL, then LOG must be

REAL.

The LOG function calculates the log of the number entered at NUM. The result is
placed at LOG.

Chapter 2 Function/Function Block Description 2-159

LREA2LI

LREA2LI
Long Real to Long Integer Datatype/LREALCNV

lReaz 1 | Imputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The LREA2LI function converts a long real into a long integer. The result is
placed in a variable at OUT.

2-160 Chapter 2 Function/Function Block Description

LREA2LW

LREA2LW
Long Real to Long Word Datatype/LREALCNV

LReazlw | Imputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) -execution completed without error
OUT (LWORD) - converted value

The LREA2LW function converts a long real into a long word. The result is
placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-161

LREA2RE

LREA2RE
Long Real to Real Datatype/LREALCNV

LReazre | Imputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) -execution completed without error
OUT (REAL) - converted value

The LREA2RE function converts a long real into a real. The result is placed in a
variable at OUT.

2-162

Chapter 2 Function/Function Block Description

LREA2ULI

LREA2ULI
Long Real to Unsigned Long Integer Datatype/LREALCNV

lReazuLr | Inputs: EN (BOOL) - enables execution

JEN oK IN (LREAL) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LREA2ULI function converts a long real into a unsigned long integer. The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-163

LT

LT
Less Than Evaluate /LT
LT Inputs: EN (BOOL) - enables execution
1N 0K INT (ANY except BOOL or STRUCT) - value to be
compared
4INT OUT
e IN2 (same type as IN1) - value to be compared
T T Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are less than succes-
sive values
The LT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.
For the inputs at IN1, IN2, ...IN17
If IN1 < IN2 < IN3 < ...< IN17, the coil at OUT is energized.
Otherwise the coil at OUT is not energized.
LU2FU
Ladder Units to Feedback Units Motion/DATA

FUZLU Inputs: EN (BOOL) - enables execution
1N oK - AXIS (USINT) - axis number (servo or digitizing)
IAXIS FUL LU (DINT) - ladder unit value to convert
JLU Outputs: OK (BOOL) - execution completed without error

FU (DINT) -feedback unit value

The LU2FU function converts the ladder unit value at FU to its equivalent feed-
back unit value and places the result at FU.

2-164 Chapter 2 Function/Function Block Description

LWOR2BYT

LWOR2BYT
Long Word to Byte Datatype /LWORDCNV

LWORZBYT Inputs: EN (BOOL) - enables execution
1EN oKL IN (LWORD) - value to convert
1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The LWOR2BYT function converts a long word into a byte. The leftmost 56 bits
of the long word are truncated. The result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-165

LWOR2DW

LWOR2DW
Long Word to Double Word Datatype /LWORDCNV

LWORZDW Inputs: EN (BOOL) - enables execution

JEN oK IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The LWOR2DW function converts a long word into a double word. The leftmost
32 bits of the long word are truncated. The result is placed in a variable at OUT.

2-166

Chapter 2 Function/Function Block Description

LWOR2LI

LWOR2LI
Long Word to Long Integer Datatype /LWORDCNV

LWORZLI Inputs: EN (BOOL) - enables execution

1EN oKL IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The LWORZ2LI function converts a long word into a long integer. The result is
placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-167

LWOR2LR

LWOR2LR
Long Word to Long Real Datatype /LWORDCNV

LWORZLR Inputs: EN (BOOL) - enables execution

JEN oK IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

The LWOR2LR function converts a long word into a long real. The result is
placed in a variable at OUT.

2-168 Chapter 2 Function/Function Block Description

LWOR2ULI

LWOR2ULI
Long Word to Unsigned Long Integer Datatype /LWORDCNV

LWOR2ULI Inputs: EN (BOOL) - enables execution
1EN oKL IN (LWORD) - value to convert
1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LWOR2ULI function converts a long word into an unsigned long integer. The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-169

LWOR2WO

LWOR2WO
Long Word to Word Datatype /LWORDCNV

LWORZWO Inputs: EN (BOOL) - enables execution

JEN oK IN (LWORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The LWOR2WO function converts a long word into a word. The leftmost 48 bits
of the long word are truncated. The result is placed in a variable at OUT.

2-170

Chapter 2 Function/Function Block Description

LWR_CASE

LWR_CASE
Lower Case String/LWR_CASE

LWR_CASE Inputs: EN (BOOL) - enables execution

1N oKL IN (STRING) - string of characters to convert to lower
case

{ouT---0uTh

1y Outputs: OK (BOOL) - execution completed without error

OUT (STRING) - converted string

The LWR_CASE function converts the characters in a string to all lower case char-
acters. The result is placed in the string at OUT.

The OK will not be set if the number of characters in the string at IN is larger than
the maximum number of characters you have declared in the string at OUT. See
also UPR_CASE function.

Chapter 2 Function/Function Block Description 2-171

MAX

MAX
Maximum Filter/MAX
VAX Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL and STRUCT) - value to be
compared/moved
4INT OUT1
e IN2 (same type as IN1) - value to be compared/moved
| Outputs: OK (BOOL) - execution completed without error
OUT]1 (same type as IN1) - moved value
The MAX function determines which input at IN1 or IN2 has the largest (maxi-
mum) value, and places the value of that variable or constant into the variable at
OUT. This is an extensible function which can output the maximum value of up to
17 variables.
2-172 Chapter 2 Function/Function Block Description

MEASURE

MEASURE

Measure

Motion/MOVE_SUP

veasure | Imputs: EN (BOOL) - enables execution (Typically one-shot)

JEN oK AXIS (USINT) - identifies axis (servo or digitizing)
AXIS NOTE: Fast input on axis feedback required.

Outputs: OK (BOOL) - execution completed without error

If registration or referencing are not being used but you still want the fast input to
be read, the MEASURE function is used. It enables the module to respond to the
fast input. It must be called once before variable 20 (Fast input distance) is read.

SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the MEASURE function with a SERCOS axis.

Chapter 2 Function/Function Block Description 2-173

MID

MID
Middle String String/MID
VID Inputs: EN (BOOL) - enables execution
1N 0K = OUT (STRING) - output STRING
10UT---0uT IN (STRING) - STRING to extract from
JIN L (INT) - length
1L P (INT) - position
1P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The MID function is used to extract characters from (the middle of) a STRING.
The number of characters specified by the input at L are extracted from the vari-
able at IN, starting at the position specified by the input at P. The resulting
STRING is placed in the variable at OUT.

An error occurs if:

=0
> 255

> length of IN
> 255

> length of OUT

i el I

Example of MID Function

The value at L is 4 so four characters will be extracted from the string at IN and
placed in the string at OUT. In the example below, start counting from the left.

Var at IN Valueat L. ValueatP Varat OUT
abcdefghij 4 3 cdef

2-174 Chapter 2 Function/Function Block Description

MIN

MIN
Minimum Filter/MIN

VIN Inputs: EN (BOOL) - enables execution

1N 0K |- IN1 (ANY except BOOL and STRUCT) - value to be com-
pared/moved

INT OUTT

e IN2 (same type as IN1) - value to be compared/moved

Outputs: OK (BOOL) - execution completed without error
OUT]1 (same type as IN1) - moved value

The MIN function determines which input at IN1 or IN2 has the lowest (mini-
mum) value, and places the value of that variable or constant into the variable at
OUT. This is an extensible function which can output the minimum value of up to
17 variables.

Chapter 2 Function/Function Block Description 2-175

mMobD

MOD
Modulo (Remainder) Arith/ARITH

VOD Inputs: EN (BOOL) - enables execution
JEN 0K = DVND (NUMERIC or TIME dur) - dividend

DVND REM |- DVSR (same type as DVND if DVND is numeric; DINT if
DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error
REM (same type as DVND) - remainder

- DVSR

The MOD function divides the value of the variable or constant at DVND by the
value of the variable or constant at DVSR, and places the remainder in the variable
at REM. If there is no remainder, zero is placed in the variable. The quotient is
not returned. See the DIV function.

2-176 Chapter 2 Function/Function Block Description

MOVE

MOVE

Move

Filter/MOVE

Inputs: EN (BOOL) - enables execution
IN1 (ANY) - value to be moved
Outputs: OK (BOOL) - execution completed without error

MOVE

EN
IN1

oK
ouT?

OUT1 (same type as IN1) - moved value

The MOVE function puts the value of the constant or variable at IN1 into the vari-
able at OUT]1, the value of the variable or constant at IN2 into the variable at
OUT?2, etc. From 1 to 16 inputs can be moved.

The input variables or constants to this function can be of different types. An out-
put variable must be of the same type as its corresponding input (on the same line).

Note: In this extensible function, each input is moved to its corresponding out-

put sequentially. Other extensible functions look at all the inputs first
and then go to the outputs.

Chapter 2 Function/Function Block Description 2-177

MUL

MUL
Multiply Arith/ARITH
UL Inputs: EN (BOOL) - enables execution
1N 0K |- MCND (NUMERIC or TIME dur) - multiplicand
IMCND PROD = MPLR (same type as MCND if MCND is numeric; DINT
IMPLR if MCND is TIME) - multiplier
. Outputs: OK (BOOL) - execution completed without error
PROD (same type as MCND) - product
The MUL function multiplies the value of the variable or constant at MCND by
the value of the variable or constant at MPLR, and places the result in the variable
at PROD. This is an extensible function that can multiply up to 17 numbers.
X MCND
*Y MPLR
Z PROD
2-178 Chapter 2 Function/Function Block Description

mux

MUX
Multiplex Filter/MUX
MUX Inputs: EN (BOOL) - enables execution
1N 0K = K (USINT) - value selector
1K ouT |- INO (ANY except STRUCT) - value to be selected
JINO INT (same type as INO) - value to be selected
4IN1 Outputs: OK (BOOL) - execution completed without error

OUT (same type as INO) - selected value

The MUX function is used to select one of two (or more) values and place it into
the output variable. The selection is based on the value of the NUMERIC input at
K.

If the value at K equals 0, then the value of the variable or constant at INO is placed
into the variable at OUT. If the input at K equals 1, then the value of the input at
IN1 is placed into the variable at OUT.

This is an extensible function. Up to 17 inputs can be specified. If the value of the
input at K equals 2, 3, ...16, then the value of the input at IN2, IN3, ...IN16 is
placed into the variable at OUT.

Chapter 2 Function/Function Block Description 2-179

NE

NE
Not Equal To Evaluate/NE
NE Inputs: EN (BOOL) - enables execution
1N 0K = INT (ANY except BOOL or STRUCT) - value to be
compared
4INT OUT|
e IN2 (same type as IN1) - value to be compared
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are not equal
The NE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. If they are not equal, the coil at OUT is
energized. If they are equal, the coil at OUT is not energized.
2-180 Chapter 2 Function/Function Block Description

NEG

NEG
Negate Value Arith/ARITH

NEG Inputs: EN (BOOL) - enables execution
1N 0K = IN (NUMERIC) - signed number to negate
1IN ouTl Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - negated number

The NEG function negates (finds the opposite) value of the signed number at IN
and places the result into the variable at OUT.

The negate function on a number, x, is:

f(x) =-x

Chapter 2 Function/Function Block Description 2-181

NETCLS

NETCLS
NEXNET Network Close lo/NETWORK

Inputs: REQ (BOOL) - enables execution (Typically one-shot)
Outputs: DONE (BOOL) - execution completed without error

E
NETCLS
REQ DONE

The NETCLS function block closes the communication channel for this PiC,
removing the node from the NEXNET network.

NETCLS should not be executed before the DONE output of the NETOPN func-
tion block has been set. If NETCLS has been executed, the NETOPN function
block must execute again to re-enable communication.

2-182 Chapter 2 Function/Function Block Description

NETFRE

NETFRE
NEXNET Network Free lo/NETWORK

NETFRE Inputs: EN (BOOL) - enables execution (typically one-shot)

EN 0k - Outputs: OK (BOOL) - execution completed without error

CLRC (UINT) - number of bytes cleared, same variable as
at CNT for NETSTA

CLRC

The NETFRE function block clears the input buffer of data involved in the most
recent receipt transaction, telling the communications daughter board that data can
be received again.

NETFRE zeros the output at CLRC, which should be the same variable that is at
the CNT output of the NETSTA function block.

This function block should be executed after all data for a transaction has been
received. Until NETFRE executes, receipt of new data is inhibited.

Chapter 2 Function/Function Block Description 2-183

NETMON

NETMON
NEXNET Network Monitor lo/NETWORK

Inputs: EN (BOOL) - enables execution (typically one-shot)

E
NETMON
EN 0k - Outputs: OK (BOOL) - execution completed without error

STAT (INT) - status of network

STAT

The NETMON function block monitors and outputs the status of the PiC network.

NETMON is for diagnostic purposes only. Do not use it in your application LDO.
Never enable the NETMON function all the time.

The status of the network is placed in the variable at STAT:

STAT =0 [If No receive activity and transmitter is enabled. The transmitter
and/or receiver are not functioning properly.

STAT =3 [The node sees receive activity and sees the token. The transmitter
is enabled. The network and node are operating properly.

STAT =8 [The node sees receive activity, but is not seeing the token. Possible
causes are listed below.

1. No other nodes exist on the network.

2. Data corruption exists.

3. The media driver is not functioning properly.
4. The topology is set up incorrectly.

5. There is noise on the network.

6. A reconfiguration is occurring.

2-184 Chapter 2 Function/Function Block Description

NETOPN

NETOPN

NEXNET Network Open lo/NETWORK
NEI%EN Inputs: REQ (BOOL) - enables execution (typically One-shot)
{REQ DONE - SID (USINT) - source ID number of PiC
1sip FAIL|-Outputs: DONE (BOOL) - energized if ERR =0

ERR —

not energized if ERR # 0
FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if no errors occur
0 if error occurs

The NETOPN function block prepares the PiC (in which it is executed) for com-
munication with another PiC. It performs the following:

1. Checks and initializes communications.
2. Assigns a unique network node number to this PiC.
3. Opens the communication channel if no errors occur.

The value at SID (Source IDentification) is assigned to this PiC as a unique node
number. The value at SID should be from 1 - 255. This number is used by other
PiCs in the network to reference this PiC.

If no errors occur, the output at DONE is energized, the output at FAIL is not ener-
gized, and the output at ERR equals zero.

If an error occurs, it occurs during the checking and initialization of the daughter
board. The output at DONE is not energized, the output at FAIL is energized, and
the output at ERR # 0 as shown below.

ERR =1 The ARCNET hardware ID check failed.

ERR =2 The transmitter is not available. An ARCNET communications fail-
ure has occurred.

ERR =3 The power-on reset flag cannot be cleared. An ARCNET communi-
cations failure has occurred.

ERR =4 The SID specified is assigned to another node. Check SID numbers.

ERR =5 to 44 |Check Appendix B in the software manual for errors connected to
the OPEN function block.

ERR > 1XXX [The node number has been set by PiCPro and is different than the
number you entered at the SID input. The XXX holds the PiCPro
node number 001 through 255.

Chapter 2 Function/Function Block Description 2-185

NETOPN

All PiCs in a network should execute the NETOPN function block one time (the
input at REQ should be a one-shot) before they execute any other NEXNET func-
tion blocks.

Other NEXNET function blocks are: NETCLS, NETFRE, NETMON, NETRCYV,
NETSND, and NETSTA.

If a PiC has executed a NETCLS, it must execute NETOPN again to re-enable
communications.

2-186 Chapter 2 Function/Function Block Description

NETRCV

NETRCV

NEXNET Network Receives lo/NETWORK
Né'\TAECV Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N 0K = CNT (INT) - number of bytes to read
JONT FAILL OFST (UINT) -offset from start of BUFR
JOFST ACTL BUFR (memory area) - destination of data
4{BUFR-BUFR | memory area is a STRING, ARRAY, or STRUCTURE

ERR— Outputs: OK (BOOL) -energized immediately after enable if
ERR =0

not energized if ERR =1 or 2

FAIL (BOOL) - energized if ERR =1 or 2
not energized if ERR =0

ACT (INT) - number of bytes received
BUEFR (same variable as BUFR input)

ERR (INT) - 0 if no errors occur
1 or 2 if an error occurs

cations hardware) and places it in a data memory area.

The NETRCYV function block "reads" data from the input buffer (of the communi- “

The number of bytes specified by the value at CNT are read and placed within the
memory area specified at BUFR. The value of CNT should be such that:

I <CNT <£494.

IMPORTANT

When receiving a STRING, the length specified should be the number
of characters indicated by the CNT output of NETSTA.

The data is placed in BUFR starting at OFST bytes past the first byte of BUFR. (If
OFST equals 0, 1, 2, etc. the data starts at 0, 1, 2, etc. bytes past the beginning of
BUFR).

The number of bytes actually read is placed in the variable at ACT. The value of
ACT will be less than the value of CNT when an error occurs. Otherwise the value
of ACT will equal the value of CNT.

Chapter 2 Function/Function Block Description 2-187

NETRCV

Multiple NETRCYV function blocks may be executed to sequentially read the data
from one transaction, allowing for the separation of the data into different memory
areas. The total number of bytes read by one or more NETRCVs should equal the
value of the CNT output of the NETSTA function block.

If an error occurs the output at DONE is not energized, the output at FAIL is ener-
gized, the value at ACT equals 0, the value at BUFR is unchanged, and the output
at ERR equals 1 or 2.

ERR =1 [There is no data in the input buffer to receive.

ERR =2 [The value of CNT is greater than the number of bytes in the input
buffer.

NOTE: The NETFRE function block should be executed after all

data (for one transaction) has been read from the input buffer.

2-188

Chapter 2 Function/Function Block Description

NETSND

NETSND
NEXNET Network Sends lo/NETWORK
Né,\TAEND Inputs: REQ (BOOL) - enables execution (typically one-shot)
{REQ DONEL- TBUF (memory area*) - optional protocol data
JTBUF FAILL TCNT (INT) - # of bytes to send from TBUF
JTCNT ERR|- DBUF (memory area*) - data to be sent
{DBUF ACT}|- DCNT (INT) - # of bytes to send from DBUF
- DCNT OFST (UINT) - offset from start of DBUF
10FST DID (USINT) - destination PiCs
1DID *memory area is a STRING, ARRAY, or STRUC-
TURE
Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0
ERR (INT) - 0 if transfer successful

0 if transfer unsuccessful
ACT (INT) - actual number of bytes sent “
The NETSND function block sends data from this PiC to another PiC or all net-
worked PiCs (broadcast message). NETSND transfers protocol data from the

memory area specified at TBUF and/or data from the memory area specified at
DBUF.

Protocol data is not required. If protocol data is created, the value of TCNT should
specify the number of bytes of protocol (at TBUF). If protocol data is not used,
there should be a null input at TBUF and the value at TCNT should be 0.

The value at DCNT specifies the number of bytes to send from the entry at DBUF.

The data that is transferred from within DBUF starts at OFST bytes past the begin-
ning of DBUFE. (If OFST equals 0, 1, 2, etc. then the data sent starts at 0, 1, 2, etc.
bytes past the first byte of DBUF.)

It is required that TCNT + DCNT < 494.

The receiving PiCs should have a memory area that is equivalent to the data being
sent defined at the BUFR input to the NETRCV function block(s).

Chapter 2 Function/Function Block Description 2-189

NETSND

IMPORTANT

When sending a STRING, the length specified should be the number
of characters plus 2 (bytes).

The value at DID should be from O - 255. If the value at DID is O, the data is sent
to all other PiCs in the network. If the value at DID is 1 - 255, the data is sent to
the PiC with that SID.

If an error occurs, the output at DONE is not energized, the output at FAIL is ener-
gized, the value at ERR equals an error number (see below) and the value at ACT

is 0.

ERR =1 The transmitter is unavailable. A previous send has not com-
pleted.

ERR =2 The message failed to be acknowledged as received within 900
milliseconds.

ERR =3 An attempt was made to send more than 494 bytes.

ERR =4 There is no TBUF input to the function block when protocol data
is created.

ERR =5 There is no DBUF input to the function block.

ERR = 6 to 44 (Check Appendix B in the software manual for errors connected to
the WRITE function block.

Note: This PiC should execute the NETSND function only after it has set the
DONE output of the NETOPN function block.

2-190 Chapter 2 Function/Function Block Description

NETSTA

NETSTA
NEXNET Network Status lo/NETWORK

Né'\TAETA Inputs: EN (BOOL) - enables execution

1N 0k = Outputs: OK (BOOL) -execution completed without error

SID|— SID (USINT) - source node ID
DID | DID (USINT) - destination node ID
CNT |- CNT (INT) - number of bytes received

The NETSTA function block outputs the number of bytes that are in this PiCs
daughter board input buffer (sent by another PiC). It also outputs the node number
of the sending PiC and the node number of this (receiving) PiC.

The number of the sending PiC (1 - 255) is placed in the variable at SID. The
value at SID equals O if there is no data in the buffer.

The number of this PiC is placed in the variable at DID. The value at DID equals
0 if the data is a broadcast or if there is no data in the buffer.

The number of bytes in the input buffer is placed in the variable at CNT. This
value indicates how many bytes should be read or received (by one or more

NETRCYV function blocks). The value at CNT equals 0 if there is no data in the “
buffer.

If only one NETRCYV function block is executed to read the data from the input
buffer, then the CNT output value of NETSTA should equal the CNT input value
to the NETRCV.

If more than one NETRCYV function block is executed to read the data from the
input buffer, then the sum of the bytes read by the NETRCVs should equal the
CNT value from NETSTA.

Note: Ensure that the DONE output of the NETOPN function block is set (the
communication channel is open) before NETSTA executes.

Chapter 2 Function/Function Block Description 2-191

NEWRATIO

NEWRATIO

New Ratio

Motion/MOVE_SUP

NEWRATIO Inputs: EN (BOOL) - enables execution

1N ok L AXIS (USINT) - identifies the slave axis (servo)

JAXIS MAST (USINT) - identifies the master axis the slave
axis follows in the ratio move

{MAST

lspsT SDST (DINT) - (slave distance) indicates the new dis-

tance the slave should move for each MDST distance
MBST (entered in LU*)

MDST (DINT) - (master distance) indicates the new
distance the master axis will move during each SDST
(entered in LU*)

*NOTE: The range of values entered in SDST and
MDST is -536870912 to +536870911 FU (excluding 0
for the MDST input.) If you are using ladder units,
make sure they do not exceed this range when con-
verted to feedback units.

Outputs: OK (BOOL) - execution complete without errors

The NEWRATIO function allows you to change the current constant ratio in a
RATIO_GR or a RATIOSYN move and change the default ratio in a RATIOSLP
move.

Changing the ratio in RATIO_GR and RATIOSYN

You define a constant ratio when using the RATIO_GR or RATIOSYN moves.
The NEWRATIO function is called after the RATIO_GR or RATIOSYN move is
active and allows you to change this constant ratio. The new ratio takes effect after
the next servo interrupt.

The function does not use the queue but changes the ratio of the move in the active
queue.

Changing the default ratio in RATIOSLP and RATIO_RL

The RATIOSLP and RATIO_RL moves have a default ratio of 1:1. The NEWRA-
TIO function is normally called before the move is active and allows you to
change this default ratio.

If the NEWRATIO function is called after the move, the current ratio of the move
is used initially and the ratio defined by NEWRATIO takes effect after the next
servo interrupt.

2-192

Chapter 2 Function/Function Block Description

NEWRATIO

The OK will not be set if any of the following programming errors occur:

1. Master axis not available
2. Master distance not valid
3. Slave distance not valid.

IMPORTANT

Whenever the NEWRATIO function is called, it always sets the default ratio
for a RATIOSLP move.

If, for example, the NEWRATIO function is called for a RATIO_GR
or RATIOSYN move, and later a RATIOSLP move is called, the RA-
TIOSLP move will also use the ratio established in the NEWRATIO
function as its default ratio.

If you do not want to use this ratio, call the NEWRATIO function
again.

Chapter 2 Function/Function Block Description 2-193

NEW_RATE

NEW_ RATE
New Rate Motion/MOVE_SUP

NEw Rare | Inputs: EN (BOOL) - enables execution
1N ok L AXIS (USINT) - identifies axis (servo)
JAXIS RATE (UDINT) - new feedrate (entered in LU/MIN)
IRATE QUE (USINT) - number of move whose rate you want
laue to change
Outputs: OK (BOOL) - execution completed without error

The NEW_RATE function allows the rate of the move identified by the queue
number to be changed. The move identified by the queue number can be in the
active or next queue.

If a “0” is entered in QUE, the new feedrate only affects the move in the active
queue.

2-194 Chapter 2 Function/Function Block Description

NOT

NOT
Not Binary/NOT

NOT Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (BITWISE) - number to be complemented

1IN ouTl= Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - complemented number

The NOT function complements the variable or constant at IN and places the result
in the variable at OUT. The net effect of this function is that the bits of the output
variable are the reverse of the bits of the input variable or constant.

If bit x of the input is O then bit x of the output is 1. If bit x of the input is 1 then bit
x of the output is O.

Example of NOT function:

Value at IN Value at OUT
11001010 00110101

Chapter 2 Function/Function Block Description 2-195

NUM2STR

NUM2STR
Numeric to String Datatype/NUM2STR

NUM2STR Inputs: EN (BOOL) - enables execution
JEN oK |- STR (STRING) - output STRING
ISTR---STRI- NUM (NUMERIC) - number to convert (may include
INTY plus (+) or minus (-) sign)

Outputs: OK (BOOL) - execution completed without error
STR (same variable as STR input) - output STRING

The NUM2STR function converts the numeric variable or constant at NUM into a
STRING, and places the result into the variable at STR. If the length of the vari-
able at STR is not adequate to hold the value (from NUM), the output at OK will
not energize and the value of the variable at STR will be null (STRING length of
Zero).

When converting REAL or LREAL floating point numbers, the output follows the
following format.

REAL LREAL
Minimum size
of string 13 characters 23 characters
String output
2 3 = 2
< = =] —
E = E £
2 E - S E =
2 = $ g Z£2 s 2 =2
"E“‘; e g & =5 = g :5
s 2 = & @ g : 20 g- @
E = 2o ﬁ @ E = (™ S -1
o= B o < Q= = 9 -
S8 2 = o S0 - = S
: = : :: S = = Gt]
=] = °c = o &0 ° z
52 £ 5% 52 : 5 £
o o @R G N v — v oen
‘ ‘ !—‘—V ’ rJ‘w ’ ’ I | | ‘
+1.234567 E + 10 +1.234567890123456 E + 123
| | | | - Il I
Mantissa Exponent Mantissa Exponent

2-196 Chapter 2 Function/Function Block Description

OPEN

OPEN
Open lo/COMM
OPEN_ Inputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEL- NAMZ (STRING) - name of file/device
INAMZ FAILL MODE (INT) - mode in which to open channel
{MODE ERR|— Outputs: DONE (BOOL) - energized if ERR =0
HADL not energized if ERR # 0
FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0
ERR (INT) - 0 if data transfer successful

0 if data transfer not successful

HNDL (INT) - unique communication number

See Appendix B in the software manual for ERR codes.

The OPEN function block prepares a file or device for a sequential read/write.
It performs three functions.

number into the variable at HNDL.

. It accepts the name of the file or device from the input at NAMZ.
It accepts the mode in which the file/device should be opened from the input at MODE.

It assigns a unique number (called a handle) for the file/device and mode, and places the

A maximum of 10 modes can be assigned for files/devices at one time. A READ
and WRITE or an APPEND equals two modes. All others equal one.

Input variable
NAMZ*

MODE**

*

Enter this
PICPRO:c:\sub\filename.ext$00
RAMDISK:sub\filename.ext$00
FMSDISK:filename.ext$00%**:
USER:$00

16#601

16#602

16#603

16#604

To do this

open workstation DOS files**
open RAMDISK files

open FMSDISK files

open User Port

READ ONLY

WRITE ONLY ##3%#%*

READ and WRITE

APPEND (READ and WRITE -
start write at end of file)

PICPRO, RAMDISK, FMSDISK, and USER must be entered in capital let-
ters, followed by a colon (:). A full (directory) path must be specified for files.

Chapter 2 Function/Function Block Description

2-197

OPEN

The $00 characters are required at the end. NOTE: The total number of characters
is limited to 77.

*k Workstation files can be opened only in the read (16#601) or write
(16#602) mode; and only one workstation file at a time can be open.

Glolo FMSDISK files can be opened only in the read mode.

sk If there is an existing file, opening it in the write only mode will delete
the existing data. The new data will then be written to it.

A subdirectory can be created by opening in the WRITE ONLY mode. If the sub-
directory and filename do not exist when the OPEN is performed, both will be cre-
ated.

OPEN is used in conjunction with the CLOSE, CONFIG, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

2-198

Chapter 2 Function/Function Block Description

OPENLOOP

OPENLOOP
Open Loop Motion/INIT

orenLoop | Imputs: EN (BOOL) - enables execution (One-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The position loop for the designated axis is opened when the OPENLOOP func-
tion is activated. The servo software instructs the analog output to send a zero-volt
signal to the drive.

If the drive has been properly adjusted, the zero-volt signal will cause it to hold the

motor at zero velocity. If the drive has not been adjusted properly, the motor may
“drift.”

No other commands can be sent until the loop is closed again. See also
CLOSLOORP.

Chapter 2 Function/Function Block Description 2-199

OR

OR

Or (Inclusive) Binary/OR

OR Inputs: EN (BOOL) - enables execution
1N 0K = INT (BITWISE) - number to be ORed
JINT oUTk IN2 (same type as IN1) - number to be ORed

J1IN? Outputs: OK (BOOL) - execution completed without error
OUT (same type as IN1) - ORed number

The OR function ORs the variable or constant at IN1 with the variable or constant
at IN2, and places the results in the variable at OUT. This is an extensible function
which can OR up 17 inputs.

The OR function places a 1 in bit x of the output variable when bit x of one or
more (including all) input variables equals 1. A zero is placed in bit x of the output
variable if bit x of all input variables equals 0.

Example of OR function (on three inputs):

11000011 value at IN1
10101010 value at IN2
11001100 value at IN3
11101111 value at OUT

2-200

Chapter 2 Function/Function Block Description

PART_CLR

PART_CLR

Part Reference Clear Motion/REF

PART CLR | Imputs: EN (BOOL) - enables execution (Typically one-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or digitizing)
JAXIS Outputs: OK (BOOL) - execution completed without error

The PART_CLR function cancels the part reference dimension (See PART_REF
below). The axis reverts to the original reference value.

An axis can be “part referenced’ several times. The PART_CLR function will can-
cel all part references as if no part reference had occurred.

Note: This function can be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-201

PART_REF

PART REF
Part Reference Motion/REF

PART_REF Inputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies axis to be part referenced
(servo or digitizing)

REFD (DINT) - reference dimension entered in LU.
If REFD is outside the range of:

-536,870,910 to 536,870,911 FU, the OK will not be
set.

4 AXIS
- REFD

Outputs: OK (BOOL) - execution completed without error

The part reference function allows you to change the current position of an axis.
No motion occurs when a part reference is performed. The reference dimension
value at REFD will become the new current position for the axis specified at
AXIS. This reference dimension will remain in effect until it is canceled using the
PART_CLR function or replaced by a new part reference.

A servo axis must be at rest when a part reference is performed. A digitizing axis
can be in motion when a part reference is performed.

This function can be used with the stepper axis module.

2-202 Chapter 2 Function/Function Block Description

PID

Proportional, Integral, Derivative lo/PID

['F,Vi-\"[/JE_ Inputs: EN (BOOL) - enables execution (timer output)
1N oKL SPT (DINT) - setpoint value of the control variable
SPT FAIL specified as a scaled value between + 2,147,483,646
Iact emnl ACT (DINT) - actual value of the control variable in
same units as setpoint value
{1sT ouTh
REV HILT IST (STRUC) - structure holding PID variables
| I REV - (BOOL) - reverse sign on output
{vaN LoLTH
BTVL MAN - (BOOL) - Manual/auto mode

BTVL - (DINT) - bumpless transfer value
Outputs: OK (BOOL) - execution completed without error

FAIL (BOOL) - set if ERR # 0

ERR (SINT) - 0 = no error; 1 = math overflow error

OUT (DINT) - value of the output in the range of
+2,147,483,646

HILT (BOOL) - set if output was limited by the HIGH
limit
LOLT (BOOL) - set if output was limited by the LOW
limit

Background information on PID control

When a process characteristic such as level, speed, temperature, pressure, flow,
etc. is being monitored and controlled, the PID function can be used to maintain
the desired or setpoint value for the process. The actual process characteristic
could deviate from the desired setpoint due to disturbances in the system. This
deviation is the error.

E = setpoint (SPT) - actual (ACT)
or

E = actual (ACT) - setpoint (SPT)

Chapter 2 Function/Function Block Description 2-203

PID

Once an error is detected, the PiC will modify the output to the process in an
attempt to force the error to zero. The purpose of the PID function is to act on this
error in one or a combination of the ways listed below.

Definition Characteristics

Proportional |establishes an output whose value is pro-* Fast response

portional to the value of the instanta-

* Easy to use
neous error. (P)

* Always some error (offset) between
setpoint and actual

Integral or

reset

establishes an output whose value is pro-* Provides most correction for slowly
portional to the error over a period of changing processes

time. (I) * Eliminates the inherent offset of

proportional only control

* Adversely affects stability

Derivative or |establishes an output whose value is pro-* Provides most correction for rap-

rate

portional to the rate of change of the idly changing processes
error. (D) * Almost anticipates correction
needed

* Cannot be used alone

* Does not reduce the inherent offset

The process output can be controlled by using P, PI, PID, or PD depending on the
desired response for the process.

The PID function block is designed to provide proportional, integral, and deriva-
tive control for processing applications. There are two PID algorithms available to
use in a PID control loop. The function block must be declared in the software
declaration table.

The desired setpoint for the process variable is entered at SPT (setpoint). The
actual (ACT) input specifies the measured value of the process variable.

If REV input is set, the sign on the PID output is reversed.

A bumpless transfer feature is available with the MAN and BTVL inputs. The
MAN is a manual/automatic boolean switch. When it is set, the value at the BTVL
input is the value at the OUT output. The algorithm updates the integral accumula-
tor. This prevents the accumulation of an integral error during the manual mode.
Then when the MAN input is cleared, the transfer to PID control is smooth.

The FAIL output will be set if a math overflow error occurs. A 1 appears at the
ERR output. The function output will be the output of the last iteration that did not
fail.

The IST is an input structure to the PID function block. The members are
described below.

2-204

Chapter 2 Function/Function Block Description

IMPORTANT

The structure you enter in the software declarations table for the IST
input must have the members entered in the order shown below. The
data type for each member of the structure must be as shown in the
Type column in order for the software to recognize the information.

Put initial values for the following structure members in the Init. Val
column: P, I, D, Ts, KDFT, FP, FD, DB+, DB-, HIGH, LOW, and
EXOP.

The software assigns values to PROP, INTG, and DERV.
The initial values for these three structure members must be 0.

Structure for the IST input of PID function block

Structure
name ———PD STRUC
-P INT
1 INT
D INT
TS INT
.KDFT SINT
-FP SINT
Members] .FD SINT
of Structure .DBPLUS INT
.DBMINUS INT
HIGH DINT
.LOW DINT
.EXOP WORD
.PROP DINT
INTG DINT
.DERV DINT
END_STRUCT

PID

Chapter 2 Function/Function Block Description

2-205

PID

The IST structure members

P INT (write)

(proportional) Proportional gain (Kp) * 100 [For example, P of 0.55 entered as 55]
I INT (write)

(integral) Reciprocal of the integral time (f (1,Ti)) * 100 (time units)

D INT (write)

(derivative)

Derivative time (Td) * 100 (time units)

TS INT (write)
(sample time)

PID sample time in seconds * 100

Ts represents the sample time used to calculate the integral and derivative
gains for the PID loop as shown in the equations below.

NOTE: The TS value is the product of the PID sample time (the PID
enable period) times 100. For example, a 10 ms sample results in a TS
value of 1 (0.010 * 100) and a 200 ms sample results in a TS value of 20
(0.200 * 100).

Integral Gain Derivative Gain
Ts Td D
Ki = === TsxI Kd = —= —
T 4= T Ty

A filter value for the derivative term can be entered at KDFT. Filters for the pro-
portional and derivative errors can be entered at FP and FD respectively.

KDFT SINT (write)

gfrl\)/atlve Filter value for the derivative term in percent (derivative change limit)
ilter

FP SINT (write)

g)liop)ortlonal Proportional error filter in percent (100% = no filtering)
ilter

FD SINT (write)

(derivative Iy jyative error filter in percent (100% = no filtering)

error filter

A deadband is used to set up a range on either side of the setpoint where the output
does not change if the error remains within the range or band. This allows you to

2-206 Chapter 2 Function/Function Block Description

PID

control how close the actual value will match the setpoint value without changing
the output. The range is entered in DB+ and DB-.

DBPLUS

band)

(positive dead- Deadband in the positive direction of out (OUT + DB)

INT (write)

band)

DBMINUS [INT (write)
(negative dead-

Deadband in the negative direction of out (OUT - DB)

An anti-reset windup feature is available with the HIGH and LOW limits. It pre-
vents the integral gain from becoming excessive or winding up when the limits are
reached. The output will be held at the value it was during the previous iteration
whenever the high or low limit is encountered.

(The HILT and LOLT outputs are set respectively if the HIGH or LOW limits are
encountered.)

HIGH

(high limit)

DINT (write)

Output high limit used for integral accumulator high saturation limit. Same
units as setpoint.

LOW
(low limit)

DINT (write)

Output low limit used for integral accumulator high saturation limit. Same
units as setpoint.

NOTE: HIGH and LOW are used for anti-reset windup.

The word available with the EXOP gives you four options.

EXOP

(execution

options)

WORD (write)

Tz 211109 57 6 54 352120
HNNEEENEEEEEEEEE

| | |_ 0- EAAghm, 1- Roependent gains Agorhm
| 0- ETof = SPT- @CT, 1- Bl = ACT - SPT
Set remaining bits to 0 0- FP = [SFT- #CT), 1- FP= SP
0- FO = [SPT- ACT), 1- FO= SF

AR |55

Chapter 2 Function/Function Block Description 2-207

PID

EXOP Bit 0

The PID function block gives you a choice of two algorithms in the EXOP mem-
ber of the IST structure at bit 0.

1. The ISA algorithm
2. The independent gains algorithm

The terms used in the following equations are described here:

Equation (Function Description
Term Term)
Mn (OUT) = output
Kp (P) = proportional gain constant
Ts (Ts) = sample rate
Ti 1 = integral time
(7)
Td (D) = derivative time
Ep - = error the jth iteration
DCL (KDFT) = derivative change limit
Ts Ix7s = Ki, integral gain constant
Ti
Td pxTs = Kd,derivative gain constant
Ts
DG-1) - = derivative from previous iteration

The following continuous equation performs the calculation with the ISA algo-
rithm:

M(r) = Kp{e(t) + % : JJ Oc(r)dt + Td‘—i—il%‘—)}

2-208 Chapter 2 Function/Function Block Description

PID

The discrete equation is shown below:

j=n
Mj = Kp E]+T E-J—LEQ——— [E—E(j—l) X DCL+[D(j—1)x (1-DCL)]
j=0
Prop Integral Derivative (current)

(Reset) (Rate)

The block diagram below illustrates the ISA algorithm.

Figure 2-6. Block diagram of ISA algorithm

Manual nput

B o dedoe
e

Dedee Unle=0uput

Ew.q._h |:u1:u1_._

P'[\‘ + J': Term
e W-

-
I N N N N N N N NN N NN N N

e PID Engaged aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa N
Do Offierenid : High
: a_-P'F.H‘ . Term [. : |i= Lker Conuerslon
: e : chors or denlce
C (Er b H[Fortod Ly 5 b A A p [T [Pt o b i
: H:Tff‘ _Wﬁ'ﬂ_/‘ : OupuE= Dedee Unlc
: : Lo
: Term :
P -

BRI

Chapter 2 Function/Function Block Description 2-209

PID

The following continuous equation performs the calculation with the independent
gains algorithm:

_ 1 J’ det
M(t) = Kp xe(t)+ Ti Oetdt+ Td 0

The discrete equation is shown below:

j=n

Mj=Kp><Ej+?, '%(’_IH%[E]'—(E]'—1)]><DCL+D(]'—1)><(1—DCL)
l S
j=0

2-210 Chapter 2 Function/Function Block Description

PID

The block diagram below illustrates the independent gains algorithm.

Figure 2-7. Block diagram of Independent gains algorithm
Manual npud

+
Clead
"y

Eand

EXOP Bit 1

:-:.'.-.'.' h"&l"ll-lﬁ] Ehgaged'.-.’f.-.’f.-.’.’.-

&l

Term
C1eand Froporfond

SR RS RS SES SR,

Eand Error

aaaaaaaaaaaaa

o
X
m ular ..':_
High Rew
Y o+
T3 M T b curar—
Low

oo o dedlice
Inkerface
Dedce Unle=0upue

—» Imier e

Lk Conuer<lon
B o dedice

Oupu == Dedee Unlc

AR |55

With bit 1, you can choose to have the error calculated by the setpoint minus the
actual or by the actual minus the setpoint.

EXOP Bit 2

With bit 2, you can choose to have the proportional filter multiplied by the setpoint
minus the actual or by the setpoint only.

EXOP Bit 3

With bit 3, you can choose to have the derivational filter multiplied by the setpoint
minus the actual or by the setpoint only.

The values of the proportional, integral, and derivative terms for the current step
can be read with members PROP, INTG, and DERV. Add them to your View list

in PiCPro.

Chapter 2 Function/Function Block Description

2-211

PID

PROP DINT (read)

g;rl ?15) ortional (mpe value of the proportional term at this step.
INTG DINT (read)

(integral gain) e yajue of the integral term at this step.
DERV DINT (read)

(derivative

The value of the derivative term at this step.

gain)

You may execute the PID loop every scan or trigger it at your own update rate by
using the timer TON function block at the EN input (see below). Total update time
is the timer value plus the time required for one ladder scan.

2-212 Chapter 2 Function/Function Block Description

Figure 2-8. Example PID network using a timer

"TIMER "PIDFH
TOH PID

TIMEDOHE TIMEDOHE

/w0) ok

TH250MS 5>— PT ET | _ SETPOINT >—{SPT FAIL

 ACTUAL —ACT ERR

PID 5—IST OUT

REVERSE

— | “REV HILT

MANUAL

— | {MAN LOLT
BTVL >— BTVL

PID_OK

—

PIDHNOK

—{

— PID_ERR

— OUTPUT
HI_LIM

—

LOW_LIM

—{

PID

Chapter 2 Function/Function Block Description

2-213

PLS

PLS
Programmable Logic Switch Motion/MOVE_SUP

PLS Inputs: EN (BOOL) - enables execution
1N oKL AXIS (USINT) - axis number (servo, digitizing or time)
IAXIS ouTl POSN (Array of STRUCTURE) - list of ON/OFF
1posy I positions
oty i QTY (USINT) - number of ON/OFF positions
IsioT | SLOT (USINT) - slot number of output module
IpNT | PNT (USINT) - output point
1DABL DABL (BOOL) - disable control of output

Outputs:OK (BOOL) - execution completed without error
OUT (BOOL) - output state

The PLS function is used to turn on a discrete output for specified ranges of axis positions.
These ranges are specified by the list of ON/OFF positions pointed to by the POSN input. If
the axis’ current position is within any of the ranges specified, the output will be turned on. If
the axis’ current position is in none of the ranges specified, the output will be turned off.

The EN input enables execution of the function block. A one-shot is all that is required to ac-
tivate the PLC. The EN input may be left enabled to update the OUT output each scan.

The AXIS input specifies the axis whose position will control the state of the output. This may
be a servo axis, digitizing axis, or time axis.

The POSN input is an array of structures specifying the axis position ranges in which the output
is to be turned on. The array of structures must be in the following format:

POSN STRUCT (0..n-1)
.ON DINT

.OFF DINT

END STRUCT

(where n = number of ranges)

2-214 Chapter 2 Function/Function Block Description

PLS

The ON and OFF values are axis positions expressed in ladder units. When PLS is active, the
following logic is used to determine if the axis’ current position is within an ON/OFF range:

If ON < OFF, CP is in the range if CP = ON and CP < OFF.
If ON > OFF, CP is in the range if CP > ON or CP < OFF.
If ON = OFF, the range is ignored.

(where CP is the axis’ current position)

The QTY input specifies the number for ranges in the POSN array of structures. Valid input
values are 1 through 255.

The SLOT input specifies the slot number of the output module. Valid input values are 0 and 3
through 13 (0 and 2 for an MMC control). IF SLOT = 0, only the OUT output will be con-
trolled; no discrete outputs will be controlled. No more than two different slots may be speci-
fied by multiple calls to PLS. If output points among 1-16 and among 17-23 are specified on a
32-point output module, only that one slot may be specified by multiple calls to PLS.

The PNT input specifies the output to be controlled. Valid input values are 1 through 32.
Multiple calls to PLS should never attempt to control a single output point with more than one
axis . However, a single axis can control multiple output points. Up to 32 output points can be
controlled. This can be 32 points on a single 32-point output module or 16 points on each of 2
output modules.

The DABL input will disable the PLC function. If PLS is called with DABL set, the discrete
output and the function ’s OUT output will be turned off and will no longer be controlled by
PLS.

The OK output indicates the function block executed successfully. If the OK output is reset,
any of the following errors occurred:

e AXIS input is valid
e SLOT input is invalid

e PNT input is invalid
e Too many slots have been specified by multiple calls to PLS functions
The OUT output is set when the axis’ current position is within any of the ON/OFF ranges and

the DABL input is reset. The OUT output is reset when the axis’ current position is in none of
the ON/OFF ranges. It is also reset when the DABL input is set.

Chapter 2 Function/Function Block Description 2-215

PLS

Notes:

1. PLS will operate with or without rollover-on-position specified for the axis.
2. The outputs being controlled by PLS are updated every servo interrupt.

3. While the PLS is active, the ON/OFF values may only be modified via the PLS _EDIT
function. Modifying these values by any other means while the PLS is active may cause
outputs to unexpectedly turn on or off. If the DABL input is set or if the EN input has
never been set, the ON/OFF values may be modified by conventional means (i.e. MOVE
function).

2-216 Chapter 2 Function/Function Block Description

PLS_EDIT

PLS_EDIT
Programmable Logic Switch Editor Motion/MOVE_SUP
pis ep1T | Imputs: EN (BOOL) - enables execution (one-shot)
JEN oKL POSN (Array of STRUCTURE) - list of ON/OFF
positions
4 POSN -
{1NDX i INDX (USINT) - index of ON/OFF positions to change
{oN | ON (DINT) - new ON position
10FF OFF (DINT) - new OFF position

Outputs:OK (BOOL) - execution completed without error

The PLS EDIT function is used to edit an an ON/OFF pair of values used by a PLS function
while PLS is active. Since the PLS function accesses the ON/OFF values on an interrupt basis,
the laddder must not attempt to change these values with any other function (i.e. MOVE
function) while PLS is active. PLS_EDIT will protect the integrity of the ON/OFF values when
changing them.

The EN input enables execution of the function.

The POSN input is the array of structures containing the list of ON/OFF positions. The array
fo structures must be in the following format:

POSN STRUCT (0..n-1)
.ON DINT
END STRUCT

(where n = number of ranges)

The INDX input specifies the ON/OFF range to edit. Valid input values are 0 through 254.
The ON input specifies the new value for the ON position of the range.
The OFF input specifies the new value for the OFF position of the range.

The OK ouput indicates the function executed successfully.

Chapter 2 Function/Function Block Description 2-217

POSITION

POSITION

Position

Motion/MOVE

posiTion | Imputs: EN (BOOL) - enables execution (One-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or time)
IAXIS QUEL RATE (UDINT) - feedrate at which motion occurs
pate (entered in LU/MIN)
1pos POS (DINT) - indicates absolute position endpoint
(entered in LU)

Outputs:OK (BOOL) - execution completed without error
QUE (USINT) - number of position move for queue

The POSITION function moves an axis to an endpoint at a specified feedrate.
When the position move is used with a time axis, the S_CURVE function must be
called first.

2-218

Chapter 2 Function/Function Block Description

P_ERRORS

P_ERRORS
Programming Errors Motion/ERRORS

p errors | Imputs: EN (BOOL) - enables execution

JEN oK AXIS (USINT) - identifies axis (servo)

AXIS ERRSL Outputs: OK (BOOL) - execution completed without error
ERRS (WORD) - identifies errors

The ERRS output on the P_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error.

High byte Low byte

The programming errors listed in the tables below can be divided into two catego-
ries--those connected to the FAST QUE function and those connected to the mas-
ter/slave moves.

Note: The P_ ERRORS can also be viewed from the tune section of the Servo
setup program.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error. The “E” is what appears on the tune screen in Servo
setup.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

The first error listed (bit location 8 of low byte) is connected to the FAST_QUE
function. The remaining errors are connected to the master/slave moves.

Chapter 2 Function/Function Block Description 2-219

P_ERRORS

Programming errors (Low byte)

was too big to fit into 32 bits.

Bit Location Hex *
Error Description (low byte) Value
(Decimal)
87654 BR (in LDO)
The FAST axis in [The axis traveled more than 65,535 FU E 8080
the FAST_QUE [in the opposite direction of the value (32896)
function moved too |entered in DIST of the FAST_QUE
far in wrong direc- [function.
tion
Profile number not [Data for a profile move is not valid. E 8040
found (32832)
Master axis not This error can occur when using the E 8020
available FAST_QUE function or the functions (32800)
for master/slave moves (RATIO_GR,
RATIOSYN, or RATIOPRO). The
conditions that can set this bit:
1. Master axis or fast axis not initial-
ized
2. Interrupt rates different for axes
3. Axis at slave input is the same as
axis at master input in master/slave|
moves
(not used)
(not used)
(not used)
(not used)
Master start posi- [When the dimension for the lock posi- 8001
tion for lock on tion was converted to feedback units, it (32769)

2-220

Chapter 2 Function/Function Block Description

Programming errors (High byte)

P_ERRORS

Bit Location Hex*
Error Description (high byte) Value
(Deci-
mal)
6 54 32 |1 (inLDO)
This bit is set whenever any of the 8000
remaining 15 bits is set. (32768)
(not used)
(not used)
(not used)
Master axis beyond [The master axis is beyond its starting E 8800
start point point for a ratio move. (34816)
Slave axis beyond [The slave axis is beyond its starting E 8400
start point point for a ratio move. (33792)
Master distance not [When the master distance is converted E 8200
valid to feedback units, it is greater than 16 (33280)
bits.
Slave distance not [When the slave distance is converted to E 8100
valid feedback units, it is greater than 16 (33024)
bits.

*When more than one error occurs, the hex values are OR’d. For example, if 8100
and 8200 occur, the result is 8300 hex (33536 decimal)

Chapter 2 Function/Function Block Description

2-221

P_RESET

P RESET
Programming Reset Motion/ERRORS

p reseT | Imputs: EN (BOOL) - enables execution (Typically one-shot)
JEN oKl AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

Use the P_RESET function to reset any programming errors that occur.

2-222 Chapter 2 Function/Function Block Description

Q_AVAIL?

Q_AVAIL?
Queue Available? Motion/QUE
0 AVAIL? Inputs: EN (BOOL) - enables execution
E& 6K AXIS (USINT) - identifies axis (servo)
| I Outputs: OK (BOOL) - execution completed without error
ARIS QAVLE QAVL (BOOL) - queue available if set

The queue available function asks the question “Is a queue available for the speci-
fied axis?” If QAVL is set, then a queue is available. If not, no queue is available.

The Q_AVAIL? inquiry cannot be set until the servo loop is closed.

Chapter 2 Function/Function Block Description 2-223

Q_NUMBER

Q NUMBER
Queue Number Motion/QUE

0 NUMBER Inputs: EN (BOOL) - enables execution
JEN oK AXIS (USINT) - identifies axis (servo)
AXIS quElL Outputs:OK (BOOL) - execution completed without error

QUE (USINT) - the number of the move in the active
queue

The Q_NUMBER function gives the number of the move that is in the active
queue. A queue number is assigned to each move by the software when the move
function OK output is set. Queue numbers are assigned to the moves sequentially
from 1 to 255. A "0" at the QUE output indicates that there is no move in the
queue.

2-224

Chapter 2 Function/Function Block Description

RATIOCAM

RATIOCAM
Ratio Cam Motion/RATIOMOV
RATIOCAM Inputs: EN (BOOL) - enables execution (One-shot)
1N okl AXIS (USINT) - identifies slave axis (servo)
MAST (USINT) - identifies master axis
IS QUE CAM (ARRAY OF STRUCTURES) - points to the first ele-
MAST ment in the array of structures defining the profile to run
4 CAM NOTE: Each segment of the profile is entered in FUs. If you
1ssTR are entering equal master segments, then you enter a STRUC-
TURE WITH AN ARRAY here.
TUSTR SSTR (DINT) - Slave starting point in LU
10PN If SSTR is outside the range of -536,870,912 to 536,870,911
FU, the OK will not be set.

MSTR (DINT) - Master starting point in LU
If MSTR is outside the range of -536,870,912 to 536,870,911
FU, the OK will not be set
OPTN (WORD) - provides four options: repeat, ignore mas-
ter start, ignore slave start, equal master segments

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of the cam profile move for the
queue.

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types available:
1.A servo axis
(Range of numbers available to enter at MAST for servo axes is |
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2.A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides the
ability to generate velocity profiles. It is set up and monitored using the
S_CURVE function and/or variables 1, 6, 12, and 26 with the READ_SV
and WRITE_SV functions.

3.A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is 49
through 64.)
A digitizing axis must be set up with the Servo setup and tuning program.

Chapter 2 Function/Function Block Description 2-225

RATIOCAM

With RATIO_GR and RATIOSYN functions, the slave distance/master distance
ratio is constant.

With the RATIOCAM function, the slave distance/master distance ratio can vary in
steps or segments over the course of the profile as shown below in
Figure 2-9.There are 10 segments in the example profile.

NOTE: Each square equals 10 feedback units.

In each individual segment, you define the slave distance/master distance ratio by
determining how far the slave axis will move while the master axis covers its seg-
ment distance.

The master moves five units in each segment (NOTE: It is not required that the
master axis move the same distance each segment).

Figure 2-9. A ratiocam profile with 10 segments

2 Slawve Distance
E
e [area under the curve)
1 2 3 4 g E T b1) 10
Mazter Distance RREEL ol

An example of a profile where the master distance varies over the course of the
ratiocam profile is shown in Figure 2-10.

Figure 2-10. A ratiocam profile with 9 segments

Rario

ave Distance
[=wea under the cure)

Master Distance [——

An example of a profile where the slave axis is moving in a negative direction dur-
ing the last four segments of the ratiocam profile is shown in Figure 2-11.

2-226 Chapter 2 Function/Function Block Description

RATIOCAM

Figure 2-11. A ratiocam profile with 10 segments

Slave Distance
[aresunder the curve]

raster Distance

Ratia

AR Ol

The SSTR, MSTR, and OPTN inputs

When the SSTR input is used, it defines the slave axis position at the beginning of
the profile.

When the MSTR input is used, it defines the master axis position at the beginning
of the profile.

The OPTN input provides the following options.

Bit# Option Binary Value Hex Value
Entered

0 Repeat profile 00000000 0001
00000001

1 Ignore master start 00000000 0002
00000010

2 Ignore slave start 00000000 0004
00000100

3 Equal master segments* 00000000 0008
00001000

*The Equal master segments option can be used if the master distance for each
segment is the same. It provides a way of saving memory. Instead of entering an
array of structures to hold the profile data, you enter a structure with an array.
Information on equal master segments can be found at the end of this RATIOCAM
description.

If you want the profile to repeat continuously, bit O is set.

If you choose to ignore the master start (bit 1 set), any value you enter in MSTR
has no effect. The cam profile will begin executing as soon as the function is
called. During the first cycle, the slave axis may be located within the profile
depending on its current position and the value in SSTR.

Chapter 2 Function/Function Block Description 2-227

RATIOCAM

If you choose to ignore the slave start (bit 2 set), any value entered in SSTR has no
effect and the profile will execute at the beginning when the master axis reaches its
starting point (MSTR).

If you choose to ignore both MSTR and SSTR (bits 1 and 2 set), the profile will
execute immediately at the beginning from wherever the master and slave axes are
currently located.

The four examples that follow illustrate
what affect ignoring or using the SSTR and
MSTR inputs via OPTN have on what the
beginning position for each axis will be.

7

100

Three segments of a ratiocam profile -

(shown on the right) will be used in each Begnng <t
example. The master axis moves 100 units
in each segment. The slave axis moves 50,
75, and 100 units in the first, second, and
third segments respectively.

profle

e

a0
Hae D5 s

!

!

L

g |

100

M e Dlstancs

LUTRLTRLS:

Example 1 - Ignore SSTR and MSTR

Entering a 7 in the OPTN input sets all three bits. The value at the SSTR and
MSTR inputs (xxx) will be ignored. The profile will repeat, the master start will
be ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the axes lock on immediately and the
slave begins moving. The current positions of the axes become the positions at the
beginning of the profile.

RATIOCAM Current Axes Positions Portion of Cam Profile
Slae s
XX S5TR
: P l1on 1m0
X%% - MSTR Slave Axis @ 100
7 L OPTH Master Axis @ 400]
.
0
LA s Sae Ol fancs
Pos 100 | | |
4 W0 B0 W "?“
| |
wm o D m
Mzt Dl dance [——
2-228 Chapter 2 Function/Function Block Description

RATIOCAM

Example 2 - Ignore SSTR

The value in the SSTR input is ignored since a 5 has been entered in the OPTN
input setting bits O and 2. The profile will repeat, the master start will not be
ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the master must move from its current
position to 100 (the MSTR value) before lock on occurs and the slave begins mov-
ing. The positions at the beginning of the profile are the MSTR value for the mas-
ter axis and the current position (100) for the slave axis.

RATIOCAM Current Axes Portion of Cam Profile
Positions
XA S5TR e ol
‘ P 1o 1m0 et
00— MSTR Slave Axis @ 100 |
§ | OPTH Master Axis @ 50 10
75
"
Pt s Hane Ol e
P 100 | | |
00 o 0 a0 "?“
| |
wo Do T qm
Pk Dlsdance [——

Example 3 - Ignore MSTR

The value in the MSTR input is ignored since a 3 is entered in the OPTN input set-
ting bits 0 and 1. The profile will repeat, the master start will be ignored, and the
slave start will not be ignored.

When the RATIOCAM function is called, the slave is at 150 within the profile.
Lock on occurs immediately and the slave begins to move. The beginning posi-
tions of the axes are based on the value in SSTR (50) for the slave axis and the cur-
rent master position minus how far the master has moved in the profile (200 - 167)
or 33 for the master axis.

Chapter 2 Function/Function Block Description 2-229

RATIOCAM

RATIOCAM Current Axes Positions Portion of Cam Profile
50 - S5TR Sae s Current Poson o
Pior 1400 S s
xx | MSTR Slave Axis @ 150%* 10
3 - OPTH Master Axis @ 200

X
0
| |
wr oo U o
M def D fance

RR] - 155

Example 4 - Use both SSTR and MSTR

The SSTR and the MSTR inputs are not ignored. A 1 is entered in the OPTN input
setting bit 0. The profile will repeat, the master start will not be ignored, and the
slave start will not be ignored.

When the RATIOCAM function is called, the slave is at 250 within the profile.
The master axis is at 100 and must move to 425 within the profile to lock on. The
beginning positions of the axes at the start of the profile are based on the value in
the SSTR (50) and the MSTR (150) inputs .

RATIOCAM Current Axes Positions Portion of Cam Profile
Sane s
50 - S5TR P (100 C;r%ﬂ;:epﬁ;:tﬂ a1
160 | MSTR Slave Axis @ 250*
1 | OPTH Master Axis @ 100

g |
Mz def DIl dances

100

LLTRE A L

*Typically, the position of the slave axis in examples 3 and 4 must be within the
profile (> 50), unless rollover on position is on.

2-230 Chapter 2 Function/Function Block Description

RATIOCAM

Other characteristics of the ratiocam move include:

o Affects the slave axis only.

e The slave axis may be a master axis to another axis.

e More than one slave axis may be connected to the master axis.
e The master axis may be a servo, a time, or a digitizing axis.

o [f the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

o If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SYV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOCAM function.

¢ Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

e Starting points for the master axis and slave axis may be entered.
¢ Both the master and slave axes must be at the same interrupt rate.
e Registration can be used with the RATIOCAM function.

e The ratiocam function move will repeat continuously if the repeat option is
set until either the move is aborted or a REP_END function is called. With
the abort move function, the move will stop wherever it is in the profile.
With the repeat end function, the move will stop at the end of the current
profile.

A new ratio cam profile can then be called.

Chapter 2 Function/Function Block Description 2-231

RATIOCAM

e Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Slave axis beyond start point (P-error) [Slave start value out of range,
current slave position is not within profile, not ignoring slave start with
both queues not available (NOTE: Rollover on position will not be
used by the servo software to correct this condition.)]

4. Master axis beyond start point (P-error) [Master start value out of range
or master axis beyond start point]

5. Slave axis (AXIS) not initialized during setup

e An E-error will occur if there is a slave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ERRORS
function.

To ensure that this E-error will not occur, calculate the worst case for your
application as explained below. With feedback units equal to ladder units,
master distance/interrupt (velocity) X largest slave array value<32 bits

Creating a profile with an array of structures

NOTE

An array of structures is always used to create the ratio cam profile if
the master distance varies with each segment. It can also be used if
the master distance for each segment is equal as shown in the example
that follows. However, if you want to save memory, you can set op-
tion bit 3 and enter a structure with an array.

Each segment or step in the cam profile is defined by you in PiCPro by creating an
array of structures in the software declarations table. (More information on arrays
and structures can be found in the Software Manual.)

There are two members of the structure--the master distance and the slave dis-
tance. These distances are entered in feedback units. Each element in the array
represents the master distance and the slave distance for one segment of the cam
profile.

In order to create the array of structures, you need to know:

1. The master distance and the slave distance for each segment. The table on the
left that follows contains this information for the example in Figure 2-9.

2. The number of segments the profile contains.

2-232 Chapter 2 Function/Function Block Description

Note:

RATIOCAM

Add “1” to this number to calculate the length of the array you will

declare. For the example which contains 10 segments, the length of the
array is “11” as seen in Figure 2-9. The servo software uses the first ele-
ment in the array to determine the size of the profile.

The table below on the right contains the array information for the example in
Figure 2-9.

DISTANCE DATA FOR EXAMPLE ARRAY DATA FOR EXAMPLE
PROFILE PROFILE
Segment # | Master Slave Element | .Master (FU) | .Slave (FU)

0 +11%* +0*

1 50 100 1 +50 +100

2 50 200 2 +50 +200

3 50 350 3 +50 +350

4 50 450 4 +50 +450

5 50 550 5 +50 +550

6 50 450 6 +50 +450

7 50 350 7 +50 +350

8 50 250 8 +50 +250

9 50 150 9 +50 +150
10 50 50 10 +50 +50

*See note that follows.

NOTE

Remember that the first element (0) in the array determines the size
of the cam profile.

The .MASTER line of the first element must contain the number of
segments in the profile plus one.

It is not necessary to enter any value in the SLAVE line. It will de-
fault to zero.

By entering the name of the array and the first element at the CAM input, the
desired profile can be accessed by the RATIOCAM function.

Chapter 2 Function/Function Block Description

2-233

RATIOCAM

CAUTION

Never attempt to change the values in the array elements while the
move is being executed.

The example below shows how the RATIOCAM function can be entered in your
LDO.

STARTCAM RATIOCAM
iPi EN OK -
1— AXIS QUE——QUE 1
2—— MAST
RCI1 (0)— CAM
0—{ SSTR
0—— MSTR
7—— OPTN
STOP-CAM REP_END
;Pi EN OK [
1+ AXIS

2-234

Chapter 2 Function/Function Block Description

RATIOCAM

Equal Master Segments

If the master distance for all the segments in the RATIOCAM profile is the same,
you can define the profile in the software declarations table with a structure with
an array as shown below in order to save memory.

Structure with an array (if master distance for all segments is equal)

RC1 STRUCT
SIZE INT
MASTER INT
SLAVE INT (0..9)

In this structure with an array,
SIZE is the number of slave segments in the profile plus 2
.MASTER is the master distance for all segments

.SLAVE is an array holding the slave distances for each segment (In this
example, there are 10 slave segments.)

Bit 3 of the option bits must be set when you use this structure with an array.

The array of structures used in the previous examples (shown below) must be used
if the master distance for all the segments varies in the RATIOCAM profile. It can
also be used when the master distance for each segment is equal but it uses more
memory than using the structure with an array above.

Array of Structures (if master distance for all segments varies)

RC1 STRUCT (0..10)
.MASTER INT
SLAVE INT

Chapter 2 Function/Function Block Description 2-235

RATIOPRO

RATIOPRO

Ratio Profile

Motion/RATIOMOV

ratiopro | Imputs: EN (BOOL) - enables execution (One-shot)

EN okl AXIS (USINT) - identifies slave axis to move (servo)
AXIS QUEL MAST (USINT) - identifies master axis

MAST PNUM (USINT) - profile number to be run

PNUM MSTR (DINT) - master start position (entered in LU)
MSTR RPTP (BOOL) - repeat profile

RPTP RVAL (BOOL) - reversal allowed

RVAL BKPR (BOOL) - back to back profiles

BKPR Outputs:OK (BOOL) - execution completed without error

QUE (USINT) - indicates the number of the ratiopro
move for the queue

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types avail-
able:
1.A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2.A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3.A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)
A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

2-236

Chapter 2 Function/Function Block Description

RATIOPRO

Ratiopro function summary

The ratio profile function enables the slave axis to start a ratio move where the
slave axis moves at a variable ratio relative to the position of an independent mas-
ter axis.

When the master axis (MAST) passes through the master start position (MSTR) in
the positive direction, the slave axis will start executing a profile (PNUM). This
profile has been created by you using the PiC Profile program as explained in
Chapter 7.

To run the profile repeatedly, RPTP is set.
To stop a repeating profile the REP_END function is used.

If it is desirable to have the slave axis follow the master axis when the master
reverses direction, then set reversal allowed (RVAL).

If it is desirable to have two different profiles run back to back, set back to back
profile (BKPR). When two profiles are run back to back, the last segment of the
profile in the active queue and the first segment of the profile in next queue is
dropped.

The execution of the function will not be OK if any of the following occurs:

¢ Aninvalid input is entered.

e When the servo software converts your axis units to feedback units in order
to perform its calculations, the number is out of range.

e The queues are full.

A number for the move (QUE) is assigned by the software to identify the move for
the queue.

Profile number

This is the number of the profile made by you using the PiC Profile program that
you want this move to execute. The number assigned to PNUM must be from 1 to
18.

Figure 2-12. User-defined profile

Chapter 2 Function/Function Block Description 2-237

RATIOPRO

IMPORTANT

Be sure to follow the two steps listed below in the order listed when
using profiles:

1. Initialize the servo data.

2. Initialize the profile data by including the profile function in
your LDO before calling the RATIOPRO function that uses
it.

Repeating

Enter the position of the master at which the slave will lock onto the master and be
synchronized. This will be handled during the first segment of the profile.

For example, if you know that the master axis should be at 10,000 units at the end
of the first segment and also it moves 5000 units in that first segment, then the
value entered at MSTR would be 5000 (10,000 - 5000 = 5000).

The slave has to be moved into position before the RATIOPRO move begins. In
this example, you know that the slave should be at 8000 at the end of the first seg-
ment and that it moves 2500 units in the first segment. Then you would use the
position move function to move the slave axis to 5500 (8000 - 2500 = 5500).

profiles

If you want the profile you are using in the RATIOPRO move function to run con-
tinuously, enter a “1” at the RPTP input. What happens when RPTP is set is shown
in Figure 2-13. Note that the first and last segments are dropped when the profile
repeats.

When using repeating profiles, it is important to have the ending ratio of the first
segment match as close as practical the starting ratio of the last segment. This pre-
vents any large steps for the slave axis. This was achieved by dividing segment 4
and 5 in Figure 2-13. If this was not a repeating profile, segments 4 and 5 could
have been one segment.

2-238

Chapter 2 Function/Function Block Description

RATIOPRO

Figure 2-13. Repeating profile

Portion of profile that will be repeated
when repeat profile is selected.

First segment Last segment

The first segment must begin at zero.The last seg-
ment must end at zero. However, if the profile
will be repeated continuously in your application,
it will not include the first and last segment.

To stop repeating profiles, enter a REP_END function.
Reversal of the slave axis allowed

If the RVAL input is set, the slave axis will follow the master axis if it reverses
direction during the profile.

The slave will follow the master in a reverse direction until it reaches the MSTR

dimension. At that point, the slave will stop and the two axes are no longer syn-
chronized. m

If the RVAL input is not set, the slave axis will stop and wait for the master to
move in a positive direction again. It will begin to move forward again when the
master axis position calls for it.

If the master axis reverses back to the MSTR dimension, synchronization is lost.

Chapter 2 Function/Function Block Description 2-239

RATIOPRO

Back to back profiles

It is possible to run two profiles back to back if the BKPR inputis setto a “1.” The
second profile is called in a second RATIOPRO function. When this is done, the
last segment of the first profile and the first segment of the second profile are
dropped as shown below.

Figure 2-14. Back to back profiles

Prafile 1

The lazt zegment from profile 1 and the first segment
from profile 2 are dropped when back o0 back profiles
are nih.

F——— Prfie { Profle 2 ———|

Profiles 1 and 2 run back to back

PATE |

2-240 Chapter 2 Function/Function Block Description

RATIOSCL

RATIOSCL

Ratio Scale

Motion/MOVSUP

ratoscL | Imputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies the slave axis associated
with the scaling (servo)

{AXIS
Iy NUM (INT) - numerator of the scale factor
1oen DEN (INT) - denominator of the scale factor

NOTE: Range for NUM and DEN inputs is less than
70PN +32767 FU.

OPTN (WORD) - set the LSB to zero for slave scaling;
set the LSB to one for master scaling

NOTE: Master and slave scaling are independent. To
scale both, the function must be called twice.

Outputs: OK (BOOL) - execution complete without errors

The RATIOSCL function allows you to scale the slave and/or master axis in
RATIOCAM and RATIOSLP, and the master axis in RATIO_RL moves. The pro-
files generated by these moves will be scaled by the amount defined in the numer-
ator (NUM) and denominator (DEN) inputs to the RATIOSCL function. To turn
off scaling, call this function again with equal numbers entered in NUM and in
DEN.

Ratio move functions called before calling the RATIOSCL function are not
affected by the scaling. Only the ratio move functions called after the RATIOSCL
function will be scaled by the value in NUM and DEN. Scaling will be in effect on
any RATIOCAM, RATIOSLP, and RATIORL move in your program.

Scaling resolution is maintained throughout the profile. An example of the effect
this has is if you have an original profile with equal positive and negative dis-
tances, then the scaled profile will also have equal positive and negative distances.

Chapter 2 Function/Function Block Description 2-241

RATIOSCL

To change the scaling of an already repeating ratio move, follow these steps in
order.

1. Call the RATIOSCL function with a new ratio. This will change the scaling for
subsequent moves.

2. (all the ratio move again. This will queue the move with the new scaling.

3. Call the REP_END function. This will end the first move and blend into the
second profile with the new scaling.

An overflow in the calculations will cause an E-stop error to be set. Overflows can
be caused by a profile segment and/or scaling that is extremely large.

The scaling does not affect the default gear ratio that can be used with the RATIO-
SLP and RATIO_RL functions. Use the NEWRATIO function to change the
default gear ratio value.

It is important to remember that the scaling affects the master/slave relationship,
not the individual axes. Multiple slave axes following the same master can each
have different master scaling.

With slave scaling, the slave distance is multiplied by the scaling factor. With
master scaling, the master distance as viewed by the slave is multiplied by the scal-
ing factor as it occurs. This is illustrated by the examples for a RATIOCAM and a
RATIOSLP move that follow.

2-242

Chapter 2 Function/Function Block Description

RATIOSCL

Ratio Cam Profile

The RATIOCAM move with no scaling is shown on the left. When you enter a 2/
1 slave scaling factor as shown in the center, each original slave distance is multi-
plied by the scaling factor of 2/1. When you use a 2/1 master scaling factor as
shown on the right, the slave axis views the actual master travel as multiplied by
the scaling factor of 2/1 as it occurs; i.e., a master travel of 50 counts is actually the
100 counts of the profile.

RatioCam RatioCam RatioCam
No scaling Effective profile with slave Effective profile with
scaling (2/1) master scaling (2/1)
5
5
5 400
5 5 300 3 200
5 3 200 200 5 [150
150

M 100 100 100 M 100 100 100 M50 5050

Chapter 2 Function/Function Block Description 2-243

RATIOSCL

Ratio Slope Profile

The RATIOSLP move with no scaling is shown on the left. When you enter a 2/1
slave scaling factor as shown in the center, each original slave distance is multi-
plied by the scaling factor of 2/1. When you use a 2/1 master scaling factor as
shown on the right, the slave axis views the actual master travel as multiplied by
the 2/1 scaling factor as it occurs; i.e., a master travel of 50 counts is actually the
100 counts of the profile.

Ratio Slope Ratio Slope Ratio Slope
No scaling Effective profile with slave Effective profile with
scaling (2/1) master scaling (2/1)
4.0 4.0
2.07 2.0 2.0
5 3 3 5
1.04 5 5 1.0 300 | 400 | 200 104120 5
3 201 5
150 | 200 | 100 10
M 100 100 100 b 100 100 100 b SO S0 50

2-244 Chapter 2 Function/Function Block Description

RATIOSLP

RATIOSLP

Ratio Slope Motion/RATIOMOV

rat1osLp| Imputs: EN (BOOL) - enables execution (One-shot)

1N ok L AXIS (USINT) - identifies the slave axis (servo)

IAXIS QUEL MAST (USINT) - identifies the master axis the slave

st axis follows

lsipE SLPE (ARRAY OF STRUCTURES) - data to define the
profile

{MSTR) .)
MSTR (DINT) - Master starting point entered in LU

10PTN If MSTR is outside the range of -536,870,912 to

536,870,911 FU, the OK will not be set.

OPTN (WORD) - provides two options: repeat and
ignore master start

Outputs:OK (BOOL) - execution complete without errors
QUE (USINT) - number of the RATIOSLP move for the

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

Chapter 2 Function/Function Block Description 2-245

RATIOSLP

The RATIOSLP function is similar to the RATIOPRO and RATIOCAM functions.
It allows a ratio to be established between a slave axis and a master axis which var-
ies over the course of the profile. The table below compares the three types of

moves.
Comparison of RATIOSLP, RATIOCAM and RATIOPRO
RATIOSLP RATIOCAM RATIOPRO
Setup |Array of structures in |Array of structures in lad- |Axis profile setup with
ladder der PiCPFL editing program
Structure members Structure members
Master distance Master distance
Slave distance Slave distance
Slope
Starting ratio
Flags
Limit of M/S [16-bit (FU) 16-bit (FU) 32-bit (FU)
distances/
segment
Profile |[Ratios can change lin- [Ratio is constant within [Ratios can change linearly
ratios |early within each seg- |each segment. within each segment.
ment.
S | A AT
Ending ratio of previous
Ending ratio of previous segment must equal start-
segment does not have to ing ratio of next segment.
equal starting ratio of
next segment.
Default [Has a default ratio of 1:1|No default ratio No default ratio
ratio (Can change default with
NEWRATIO function)
2-246 Chapter 2 Function/Function Block Description

RATIOSLP

With the RATIOSLP function, the slave distance/master distance ratio can vary
linearly in segments over the course of the profile.

The data required for creating a slope profile is entered in an array of structures at
the SLPE input of the RATIOSLP function. More information on this is covered in
the sections on the RATIOSLP structure members and Creating an array of struc-
tures.

The master starting point is entered in the MSTR input. The profile will begin exe-
cuting at the beginning with the master and slave axes locked on when the master
reaches its starting position.

Note: If the ratio slope move is queued with no master starting position and the
master axis is moving in the opposite direction of that indicated in the pro-
file segments, the direction of the master will have to be reversed and the
accumulated distance covered before the move will execute.

The OPTN input provides the following options:

Option Binary Value Hex Value
1. Repeat profile 00000000 00000001 0001
2. Ignore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit O is set. If bit O is not set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered in
MSTR has no effect. The slope profile will begin executing as soon as the func-
tion is called.

Other characteristics of the ratio slope move include:

Affects the slave axis only.

The slave axis may be a master axis to another axis.

More than one slave axis may be connected to the master axis.

The master axis may be a servo, a time, or a digitizing axis.

If the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

Chapter 2 Function/Function Block Description 2-247

RATIOSLP

If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOSLP function.

Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

An individual segment of the profile may pass through zero. Segment 3 in
the profile on the left passes through zero to cover the slave distance
(shaded areas). The profile on the right uses two segments to accomplish
the same thing.

Segment passing through zero Two separate segments

RRIE 53]

The starting point for the master axis may be entered. If the move is queued
with no master start and the master axis is moving in the opposite direction
as defined by the profile segments, the distance will be accumulated. This
distance must be recovered before motion will start.

Both the master and slave axes must be at the same interrupt rate.
Registration can be used with the RATIOSLP function.

The profile can be changed on the fly by queuing up a new ratio slope move
and aborting the current one. Any remainder from the previous move is
cleared.

The default ratio of the function is executed whenever an empty segment is
encountered and/or the flag is set. The default ratio is 1:1. This can be
changed with the NEWRATIO function.

NOTE: It is possible to set up a default ratio with no motion on the slave
axis by entering a 0 in the SDST input of the NEWRATIO function.

The ratioSLP function move will repeat continuously if bit O of the OPTN
input is set until either the move is aborted or a REP_END function is
called. With the abort move function, the move will stop wherever it is in
the profile. With the repeat end function, the move will stop at the end of
the current profile.

2-248

Chapter 2 Function/Function Block Description

RATIOSLP

e Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Master axis beyond start point (P-error) [Master start value out of
range or master axis beyond start point]
4. Slave axis (AXIS) not initialized during setup

e An E-error will occur if there are calculation errors during runtime. The hex
code 0004 indicates this error on the ERRS output of the E_ERRORS func-
tion.

Chapter 2 Function/Function Block Description 2-249

RATIOSLP

RATIOSLP structure members

The five members of the structure required for the array of structures at the SLPE
input are described below.

MASTER INT The MASTER member specifies the distance (in
(master distance) Range -32768 to feedback units) the master travels during a seg-
32767 FU ment. The values of the master distance entered

in feedback units must all be the same sign for
each segment.

SLAVE INT The SLAVE member specifies the distance (in
(slave distance) Range -32786 to feedback units) the slave travels while the master
32787 FU travels its distance during a segment. The values

of the slave distance entered in feedback units can
be either sign.

SLOPE DINT he SLOPE member specifies the slope of the seg-
(slope) Range -2147483648 ment.
t0 2147483647 scaled
by 224
(Range -127 to 127
unscaled)

SRATIO DINT The SRATIO member specifies the starting ratio
(starting ratio) Range -2147483648 of the segment.
t0 2147483647 scaled
by 9
(Range -127 to 127
unscaled)

2-250 Chapter 2 Function/Function Block Description

RATIOSLP

FLAGS DWORD (32 bits; 0-31)
(flags)

31302928 272625 2423222120191817 1615 141312 1110 9 8 7 6 5 4 3 2 1 0

Bit 1:

0 = copy a 0 to bit O after segment
execution;

1 = copy a 1 to bit O after segment
execution

Bit 0:
0 = execute valid data for segment;
1 = execute default ratio

If bit is set to 0, the segments of the slope profile will execute in sequence as
entered in the array of structures.

If bit O is set to 1, the segment is considered empty. The default ratio will be in
effect until bit O is set to 0 and a valid slope profile data is entered in the array
of structures.

NOTE: The default ratio of the RATIOSLP function is 1:1. The NEWRATIO
function allows you to change the default to another value.

As each segment completes its execution, whatever value is in bit 1 is copied
into bit 0.

All remaining bits (2-15) should be set to zero.

Chapter 2 Function/Function Block Description 2-251

RATIOSLP

Working with the FLAGS member

The FLAGS member of the structure provides the capability of using the default
ratio with the RATIOSLP function. Once the default ratio is running it is possible
to use the array of structures like a rotary queue with data moving in from the lad-
der and out via servos in sequence.

Bit1 Bit0 Example

0 0 [With both bits set to zero, the RATIOSLP function will

execute like RATIOCAM. If repeat is set on the OPTN
input, the profile will repeat continuously. \/l\ /]\
| ~

1 1 [With both bits set to one, the RATIOSLP function will
execute at the default ratio until the ladder places datain ~ Default
the array of structures and clears bit 0. Ratio

L T,

When each segment of the profile completes its execution, whatever is in bit 1 is
copied into bit 0.

NOTE: Whenever the default ratio is used, set the reversal not allowed flag using
variable 21 of the WRITE_SV function before calling the RATIOSLP function.

2-252 Chapter 2 Function/Function Block Description

RATIOSLP

Creating a profile with an array of structures

Each segment in the slope profile is defined by you in PiCPro by creating an array
of structures in the software declarations table. (More information on arrays and
structures can be found in Chapters 2 and 3. See also the RATIOCAM function.)

There are five members of the structure--the master distance, the slave distance,
the slope, the starting ratio, and flags. Each element in the array represents these
five items for one segment of the slope profile.

In order to enter the data for the array of structures, you need to know:
1. The master distance, the slave distance, the slope, the starting ratio, and the
ending ratio for each segment.

2. Whether or not you want to turn the array of structures into a rotary queue
and make use of default ratio capability. This is done with the FLAGS
member of the structure.

3. The number of segments the profile contains. NOTE: Add "1" to this num-
ber to calculate the length of the array to determine the size of the profile.

Chapter 2 Function/Function Block Description 2-253

RATIOSLP

Example

A simplified example of a ratio slope profile is shown in Figure 2-15. It has six
segments.

Figure 2-15. Slope profile

£
|

& |

Ratio e Dietner
=

=)

haster Distance
=y | {10y | LI | ey | =y | Lt |

MOTE E2ch duslon on e horlzoni ads equals 100unlt.

Each doslon on hewerical ads equals unil ARl 4]

For each individual segment, you determine how far the slave axis will move while
the master axis covers its segment distance. This establishes the slave distance/
master distance ratio for the segment. You also need to know the starting ratio of
each segment. With this information, an ending ratio can be calculated. Once this
is known, the slope for the segment can be calculated.

2-254 Chapter 2 Function/Function Block Description

RATIOSLP

The following steps illustrate how to determine this data for one segment from the
profile as shown in Figure 2-16.

Figure 2-16. Segment 3 of the ratio slope profile

o ER- SF
-
shring
A0SR e
o
E-' by
& ER- o S
g
=
X
R der s dancee ()
AR]

Step1. Master Distance - The master distance for segment 3 is 500 units.

Step 2. Slave Distance - The slave distance is determined by calculating the area
under the curve. This is 4000 units.

Step 3. Starting Ratio - The starting ratio frozgn the vertical axis is 6.
The starting ratio must be scaled by 2 or 16777216 before entering the
array element.

6 x 224= 100663296

Step4. Ending Ratio - The ending ratio is calculated from the following formula:

25 oo (2X4000)
ER = 22~ SR= (—500 6)_ 10

where:

ER = ending ratio

S = slave distance
M = master distance
SR = starting ratio

Note: The ending ratio is needed in order to calculate the slope. It is not entered
into the structure.

Chapter 2 Function/Function Block Description 2-255

RATIOSLP

Step 5. Slope - The slope is calculated from the following formula.

_ ER-SR
Slope = v
10 -8
Slope = 500
Slope = .004

The slope must be scaled by 2" or 16777216 before entering in the array element.

0.004 x 224 = 67109

DATA REQUIRED FOR RATIO SLOPE PROFILE
Segment # 1 2 3 4 5 6
Master 500 1000 500 500 500 500
Slave 1500 6000 4000 3000 2500 2500
Slope 012 0 .008 -.008 .008 -.008
Starting 0 6 6 8 3 7
Ratio
(Ending (6) (6) (10) 4) (7 3)
Ratio*®)

*The ending ratio is needed in order to calculate the slope. It is not entered into the
structure.

2-256 Chapter 2 Function/Function Block Description

RATIOSLP

DATA TO ENTER INTO ARRAY OF STRUCTURE
Element #| 0 1 2 3 4 5 6
Master 7 500 1000 500 500 500 500
Slave 0 | 1500 6000 4000 3000 2500 2500
Slope 0 | 67108 0 134218 -134218 134218 -134218
(Scaled)
Starting 0 0 100663296 | 100663296 |134217728| 50331648 | 117440512
Ratio
(Scaled)
Flag 0 0 0 0 0 0 0

IMPORTANT

Remember that the first element in the array determines the size of the

profile.

The .MASTER line of the first element must contain the number of
segments in the profile plus one.

It is not necessary to enter any value in the remaining lines. They will

default to zero.

By entering the name of the array and the first element at the SLPE input, the
desired profile can be accessed by the RATIOSLP function.

CAUTION

Never attempt to change the values in the array elements while the
move is being executed unless the rotary queue is in effect.

Chapter 2 Function/Function Block Description

2-257

RATIOSYN

RATIOSYN
Ratio Synchronization Motion/RATIOMOV

rarrosyn] Imputs: EN (BOOL) - enables execution (One-shot)
1N okl AXIS (USINT) - identifies the slave axis which will
move at a constant ratio depending on the master axis
{AXIS QUEF
movement (servo)
UAST MAST (USINT) - identifies the master axis that the
18DST slave axis is to follow
el SDST (DINT) - (slave distance) indicates the distance
4SSTR the slave should move for each MDST distance
{MSTR (entered in LU%)

MDST (DINT) - (master distance) indicates the dis-
tance the master axis will move during each SDST
(entered in LU¥)

*NOTE: The range of values entered in SDST and
MDST is -536,870,912 to 536,870,911 FU excluding 0.
If you are using ladder units be sure they do not exceed
this range when converted to feedback units.

SSTR (DINT) - Slave starting point entered in LU
If SSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

MSTR (DINT) - Master starting point entered in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of ratio syn move for queue

The ratio syn move function, like the ratio gear move, establishes a constant ratio
between a slave axis and a master axis.

In addition, a positional relationship between the master and slave is defined. The
master starting point (MSTR) and the slave starting point (SSTR) are entered. The
sign on the number entered in MDST dictates the direction the axis must approach
its starting point.

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

slave distance

=———<" the soft-
master distance

If there is a remainder as a result of the software division,

ware includes it in its calculations preventing any drifting from the desired ratio.

2-258 Chapter 2 Function/Function Block Description

RATIOSYN

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis

(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

The ratiosyn move is similar to the ratio
gear move in that the gears will move at a

A. Mechanical Representation constant ratio. In addition, a positional
relationship between the master and slave
axes is established.

The profile of the move would look like
that shown to the right of example C.
Note that the A, B, and C points corre-
spond to the gear positioning in diagrams
A, B, and C on the left.

When the function is executed (A), the
master is in motion. From A to B in the

profile, the positional relationship is
established.

Master Slave

Chapter 2 Function/Function Block Description 2-259

RATIOSYN

At B, the axes move together and are locked
on. The slave axis began to move at a point

B. that ensured that it will reach SSTR when the
master axis reaches MSTR.

In the profile, the shaded area represents the
distance the slave moved in anticipation of
, arriving at SSTR when the master reached
MSTR. It represents the difference between
A SSTR and the actual position of the slave. The
slave starts out at the constant ratio.
When the axes arrive at C, their positions are

aligned as shown in C below left. This posi-
tional relationship will be maintained through-
out the move.

Master Slave

Ratio Syn Profile

Constant rakio

5:-&7) 1 P

bsT Pasitional q

2| relationship Slavve Distance

=3 established. \N
l l l l
| | | + | |

A B L

Move started Lock on MSTR
haster Distance

Master Slave RRISE G190

2-260 Chapter 2 Function/Function Block Description

RATIOSYN

Some characteristics of the ratio syn move include:

o Affects the slave axis only.

e The slave axis may be a master axis to another axis.

e More than one slave axis may be connected to the master axis.
e The master axis may be a servo or a digitizing axis.

e If the master axis reverses direction, the slave will follow.

¢ Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has the same affect as making both signs posi-
tive.)

e Starting points for the master axis and slave axis are entered. (See the
explanation that follows for conditions necessary to ensure that a ratio syn
move will begin.)

e Both the master and slave axes must be at the same interrupt rate.
e The ratio can be changed on the fly by using the NEWRATIO function

Master and slave axes starting points

For a RATIOSYN move to occur, the slave axis must start at a point so that when
the master axis arrives at the value entered in MSTR, the slave axis will be at the
value entered at SSTR. The following guidelines ensure that this will happen.

e Both axes must be below their respective starting points.

e The master axis must be moving in the correct direction to reach its starting
points. Direction is defined by the sign of the number entered in MDST.

e The master axis must be a greater distance from its MSTR position than the
slave axis is from its SSTR position.

When you enter a value in SSTR, the software uses that information plus what it
knows about the slave’s actual position to calculate the ratio syn starting position
for the master. Several examples of how the master start is calculated follow. The
first three follow the guidelines listed above.

Examples 4 and 5 show the effect of rollover on position in allowing the guidelines
to be “stretched.”

Chapter 2 Function/Function Block Description 2-261

RATIOSYN

Example 1 - Slave axis at SSTR

In this example:
SDST

The slave/master ratio is 1:1. A slave starting point
= 1 (SSTR) of 100 and a master starting point (MSTR) of

MDST _ 1 200 has been entered. The slave axis is at SSTR. In
_ this case, the calculated master start will equal the
SSTR = 100 olue at MSTR.
MSTR = 200
ms (calculated master start) = MSTR
SC (slave current position) = 100 When the master zxis reaches 200, the slave axis
ROP (rollover on position) = Off begins to move. The axes are locked and synchro-

nized.

Figure 2-17. Slave axis at SSTR

This symbol represents
% lock on for the axes.

Slawe
CUFEhE
po=ition

Master Axis

BB 0Ea]

2-262

Chapter 2 Function/Function Block Description

RATIOSYN

Example 2 - Slave axis below SSTR

In this example: The slave/master ratio is 1:1, the slave start is 100

SDST = 1 and a master start is 200. The slave’s current position
MDST - 1 1is 25. The calculation is:

SSTR = 100 ms = MSTR - (SSTR - SC)

MSTR = 200

ms = 200 - (100 - 25)
ms = 125

‘When the master axis reaches 125, the slave axis
will begin to move toward 100 so that when the mas-
ter reaches 200 the slave will be at 100.

SC (slave current position) 25
ROP (rollover on position) = Off

Figure 2-18. Slave axis below SSTR

This symbol represents
@ lock on for the axes.

Slamwe
GUFERt
position

— —r

| [L v b
T [] 1|
o 23 100 200 300 400

Slave Axis
hastar axis

_____ % — —

I I | I A AN NN NN (NN AN N N
T [r [] & 1]
0 100 125 200 a00 400

Mascter Axis
RGO

Chapter 2 Function/Function Block Description 2-263

RATIOSYN

Example 3 - Slave/master ratio in not 1:1

In this example: Rotary axes will be used to show a ratio of 2:1. The
SDST = 2 slave start is 100 and the master start is 200. The
MDST _ 1 slave’s current position is 25. The calculation is:
SSTR = 100 ms = (SSTR—-SC)xMDST
MSTR = 200 SDST

_(100-25)x 1
SC (slave current position) = 25 ms =)
ROP (rollover on position) = Off

ms = 37.5

ms = MSTR —ms

ms = 200-37.5

ms = 162.5

When the master axis reaches 162.5, the slave axis
will begin to move to 100 so that when the master
reaches 200 the slave will be at 100.

2-264 Chapter 2 Function/Function Block Description

RATIOSYN

Figure 2-19. S/M ratio not 1:1

This symbol represents
lock on for the axes.

270
270

=,

'-\.f-lli.l.

180

an
ARz i3]

In any of these examples, it would be impossible to perform a ratio syn move if the
slave axis was past SSTR or the master axis was past the calculated master start
position.

However, if rollover on position is applied to the master and/or slave axis, it may
still be possible to lock on and synchronize.

Chapter 2 Function/Function Block Description 2-265

RATIOSYN

Example 4 - Rollover on position on the slave axis; the slave is past the SSTR

In this example: The current slave position is past its SSTR value.
SDST = 1 Without using rollover on position, the ratio syn
MDST = 1 move could not be started.

SSTR = 50 With rollover on position set at 100, the calculated
MSTR = 200 master start is as follows:

ms = MSTR - (SSTR - SC + ROP)

SC (slave current pos%t%on) = 75 ms = 200 - (50 - 75 + 100)
ROP (rollover on position) = 100
(slave) ms = 125
Figure 2-20. ROP on slave; slave past SSTR
| | | | L1 | | |
I I IR N N B
Actual
position —» 0 300 <00
Rollover on 1] 100
position 100 0 100
Slave Axis
Mastar axs
————— — —¥
1 1 1 I N A N N NN NN I N
N N N N N N N N N E N I N
1] 100 125 200 300 <00
Master Axis
RREE Ea|

2-266 Chapter 2 Function/Function Block Description

RATIOSYN

Example 5 - Rollover on position on the master axis; master is past the MSTR

In this example: The current master position is past its MSTR
SDST _ 1 value. Without using rollover on position, the
MDST _ 1 ratio syn move could not be started.
SSTR = 100 With rollover on position set at 200, the calculated
MSTR = 75 master start is as follows:

. ms = (MSTR - MC + ROP) - (SSTR - SC)
SC (SlaVe current pOSltl?l’:l) = 50 ms = (100 _ (100 _ 50))
MC (master current position) = 175 ms =50
ROP (rollover on position) = 200

(master) Since the master is already past 50, A ROP is
added to ms to ensure start.

Figure 2-21. ROP on master; master past MSTR

Actual 400
pasition
Follover an 1 50 7S 200
position 200 —* | |
Master Axis [y~
NOTE

Master and slave offsets will also have an effect on the starting of a
ratio syn move. They would be added into (or subtracted out of) the
calculations with MSTR and SSTR respectively.

Chapter 2 Function/Function Block Description 2-267

RATIO_GR

RATIO GR

Ratio Gear

Motion/RATIOMOV

RATIO_GR| ' Imputs:

HEN OKF
4 AXIS QUE
{MAST
4 SDST
{MDST

Outputs:

EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies the slave axis which will move
at a constant ratio depending on the master axis move-
ment. (servo)

MAST (USINT) - identifies the master axis that the slave
axis is to follow (See master axis note below.)

SDST (DINT) - (slave distance) indicates the distance the
slave should move for each MDST distance (entered in
LU*)

MDST (DINT) - (master distance) indicates the distance
the master axis will move during each SDST (entered in
LU*)

*NOTE: The range of values entered in SDST and MDST
15 -536870912 to +536870911 FU (excluding O for the
MDST input.) If you are using ladder units, make sure

they do not exceed this range when converted to feedback
units.

OK (BOOL) - execution completed without error
QUE (USINT) - number of ratio gear move for queue

The ratio gear move function establishes a constant ratio between a slave axis
(AXIS) and a master axis (MAST).

NOTE: The master axis cannot be entered in AXIS. This will generate a P-error if

attempted.

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

If there is a remainder as a result of the software division of slave distance divided
by master distance, the software includes it in its calculations preventing any drift-
ing from the desired ratio.

See also RATIOSYN.

2-268 Chapter 2 Function/Function Block Description

RATIO_GR

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes is
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

A ratio gear move can be represented
mechanically by two gears as shown on
A. Mechanical Representation the left. The master gear is in motion.

When the function is executed, imagine
the gears moving together as shown in B.
The slave begins its motion from what-
ever position it is at and follows the mas-
ter at a constant ratio until the move is
ended.

The profile of the move would look like
that shown to the right of example B.

Master Slave

Chapter 2 Function/Function Block Description 2-269

RATIO_GR

Ratio Gear Profile
B.
Constant ratio
>
SDST\ 8 |
MDST /] & Slave Distance
X T A I N B
T T T
Master Distance
Master Slave

Some characteristics of the gear ratio move include:

o Affects the slave axis only.

e The slave axis may be a master axis to another axis.

e More than one slave axis may be connected to the master axis.
e The master axis may be a servo or a digitizing axis.

e If the master axis reverses direction, the slave will follow.

¢ Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has the same affect as making both signs posi-
tive.)

¢ No starting or stopping points are entered.
¢ Both the master and slave axes must be at the same interrupt rate.
e The ratio can be changed on the fly by:

¢Calling the NEWRATIO function

eQueuing up a new ratio move and aborting the current one.
Any remainder from the previous move is cleared.

e Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master and
slave interrupts different, or the same axis entered as master and slave]

2. Slave distance not valid (P-error)

g

Master distance not valid (P-error)

4. Slave axis (AXIS) not initialized during setup

2-270 Chapter 2 Function/Function Block Description

RATIO_GR

e An E-error will occur if there is a slave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ERRORS
function.

Chapter 2 Function/Function Block Description 2-271

RATIO_RL

RATIO_RL

Ratio Real

Motion/RATIOMV

RATIORL | Imputs:

HEN oKk
{AXIS QUE
{MAST
4 REAL
{MSTR
4{0PTN

Outputs:

EN (BOOL) - enables execution (One-shot)
AXIS (USINT) - identifies slave axis (servo)
MAST (USINT) - identifies master axis

REAL (ARRAY OF STRUCTURES) - points to the
first element in the array of structures defining the pro-
file to run

MSTR - (DINT) - master starting point of the move
entered in LU

If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

OPTN - (WORD) - provides two options: repeat and
ignore master start

OK (BOOL) - execution completed without error

QUE (USINT) - number of real profile move for the
queue

The RATIO_RL function is an axis control function requiring servo initialization
and a math coprocessor on the PiC CPU. It is similar to the RATIOSLP function.
The difference is that the data defining the slave axis profile for RATIO_RL uses

floating point numbers.

Each segment of the profile can be a trigonometric func-

tion or a polynomial. A trigonometric function requires that the radius, starting
angle, and segment length be entered in a structure.

RATIO_RL can be used in conjunction with the math conversion COORD2RL

function.

The AXIS and MAST inputs are used to identify the slave and master axes respec-

tively.

2-272 Chapter 2 Function/Function Block Description

RATIO_RL

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types
available:
1. A servo axis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. A time axis
(Range of numbers available to enter at MAST for time axes is 23
through 28.)
A time axis creates a time basis for slave axes to follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S_CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axes i
49 through 64.)
A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

When the MSTR input is used, it defines the master axis position at the beginning
of the profile.

The OPTN input provides the following options:

Option Binary Value Hex Value
1. Repeat profile 00000000 00000001 0001
2. Ignore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit 0 is set. If bit O is not set, the m

profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered in
MSTR has no effect. The slope profile will begin executing as soon as the func-
tion is called.

Some characteristics of the ratio real move include:

o Affects the slave axis only.
e The slave axis may be a master axis to another axis.

e More than one slave axis may be connected to the master axis.

Chapter 2 Function/Function Block Description 2-273

RATIO_RL

The master axis may be a servo, a time, or a digitizing axis.

If the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIO_RL function.

Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

The starting point for the master axis may be entered. If the move is
queued with no master start and the master axis is moving in the opposite
direction as defined by the profile segments, the distance will be accumu-
lated. This distance must be recovered before motion will start.

Both the master and slave axes must be at the same interrupt rate.
Registration can be used with the RATIO_RL function.

The ratio_RL function move may repeat continuously if the repeat option is
set until either the move is aborted or a REP_END function is called. With
the abort move function, the move will stop wherever it is in the profile.
With the repeat end function, the move will stop at the end of the current
profile.

Some conditions for which the OK will not be set and the queue will be “0”
include

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Master axis beyond start point (P-error) [Master start value out of
range or master axis beyond start point

4. Slave axis (AXIS) not initialized during setup

e An E-error will occur if there is a slave delta overflow during runtime.

2-274 Chapter 2 Function/Function Block Description

RATIO_RL

RATIO_RL structure members for the REAL input

The members of the structure required for the array of structures at the REAL
input are described below.

IMPORTANT

The structure entered in the software declarations table for the REAL
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each
member of the structure must be as shown in order for the software to
recognize the information.

NOTE

Remember that the first (0) element in the array determines the size
of the profile. The .MASTER line of the first element must contain
the number of segments in the profile plus one.

It is not necessary to enter any value in the other lines. They will de-
fault to zero.

Chapter 2 Function/Function Block Description 2-275

RATIO_RL

MASTER DINT The MASTER member specifies the distance (in
(master distance) (Range -536,870,912 feedback units) the master travels during a seg-
to +536,870,911 FU) ment. The values of the master distance must all
be the same sign for each segment.
SLLAVE DINT The SLAVE member specifies the distance (in
(slave distance) (Range -536,870,912 feedback units) the slave travels while the master
to +536,870,911 FU) travels its distance during a segment. The values
of the slave distance can be either sign.
LEN LREAL For a circular move, LEN holds the number of
(length/K,) master counts in one radian.
For a linear move, LEN holds the value of K.
AMPL LREAL For a circular move, AMPL holds the wave
(amplitude/K,) amplitude.
For a linear move, AMPL holds the value of K,.
STANGL LREAL For a circular move, STANGL holds the value of
(starting angle/K3) the starting angle in radians.
For a linear move, STANGL holds the value of
K.
SPARE LREAL Declare this in your structure since it may be used
(spare) in the future for additional features.
FLAGS DWORD Bits O through 4 are currently being used.
(flags)
2-276 Chapter 2 Function/Function Block Description

RATIO_RL

FLAGS DWORD Bits 0 through 4 are currently being used.
(flags)

15141312 1110 9 8 7 6 5 4 3 2 10

0 = execute valid data for segment;
— 1 = execute default ratio.

0 = copy a 0 to bit 0 after segment execution;
1 = copy a 1 to bit 0 after segment execution

1 = execute a sine function
Bits 3 and 4 must be zero.

1 = execute a cosine function
Bits 2 and 4 must be zero.

0 = execute a polynomial function
Bits 2 and 3 must be zero also.

If bit is set to 0, the segments of the real profile will execute in
sequence as entered in the array of structures.

Bit 0 If bit 0 is set to 1, the segment is considered empty. The default ratio
will be in effect until bit 0 is set to 0 and valid real profile data is

entered in the array of structures

.NOTE: The default ratio of the RATIO _RL function is 1:1.
The NEWRATIO function allows you to change the default to
another value.

Bit1 Aseach segment completes its execution, whatever value is in bit 1 is
copied into bit 0.

Bit2 1fbit2issetto I and bits 3 and 4 are 0, a sine wave is executed.
The slave distanceinto the segment is calculated as follows:

Distance = Asm(LEN + Os) —AsinOs

where:
A = amplitude
m = master distance into segment

LEN = number of master counts in one radian
Os = starting angle in radians

Chapter 2 Function/Function Block Description 2-277

FLAGS (Cont.) DWORD Bits 0 through 4 are currently being used.
(flags)
Bit3 If bit3issetto I and bits 2 and 4 are 0, a cosine wave is executed.
The slave distance into the segment is calculated as follows:

. m
Distance = ACOS(LEN + Os) —AcosOs

where:

A = amplitude

m = master distance into segment

LEN = number of master counts in one radian
Os = starting angle in radians

Bit4 If bits 2, 3, and 4 are 0, a polynomial is executed. The slave
into the segment is calculated as follows:

Distance = Kym + sz2 + K3m3

where: K, Ky, K5 = long reals

m = master distance into segment

All remaining bits (5-15) should be set to zero.

RATIO_RL

Working with the FLAGS and the default ratio

The FLAGS member of the structure provides the capability of using the default
ratio with the RATIO_RL function. Once the default ratio is running it is possible
to use the array of structures like a rotary queue with data moving in from the lad-
der and out via servos in sequence.

Bit1 Bit0 Example

0 0 |With both bits set to zero, the RATIO_RL function will
execute the segment beginning at the defined starting
angle. If repeat is set on the OPTN input, the profile will

repeat continuously. | \\‘//

1 1 |With both bits set to one, the RATIO_RL function will
execute at the default ratio until the ladder places data in Bead

the array of structures and clears bit 0. —

NS

When each segment completes its execution, whatever is in bit 1 is copied into bit
0.

Note: Whenever the default ratio is used, set the reversal not allowed flag using
variable 21 of the WRITE_SV function before calling the RATIO_RL
function.

The master starting point is entered in the MSTR input. The profile will begin exe-
cuting at the beginning with the master and slave axes locked on when the master
reaches its starting position.

Note: If the ratio real move is queued with no master starting position and the
master axis is moving in the opposite direction of that indicated in the pro-
file segments, the direction of the master will have to be reversed and the
accumulated distance covered before the move will execute.

The OPTN input provides the following options:

Option Binary Value Hex Value
1. Repeat profile 00000000 00000001 0001
2. Ignore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit O is set. If bit O is not set, the
profile will execute once and then stop. If you choose to ignore the master start

Chapter 2 Function/Function Block Description 2-279

(bit 1 set), any value you have entered in MSTR has no effect. The profile will
begin executing as soon as the function is called.

Comparison of some ratio moves

The table below shows how the RATIO_RL works compared to the RATIOCAM and
RATIOSLP functions. RATIO_RL relies on the distance calculations. RATIOCAM and
RATIOSLP rely on the velocity calculations (indicated by the dark boxes).

RATIO_RL
RATIOCAM RATIOSLP (Polynomial) (Trig)
SSlave distance |SSlave distance SSlave distance SSlave distance
How IMMaster distance [MMaster distance Master distance MM aster distance
Defined K 1Start ratio 1M coefficient [LEN# of master counts in 1 radian
AMPLAmplitude
K_Slope 2 -
2
IKZM coefficient O Starting angle
3
IK3M coefficient
= 2 = =
D=K, m D=K,m +K, m P ,) p
S Km +Km +K
K, = = . 3) lm
1 =
Distance M K1 start ratio
. _ Slope
Polynomial k2 == AMPL sin(i + es) — AMPLsin®y
LEN
B (K
Distance L
mn
Plot m
]]
= = 2
V=K, V=K, m+K, V=K,m +K,m+K,
S .
K, =2 K = Start ratio ..
1 1 =
Velocity M e . K1 of position
= Slope ..
3 2 = — m
Polynomial|) 2K2 of position V= AMP LCOS(EZTV + es)
= 3K3 of position

READ

Velocity

¥ A
Plot ¥ ¥ /
0 m
1]
m m

READ
Read lo/COMM
REED_ Inputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEl- HNDL (INT) - output from OPEN function block
JHNDL FAIL - CNT (INT) - number of bytes to read
JONT ACTH BUFR (MEMORY AREA) - area to read data into
4BUFR-BUFR |~ MEMORY AREA is a STRING, ARRAY, STRUC-
ERR L TURE, ARRAY ELEMENT, or STRUCTURE MEM-
BER
Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0

FAIL (BOOL) - energized if ERR #0
not energized if ERR =0

ACT (INT) - number of bytes read
BUEFR (same variable as BUFR input)

ERR (INT) - 0 if data transfer successful
0 if data transfer unsuccessful

See Appendix B in the software manual for ERR codes.

The READ function block reads data from the file or device at the User Port spec-
ified by the value at HNDL and places it in the variable at BUFR. The number of

bytes to read is specified by the variable at CNT. The number of bytes actually
read is placed into the variable at ACT. ACT will be less than CNT when there are
less bytes in the file than specified by CNT, or when there is an error. Otherwise
the value of ACT will equal the value of CNT.

Chapter 2 Function/Function Block Description 2-281

WARNING

If the input at BUFR does not have as many bytes as specified by
CNT, the "extra" data will overflow into the declared memory area
immediately after the memory area at BUFR.

IMPORTANT

See APPLICATION NOTE # 1 in the Application Note section (at
end of the software manual) for information about READing from
and WRITing to STRINGs.

READ is used in conjunction with the CLOSE, CONFIG, OPEN, SEEK, STA-
TUS, and WRITE I/O function blocks.

READFDBK

READFDBK
Read Feedback lo/READFDBK

READFDBK Inputs: EN (BOOL) - enables execution

1N ok L RSCD (STRUCT) - a structure to identify rack, slot,
channel, and device

VARS (STRUCT) - a structure to contain variables
required for reading encoders or resolvers in back-
ground

4{RSCD
4 VARS

Outputs: OK (BOOL) - set if no errors in structure data

The READFDBK function allows an encoder or a resolver feedback device to be
read on a scan time basis (in background). Using this feature allows you to place
encoder and resolver modules in an expansion rack. It can be used with the
encoder, 12 channel resolver, block resolver, and block stepper/encoder/DC in
modules.

No information needs to be entered in the servo setup program. These are read
only feedback devices used in open loop control.

The function performs initialization, update, and reference tasks.

Data is stored and manipulated in two structures you declare in the software decla-
rations table. The members of these structures can be written to or read from in the
ladder.

The first structure at the RSCD input identifies the rack, slot, channel, and device
(type of encoder). The second structure at the VARS input allows you to read and
write variables required for reading encoders in background.

The READFDBK function should be called by the ladder once each scan.
A separate READFDBK function must be used for each axis.

PROGRAMMING NOTE: If multiple axes will be read in the background with
READFDBK functions, you may want to create an array of structures for the
RSCD and the VARS structures. This eliminates the need to enter these structures
individually for each axis in the software declarations table.

It is necessary to declare the encoder or resolver module in the hardware declara-
tions table.

Explanations of the two structures required for the READFDBK function follow.

Chapter 2 Function/Function Block Description 2-283

The RSCD input structure

The structure that must be used at the RSCD input of the READFDBK function is
shown in Figure 2-22. It has four members; RACK, SLOT, CHAN, and
DEVICE.

IMPORTANT

The structure you enter in the software declarations table for the
RSCD input must have the members entered in the order shown in
Figure 2-22. The data type for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.

Initial values are entered by you for the rack, slot, channel, and device
for the encoder axis at the RACK, SLOT, CHAN, and DEVICE mem-
bers of the structure.

PROGRAMMING NOTE: The RSCD structure name was shortened to "R."
Using one letter for the name of the structure allows the entire member name to
appear wherever they are used in your ladder without exceeding the eight character
limit. Thus R.DEVICE appears instead of RSCD.DEV>.

Figure 2-22. The structure at the RSCD input

Structure name

TR STRUCT

.RACK USINT
Members of Structure _SLOT USINT
. CHAN USINT
. DEVICE BYTE

END_STRUCT

READFDBK

RSCD structure members

RACK USINT (Write) The RACK member specifies the rack the

(rack number) Range 0 to 8 encoder or resolver module resides in. (The mas-
Range = 100 for block ter or CPU rack is #0. Expansion racks are num-
modules bered 1 - 7 (1 - 8 for some earlier versions of the

CPU), where #1 is the rack connected to the mas-
ter, #2 is the rack connected to #1, etc.)

For a block module, RACK must be set to 100.

SLOT USINT (Write) The SLOT member specifies the slot in the rack

(rack slot number)Range 3 to 13 the module resides in. Slots are numbered left to
Range 1 to 77 for right when facing the controller. Slot 1 and 2 are
block modules reserved for the CSM and CPU module respec-

tively.

For a block module, RACK must be set to 100.
CHAN USINT (Write) The CHAN member specifies the number of the
(module channel) Range 1 to 4 for channel on the module.

encoder

Range 1 to 12 for
multi-channel
resolver

Range 1 to 2 for block
st/enc/DC in

Range 1 to 6 for block
resolver

With an encoder if 3 and 4 are used, a four chan-
nel encoder module must reside in the rack.

Chapter 2 Function/Function Block Description 2-285

DEVICE BYTE (Write)
(type of encoder)

765 43210

HERERERN
I— 0 = Quadrature; 1 = Pulse]
Encoder

0 = Differential; 1 = Single-ended

0 = Encoder; 1 = Multi-Channel Resolver

The DEVICE member defines the type of feedback device.

Encoders

Bit 0 defines whether it is quadrature or pulse encoder.

Bit 1 defines whether it is differential or single-ended.

Resolvers

Bit 2 defines whether an encoder or a resolver module is being read.

If bit 2 is set to 1, the resolver is being read and bits 0 and 1 are ignored.
If bit 2 is O, the encoder is being read.

All remaining bits (3 - 7) should be set to zero.

READFDBK

The VARS input structure

The structure that must be used at the VARS input of the READFDBK function is
shown in Figure 2-23. The members of this structure are; REFER (reference),
REFVAL (reference value), ROLPOS (rollover position), STATUS, ERROR,
FDBK (feedback), LATCH, POSITN (position), REFSWT (reference switch),
ADDRESS, SPARE1 and SPARE2.

IMPORTANT

The structure you enter in the software declarations table for the
VARS input must have the members entered in the order shown in
Figure 2-23. The data type for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.

You write values to REFER, REFVAL, and ROLPOS.

The structure you enter in the software declarations table for the
VARS input must have the members entered in the order shown in
Figure 2-23. The data type for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.

The software assigns values to STATUS, ERROR, FDBK, LATCH,
POSITN, REFSWT, and ADDRESS*. Never enter any values for
them.

*See note for exceptions at the ADDRESS structure member that fol-
lows.

Figure 2-23. The structure at the VARS input

Structure name

T |v STRUCT

. REFER BYTE
. REFVAL DINT
. ROLPOS DINT
. STATUS BYTE

. ERROR USINT
Members of Structure — . FDBK DINT
. LATCH DINT
. POSITN DINT
. REFSWT DINT

. ADDRESS WORD
. SPARE1 DINT
L . SPARE2 DINT

END_STRUCT

Chapter 2 Function/Function Block Description 2-287

READFDBK

The VARS structure members

REFER BYTE (Write)
(reference)

76 543210
||||||||||_

Set if ladder arming for reference

Set if ladder reference input switch is on (bit 3 must be set)

0 =index, 1 =no index (Enc) O = null, 1 = no null (Res)

0 = fast, 1 =ladder (Enc) (ignored for Res)
or
0 = DC input (Block Step/Enc/DC In) (ignored for Res)

The REFER member of the structure allows you to do a reference with the READFDBK
function. It requests a reference and defines the type of reference that will occur. (If no refer-
ence is required, leave bit O set to 0.)

With an encoder, it is possible to do a reference based on a fast input to the encoder module or
on a ladder event. Either type can be used with or without the index mark.
NOTE: With the fast input, the position is latched in hardware when the fast input transitions.

With the block stepper/encoder/DCin module, it is possible to do a reference based on the
DCin or on a ladder event. Either type can be used with or without the index mark.
NOTE: With the block DCin, the position is read in software when the DCin transitions.

With a resolver, it is only possible to do a reference based on a ladder event.

The chart below summarizes how the reference value entered in the REFVAL member is
assigned to the reference position.

All remaining bits (4 - 7) should be set to zero.

Reference With index Without index

Fast input reference |Assigns the value in REFVAL to the [Assigns the value in REFVAL

(Encoder only) or next index mark after the fast in to the position where the fast

[DCin reference with joccurred. in occurred.

the block st/enc/DCin

module

[Ladder reference Assigns the value in REFVAL to the |Assigns the value in REFVAL

(Encoder or resolver) next index mark (Enc) or null (Res) [to the position where the lad-
after the ladder reference switch der reference input switch
turns on (bit 1 of REFER). turns on (bit 1 of REFER).

2-288 Chapter 2 Function/Function Block Description

READFDBK

Before bit 0 is set requesting a reference, you must define the type of refer-
ence desired with bits 2 and 3. When a positive transition of bit 0 occurs, the
reference complete bit in the STATUS member (see below) is cleared. Bit 0
of REFER may be cleared at any time after the transition occurs.

Once the function knows what type of reference will be performed and that a
request has been made, it will wait for the reference to be completed.

For a fast input reference, it will wait for the fast in to occur.

For a ladder reference, it will wait for a positive transition on bit 1. Use the
reference switch to set this bit in the ladder. Use the BOOL2BYT conversion
to set the bits in the REFER member of the VARS structure as shown in Fig-
ure 80.

NOTE: Any unconnected input (IN4 - IN7) places a zero in that bit of the
byte.

Figure 2-24. BOOL2BYT conversion for REFER

BOOLZENT
EN 1143

éw INe 0OUT . REFER
E
In

INZ

b
|I% INz
I
1 Ihd
IS

4 ING
4 IN?

RRAJEE 4131

Chapter 2 Function/Function Block Description 2-289

READFDBK

REFVAL DINT (Write) The REFVAL member defines the reference
(reference Range = 536,870,912 FU value you want to assign to the reference posi-
value) tion. Always be sure the number you enter is
within the range given since no limit checking is
done by the software.
ROLPOS DINT (Write) The ROLPOS member defines the rollover posi-
(rollover on ~ Range =+ 536,870,912 FU tion you want. Entering a zero means no rollover
[position) position is in effect.
Always be sure the number you enter is within
the range given since no limit checking is done
by the software.
STATUS BYTE (Read)
(status)
TES4 3210
HENENEER
L] L Set if loss of feedback™* (With differential encoder or multichannel resolver)
Set if reference complete
| Setfor one update after fast input transitions (Enc only; always 0 for Res)*
Set if fast input is on (Enc only; always O for Res)***
Internal status bits (not used by the ladder)
* See note at ADDRESS structure member.
** If using the block stepper/encoder/DC in module,
this will be set for the index mark of the encoder.
*#% If using the block stepper/encoder/DC in module,
this will be set for the DC input.
i e e w4 e e s
The STATUS member gives the status of the items shown above in bits O - 3.
The remaining bits are internal and not used by the ladder. Use the
BYT2BOOL conversion to check the bits in the STATUS member of the
VARS structure.
2-290 Chapter 2 Function/Function Block Description

Figure 2-25. BYT2BOOL conversion for STATUS

WOSTATUS

BNT2BO0OL

EN
IN

1143

OuTH
auT
T2
QU=

OuTd |

auTS
QUTE

auT? |

LOF
REvotNE

e
e o

— T—

LTI b |

READFDBK

Chapter 2 Function/Function Block Description

2-291

READFDBK

ERROR USINT (Read)
(error num- (0-5)
ber)

FDBK DINT (Read)
(actual feed-
back value)

LATCH DINT (Read)
latched value

(Encoder

only)

POSITN DINT (Read)
(axis posi-
tion)

REFSWT DINT (Read)
(reference
switch)

The ERROR member will contain one of the fol-

lowing values:

0 No error

1 Invalid rack number

2 Invalid slot number

3 Invalid channel number

4 Module not found or not enough channels

5 Structure memory written to by something
other than this function

The FDBK member gives the actual feedback
value from the module.

Encoder - A 24 bit value.

Resolver - 0 - 3999

The LATCH member gives the most recent fast
input latched value. It is a 24 bit value.

It is always the rising edge of the fast input unless
the reference cycle just completed used the fast
input and the index. After the reference is com-
plete, the module will once again respond to a ris-
ing edge of the fast input.

If you are using a block stepper/encoder/DC in
module, the latch value is the index position of
the encoder.

The POSITN member gives the position of the
axis according to the reference, rollover position,
and encoder activity since power on. This value
will roll over if it exceeds a four byte value in the
positive or negative direction.

For an encoder, the REFSWT member gives the
distance between the reference switch and the
index mark.

For a resolver, the REFSWT member gives the
value at FDBK when the transition of the refer-
ence complete bit occurs.

NOTE: REFSWT is only valid if the reference
complete status bit is set.

2-292 Chapter 2 Function/Function Block Description

READFDBK

ADDRESS WORD This address must be zero in order for the soft-

(address) (No action*) ware to initialize the READFDBK function.
After initialization the software assigns an
address to it.

*NOTE: Normally, no action is required on your
part. However, if it is ever necessary to reinitial-
ize, you must write a zero to ADDRESS and call
the function.

Also, if a loss of feedback occurs, you must write
a zero to ADDRESS and call the function in order
to clear the loss of feedback. It is not cleared
when feedback is restored.

SPARE1 DINT
(reserved)

SPARE2 DINT
(reserved)

Chapter 2 Function/Function Block Description 2-293

READFDBK

NOTES

2-294 Chapter 2 Function/Function Block Description

READ_SV

READ SV
Read Servo Motion/DATA

READ_SV Inputs: EN (BOOL) - enables execution

1N oKL AXIS (USINT) = identifies axis (servo, digitizing, or
time)

4AXIS RSLT}

lvan VAR (SINT) = variable to be read

Outputs: OK (BOOL) - execution completed without error
RSLT (DINT) = servo data read

The read servo function allows the specified variable (VAR) to be read for the
specified axis. The results of the read are displayed at RSLT.

The variables that can be read using the function are listed in the table below.

The table also indicates which variables can be written with the WRITE_SV func-
tion and what type of axis apply (servo, digitizing, or time).

The READ_SVF and WRIT_SVF functions allow you to read and write the same
variables listed below faster. However, the units are feedback units and updates
rather than ladder units and minutes. This is noted in the variable description.

NOTE: When using read/write variables with the Stepper Axis Module, the feed-
back units are stepper units. Ladder units may still be used.

Chapter 2 Function/Function Block Description 2-295

READ_SV

Variables available for the read/write servo functions

Key for the variable table below:

Vi# -identifies the variable number you enter in the read and/or write servo func-

tions at VAR.
R column-indicates the variable can be used with the read servo function.

W column-indicates the variable can be used with the write servo function.

An F (in XX) in the lower right corner of the Definition Box indicates you can use
the read servo Fast (READ_SVF) or write servo Fast (WRIT_SVF) functions with

that variable and the units (usually feedback units) used with these functions.

S =servo axis D = digitizing axis T = time axis

V#

Definition R \%Y%

Actual position - Reads the actual position of the axes in ladder S,D, T T
units.

With a time axis, allows you to write the position.
(Range for a time axis is +2147483647 to -2147483648 ladder units.)
F in FU|

Move type - The active move type is indicated by a number: S

11 position move 18 ratiopro
12 distance move 20 ratiosyn or ratiogr
14 velocity start 22 ratiocam
16 fastreference or 23 ratioslp
ladder reference 24 ratioreal

F

Command position - Reads the commanded position in ladder units.|S, D
Fin FU

Position error - Represents the proportional error in ladder units. S

NOTE: With SERCOS where the actual position error is in the drive,
internal calculations approximate the position error and bring the
approximation out to variable 4. This approximation may vary by the
distance moved in one or two updates from the actual position error
read from the drive via the service channel.

INOTE: Not available with the stepper axis module.
F in FU|

Slow velocity filter error - Represents the error of the slow velocity |S
filter in ladder units.

F in FU|

2-296

Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

W

Command velocity - Shows the velocity ramping up and down with
move in ladder units/minute for servo axes and ladder units/second
(counts/second) for time axes. (Range for a time axis is £2,000,000
ladder units/sec.)

*Do not write a command velocity when running s-curve velocity
profiles.

F in FU/update

S, T

T

Position change - Reads the distance moved during one interrupt in
ladder units/minute for a servo axis and in ladder units/update for a
digitizing axis. To read the position change over several interrupts,
see variable 34.

F in FU/update,

S, D

Feedback last - Reads the latest feedback position directly from the
feedback module in feedback units.

Ranges for various feedback devices:

IEncoder/resolverCounts from O to 16,777,215 FU and then rolls over.
The number returned will count according to the feedback polarity
specified in setup.

Analog input 0 to 4095 unipolar; -2048 to 2047 bipolar

TTL (Depends on number of bits used for position data.)

Fin FU

S, D

Fast input position (hardware) - Reads the axis position when the
fast input occurs in feedback units. The module must have been set
up to respond to fast inputs through the FAST_QUE, FAST_REEF,
REGIST, or MEASURE functions.

INOTE: Not available with the stepper axis module.
F in FU|

S, D

10

Registration/referencing position change - Reads the distance posi-
tion changed in ladder units due to registration or the last machine
reference. This number can be used to allow the ladder to synchro-
nize axes if a slave axis started before registration ever ran.

INOTE: Not available with the stepper axis module.
F in FU|

S, D

Chapter 2 Function/Function Block Description

2-297

READ_SV

V#

Definition(continued)

11

Consecutive bad marks - Reads the number of consecutive bad S, D

marks since the last good mark when using registration. You can also
write any positive number into variable 11 to set the number of con-
secutive bad marks. Typically, O would be entered to initialize the
counter.

'When a good mark occurs, this number will be reset to 0. If the num-
ber of bad marks exceeds 2,147,483,647, the number returned will
“roll over” to -2,147,483,648 and start counting toward 0.

INOTE: Not available with the stepper axis module.

F

S, D

12

Rollover on position- Reads the rollover position in ladder units. S, D, T

Allows you to write a rollover position which overrides the one
entered in setup.

The range is 1 to 536,870,912 FU. Entering a O turns rollover on
position off. Negative values cannot be entered. The OK on the
'WRITESV function will not be set.

NOTE: Without rollover on position when 2,147,483,647 is reached,
the next number will be -2,147,483,648. The count continues to zero
and back up to 2,147,483,647, etc.

Fin FU

2-298 Chapter 2 Function/Function Block Description

READ_SV

NOTE

Variables 13 through 16 deal with master/slave offsets. It is important to remember that
these offsets affect the master/slave relationship, not the individual axes. The master
axis is accessed through the slave axis. Offsets are calculated based on the slave axis

ladder units. The number of the slave axis is entered at the AXIS input of the

READ_SV and WRITE_SV functions.

V#

Definition (Continued)

R

13

Slave offset incremental - Reads the total remaining slave offset in
slave ladder units. Writes an incremental slave offset. The total
incremental offset entered is applied each time the WRITE_SV func-
tion is called. The offset cannot be canceled.*

F in FU|

14

Master offset incremental - Reads the total remaining master offset
in slave ladder units. Writes an incremental master offset. It is
applied each time the WRITE_SV function is called. The offset can-
not be canceled.*

Fin FU

15

Slave offset absolute - Reads the absolute slave offset in slave ladder
units. Writes an absolute slave offset. Each time the WRITE_SV
function is called with an absolute offset an offset is applied which is
the difference between the last call and this call will be applied. An
absolute offset can be canceled by entering an absolute offset of 0.*

Fin FU

S

16

Master offset absolute - Reads the absolute master offset in slave
ladder units. Writes an absolute master offset. Each time the
WRITE_SV function is called with an absolute offset an offset is
applied which is the difference between the last call and this call will
be applied. An absolute offset can be canceled by entering an abso-
lute offset of 0.*

F in FU|

*Variables 13, 14, 15, 16 - Incremental/absolute example

If an incremental offset of 100 is requested, and then later another
incremental offset of 110 is requested, the total offset applied will be
210.

If an absolute offset of 100 is requested, and then later another abso-

lute offset of 110 is requested, the total offset applied will be 110.

Chapter 2 Function/Function Block Description

2-299

READ_SV

The examples that follow illustrate how offsets are incorporated into moves. Off-
sets can be entered in the ladder with variables 13 to 16 and offsets are added by
the software from calculations done if registration is being used.

1. Master/slave move
No offsets

Slave distance

0 | |

Maslter d stgnc'e — 10

In the example on the left, the master is traveling 10
units and the slave is traveling 50 units (shown by the
area under the curve). No offsets have been entered.

INOTE: The examples are showing just one segment of
a profile.

2. Master/slave move
Negative slave offset

Slave distance

0 111] |

Master distance |— 10

In the example on the left, a slave offset of -2 has been
entered. The master travels 10 units and the slave trav-
els 48 units (shown by the area under the curve).

NOTE: This also represents what would occur if regis-
tration was running on the slave axis and an offset of -
2 was calculated by the software. The distance the
master travels remains constant and the distance the
slave travels varies.*

3. Master/slave move
Positive slave offset

Slave distance

0 | 1

Maslter dlst?née — 10

In the example on the left, a slave offset of +2 has been
entered. The master travels 10 units and the slave trav-
els 52 units (shown by the area under the curve).

NOTE: This also represents what would occur if regis-
tration was running on the slave axis and an offset of
+2 was calculated by the software. The distance the
master travels remains constant and the distance the
slave travels varies.*

2-300 Chapter 2 Function/Function Block Description

READ_SV

4. Master/slave move

Negative master offset In the example on the left, a master offset of -1 has

been entered. The master travels 9 units and the slave
travels 50 units (shown by the area under the curve).

N | NOTE: This also represents what would occur if regis-
5 r tration was running on the master axis and an offset of
Slia“l’ diSta"lce S -1 was calculated by the software. The distance the
0 - : 4— |master travels varies and the distance the slave travels
Master distance | 9 10 remains constant. *
HERRR |
S. Master/slave move In the example on the left, a master offset of +1 has
Positive master offset been entered. The master travels 11 units and the slave

travels 50 units (shown by the area under the curve).

NOTE: This also represents what would occur if regis-

SN I tration was running on the master axis and an offset of
5 o |+1 was calculated by the software. The distance the
Slave distance I — |master travels varies and the distance the slave travels
0 — } — a remains constant.*
Master distance 110 11 /= Lewhen using registration on either the master or slave
HERRN I axis, it is always the slave axis that makes the physical
adjustment when an offset is calculated.
V# Definition(continued) R W
17 Slave offset filter - Allows you to write a rate in the range of +1 to S
+101 or -1 to -10001 as shown below. This range represents the per-
centage the velocity will increase or decrease to apply the offset. At
+101 or -10001, the offset is applied as a step function which in effect
is no filter. This is the default if nothing is entered in WRITE_SV
variable 17.
F
18 [Master offset filter - Allows you to write a rate in the range of +1 to S

+101 or -1 to -10001 as shown below. This range represents the per-
centage the velocity will increase or decrease to apply the offset. At
+101 or -10001, the offset is applied as a step function which in effect
is no filter. This is the default if nothing is entered in WRITE_SV
variable 18.

F

See the figure below for more information on master/slave offset filters.

Chapter 2 Function/Function Block Description 2-301

READ_SV

Figure 2-26.
Range of values for Slave/Master offset filter
"DATA Percent
Inupt of Filter
WRITE_SV
+iol — 01 —— Step
+100 — 100%
Coarse Filker ! !
Acceptable range : :
for 1 ta 1005 ik +20 — S0
1% increments : :
H +1 . 1%
MOT v D0 e
qr— -1 —1 0.01%
-2 1 0.02%
-100 — 1.00%
-101 —_ 1.01%
Firue Filter . ;
Acceptable range =00 T 2'I:.":Igs
for 1 to 1009 in : !
0% iherements \)
s000 —— s0.0x
oo | gogom
-10000 —] 100%
10001 [-o000 —— Step
LLTIE T

2-302 Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

19

Fast input direction - By entering one of the following numbers, the
fast input will be written (W) as shown in the chart below.

0 - only on a low to high (rising) transition (default)
1 - only on a high to low (falling) transition

2 - alternating rising and falling beginning with a low to high transi-
tion

3 - alternating falling and rising beginning with a high to low transi-

RERER.

g

N \
W W W W W
VW W W W W

(OV] I \S] SN 1) = . 3

INOTE: Not available with the stepper axis module.
F

S,D

20

Fast input distance - Reads the distance in ladder units between the
most recent fast input and the previous fast input. This allows the
ladder to measure the distance between two fast inputs.

'When this variable is used with the MEASURE or REGISTRATION
functions, the function must be called first and then the variable read.

This distance can be one of four distances depending on how the
direction was defined in variable 19. This is illustrated in the exam-
ples that follow.

See also the STATUSSV function.
INOTE: Not available with the stepper axis module.
Fin FU

S,D

Chapter 2 Function/Function Block Description

2-303

READ_SV

If WRITE_SV
variable 19 is:

Then Statussv’s fast input ris-
ing bit is:

And READ_SV variable 20 will give
the distance between rising edges:

0 (rising) 1 |_| |_|
bt
AR S5
If WRITE_SV [Then Statussv’s fast input ris- And READ_SV variable 20 will give

variable 19 is:

1 (falling)

ing bit is:

[

the distance between falling edges:

1]
bt

If WRITE_SV
variable 19 is:

And Statussv’s fast input ris-
ing bit is:

Then READ_SV variable 20 will give
the distance from falling edge to rising
edge:

2 (both)* 1
:
RRIE-5T
If WRITE_SV |And Statussv’s fast input ris- [Then READ_SV variable 20 will give

variable 19 is:

2 (both)*

ing bit is:

the distance from rising edge to falling
edge:

gilip
t

RRE S0

*Note that when variable 19 is set to 2, the STATUSSYV bit indicates which dis-
tance is in variable 20.

2-304

Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

21

Reversal not allowed - Allows the feature of the slave following the
master when the master reverses direction to be turned on or off for
the ratio_gr and ratiosyn functions. (NOTE: The ratiopro function
has an input for this feature.)

A "0" (the default) allows the slave to follow the master in the reverse
direction. A "1" does not allow the slave to follow the master in the
reverse direction.

'Write_sv must always be called before the move function. The state
of reversal cannot be changed after the move has started.

An overflow Estop error will occur if the reversed distance exceeds
536,870,912 units in either the plus or minus direction.

F

22

Fast input position (software) - Reads the actual software position
of the axis in ladder units. This position value is determined by
things like the reference value and rollover on position.

The module must have been set up to respond to fast inputs through
the FAST_QUE, FAST_REF, REGIST, or MEASURE functions.

INOTE: This differs from the variable 9 fast input position which is
the hardware latch position.

F in FU|

S,D

23

Position (software) of axis 1 with fast input on axis 2 - Reads the
position in feedback units of axis 1 when a fast input occurs on axis
2.

Both the WRITE_SV and READ_SV functions are required to use
this variable.

The module must have been set up to respond to fast inputs through
the FAST_QUE, FAST_REF, REGIST, or MEASURE functions.

Enter the number of the fast input axis (servo or digitizing axis) at the
AXIS input of both functions.

Enter the number of the axis (servo, digitizing, or time axis) whose
position you want to read in the DATA input of the WRITE_SV func-
tion. The position is read at the RSLT output of the READ_SV func-
tion.

The position of a servo, digitizing, or time axis can be read.

Fin FU

S,D

S,D

Chapter 2 Function/Function Block Description

2-305

READ_SV

WRITE_SV

you want to read when
a fast input occures on VAR

. 23
another axis.

Axis 2 = fast input axis

— EN

READ_SV

— EN OK—

~{ AXIS RSLT}- Position of

2-306 Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

24

Registration switch - Allows you to turn registration on or off for
the master or slave axis (bit 0, 1). Allows you to choose whether or
not the registration calculations will change the axis position (bit 2).

Set bit O to turn off registration compensation for the slave axis.
Set bit 1 to turn off registration compensation for the master axis.

note (bit 0,1)

Bit 0 and bit 1 of variable 24 deal with master/slave compensation
due to registration. It is important to remember that this compensa-
tion affects the master/slave relationship, not the individual axes.
The master axis is accessed through the slave axis. The number of
the slave axis is entered at the AXIS input of the READ_SV and
WRITE_SYV functions.

Set bit 2 so that the registration calculations do not change the axis
position.

INOTE: This bit can be used with a servo axis or a digitizing only
axis. When used with a digitizing only axis, bit 0 and bit 1 must be
set to zero.

Variable 10 can be read to see how much change there would have
been if bit 2 was not set.

'Writing a zero to variable 24 returns the registration calculations to
normal.

Reads the registration flags.

INOTE: Not available with the stepper axis module.

Fin FU

S,D

S,D

Chapter 2 Function/Function Block Description

2-307

READ_SV

V#

Definition (Continued)

25

Fast queuing - Entering a one turns fast queuing on. A move start,
abort move, or a fast queue event will now start within one interrupt.
'When it is set to zero, these activities can take up to eight interrupts
to begin. Fast queueing makes your axis more responsive, but there
is a trade-off in that the execution time is increased.

'When one or more axis is slaved to a master axis that is starting and
stopping using distance moves (normally with the SCURVE func-
tion), you must also set Fast queuing for each slave axis. This ensures
that the slave distances will be reached before the master axis stops.

'When doing a synchronized slave start, see the note at variable 26.
F in FU|

26

Synchronized slave start - Allows you to tell a master axis which of
its slave axes must be queued up before any of them begin their
move. Each slave axis you want to synchronize is identified by set-
ting a bit in a DINT using the lower 16 bits where the LSB = axis 1
and the MSB = axis 16. When the last “set” axis has been queued, all
the slave axes will begin their move on the next interrupt.

'WRITE_SV must be called before the move. It can be called again
when you want to identify a different set of synchronized slave axes.
Change the bits only after the slave axes identified in the first
'WRITE_SV have started to move.

'Writing a zero to variable 26 clears all identified axes.

READ_SV reads the number of the slave axes being synchronized.

NOTE: Always use fast queing (variable 25) with this variable. This
ensures that the slave axes will be checking for the synchronized
slave start flag every interrupt, not just on the next interrupt. Remem-
ber that the synchronized slave start variable 26 is set on the master
axis and fast queing variable 25 is set on each slave axis.

F

S,D, T

S,D, T

2-308

Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

27

Backlash compensation - Writes a backlash compensation value.
Enter the value in ladder units. The amount is added or subtracted
from the command whenever the commanded direction is reversed.
The value written should equal the amount of mechanical backlash in
the gears between the servo motor and the desired motion.

INOTE: Because the backlash value is added or subtracted after the
commanded position is calculated, the distance moved will not be
reflected in variable 3 (commanded position). It will, however, be
reflected in variable 1 (actual position).

It is also important at power on to ensure that the PiC will compen-
sate for backlash correctly. The PiC assumes that the most recent
move is in the positive direction. Program a positive move to "wind
up" the backlash in a positive direction before writing to variable 27.
Once the initial positive direction has been established, the PiC will
compensate for backlash as described above whenever the com-
manded value changes direction.

READ_SYV reads the backlash compensation value in ladder units.

(0 - 32767 feedback units) default = 0

INOTE: Not available with the stepper axis module.

F in FU|

28

TTL feedback - Reads the position of the feedback axis by returning
the state of 24 TTL inputs to the DINT at the RSLT output of
READ_SV. The 24 inputs are the low 24 bits.

Depending on the hardware, the 24th TTL input can be used as an
indicator of valid data. When it is used to indicate valid data, then
you must monitor a waiting flag at the MSB of the DINT at RSLT.

The waiting flag will be low until the hardware sends valid data to the
TTL inputs. Do not attempt to close the loop while the waiting flag is
low. The OK on the CLOSLOOQP function will not be set if the wait-
ing flag is low. When valid data is received, the waiting flag goes
high and you can then successfully close the loop.

You can write to the eight TTL outputs using the eight LSBs of the
DINT at the DATA input on the WRITE_SV function.

INOTE: Not available with the stepper axis module.

S,D

S,D

Chapter 2 Function/Function Block Description

2-309

READ_SV

V#

Definition (Continued)

29

Reference switch position - With encoder feedback, the position
here represents the distance between the reference switch and the
index mark in feedback units.

With resolver feedback, the position here represents the absolute
position of switch closure in feedback units.

'With analog input or TTL feedback, the position here represents the
absolute position when referencing occurred.

Note:The number returned in variable 29 always counts in the same
direction regardless of the feedback polarity specified in setup.

This measurement could be in error up to the distance traveled in
eight updates. You can reduce that error to no more than the distance
traveled in one update by setting variable 25 Fast Queuing using the
'WRIT_SV function.

Note: Not available with the stepper axis module.

Fin FU

S,D

2-310 Chapter 2 Function/Function Block Description

READ_SV

The next four variables (30 - 33) allow you to put a master delta filter on a slave
axis. Variations in the master delta can cause undesirable “jitter” in the slave axis.

Applying a master delta filter can correct this problem.

30

Filter time constant - Defines a first order filter on the master axis as
viewed by each slave axis defined. In some applications it is neces-
sary to filter the master delta to control variations that can occur in
master axis travel. There are 10 approximate filter values:

64
128
256
512

1024

\SlNe No RSN\

U =

The time constant has a fine resolution at low values and a coarse res-
olution at high values.

Identify the slave axis at the AXIS input of READ_SV or
WRITE_SV.

Related master filter variables: 31, 32, 33
(0 - 1023, 0 disables filter)
F

31

Filter error limit - Limits the amount of lag introduced by the filter.
'When this limit is reached, the filter will no longer be in effect. This
allows you to implement a large filter at low velocities when resolu-
tion problems are more pronounced and still limit the following error
effects at high velocities when filtering is not required. A positive
number is entered using WRITE_SV. It applies to both positive and
negative errors.

Identify the slave axis at the AXIS input of READ_SV or
WRITE_SV.

Related master filter variables: 30, 32, 33
(1 to 2147483647 feedback units)
F in FU

Chapter 2 Function/Function Block Description

2-311

READ_SV

V#

Definition (Continued) R

32 |Velocity compensation flag - Entering a one turns the default veloc-| S
ity compensation feature off. Turning it off will result in the slave
axis lagging the master axes by the amount traveled by the master
axis in one interrupt. NOTE: Velocity compensation works indepen-|
dent of the filter.

Identify the slave axis at the AXIS input of READ_SV or
WRITE_SV.

Related master filter variables: 30, 31, 33

0, 1)

33 [Filter lag - Reads the filter following error. S
Identify the slave axis at the AXIS input of READ_SV.
Related master filter variables: 30, 31, 32
(-2147483648 to +2147483647 feedback units)

F in FU

NOTES ON FILTER LAG

Normally, the filter time constant and error limit will be estab-
lished prior to the move call. If they are changed after the slave
axis is locked to the master axis, keep the following in mind:

If the filter lag is already at the filter error limit and the error is
increased, the new limit will be reached at the rate defined by the fil-
ter and master axis velocity.

If the filter lag is already at the filter error limit and the error is
decreased, the excess will be dumped into the slave axis command in
one update.

If the filter lag is already at the filter error limit, changing the time
constant will have no effect.

If the filter time constant is set to zero, any lag will remain.

2-312

Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

34

Position change over several interrupts - Variable 7 reads the
change in position in a single interrupt. However, it can be difficult
to get an accurate reading in one interrupt especially if an axis is
moving slowly. Variable 34 allows the change in position to be read
over several interrupts.

'Write at the DATA input of WRITE_SV the number of interrupts (0
to 255) over which the change in position will be summed. Writing a
zero to the DATA input turns the feature off.

Read with READ_SV the distance moved over several interrupts in
ladder units for a servo or digitizing axis. The value is not necessar-
ily changed every interrupt. It changes only after the number of
interrupts designated with WRITE_SV have occurred since the last
value was read. NOTE: A non-zero value must be written with
WRITE_SV before you call READ_SV or the READ_SV OK will
not be set.

An overflow can occur if the axis is moving fast and the number of
interrupts selected is large. If an overflow occurs, the OK of
READ_SV will not be set. Write to variable 34 to clear an overflow
error condition.

Fin FU

S,D

S,D

35

[Part reference offset - Reads the part reference offset in ladder units.
The offset represents the distance that would have to be subtracted
trom the current position to remove the part reference.

Fin FU

S,D

36

Software upper limit- read or write in ladder units the upper end-
limit for a servo axis. Exceeding the endlimit will generate a C-stop.

The range is -536870912 to 536870911 FU.
F in FU

Chapter 2 Function/Function Block Description

2-313

READ_SV

V#

Definition (Continued)

37

Software lower limit - read or write in ladder units the lower end-
limit for a servo axis. Exceeding the endlimit will generate a C-stop.

The range is -536870912 to 536870911 FU.
F in FU|

38

Commanded position (before slow velocity filter) - reads the com-
manded position before the slow velocity filter is applied to a servo
axis. If slow velocity filter is not in effect, it returns the same com-
manded position as variable 3 returns.

Fin FU

S,D

39

ollowing error limit - read or write in ladder units the following
error limit for a servo axis. This overrides the following error limit
entered in servo setup.

The range is -536870912 to 536870911 FU.
F in FU|

40

[[n-position band - read or write in ladder units the in-position for a
servo axis. This overrides the in-position band entered in servo
setup.

The range is -536870912 to 536870911 FU.
F in FU|

'Variables 41, 42, and 43 work with the RATIOCAM, RATIOSLP, and
tions. They do not work with the RATIOPRO function.

RATIO

_RL func-

41

Current segment number - returns the segment number from the S
ratio move currently being executed. The first segment is number 1.
This matches the array element number in the profile. If one of the
three above moves is not being executed, the OK of READ_SV will
be clear.

F

42

Slave distance into segment - returns the distance the slave axisis |[S
into the segment identified in variable 41. If one of the three above
moves is not being executed, the OK of READ_SV will be clear. The
units are feedback units.

F in FU|

43 |[Master distance into segment - returns the distance the master axis |S

is into the segment identified in variable 41. If one of the three above
moves is not being executed, the OK of READ_SV will be clear. The
units are in feedback units.

F in FU|

2-314

Chapter 2 Function/Function Block Description

READ_SV

Background Information on Servo Control Variables 44 through 48

Variables 44, 45, 46, 47, and 48 are used to control the servo software. In normal
operation, the servo iteration command is determined by the move type (DIS-
TANCE, VEL_STRT, RATIOCAM, etc.) The command is compared to the feed-
back and the difference is fed to the internal PID calculations. The result is the
servo PID command which is written to the D/A.

N To D/A

Iteration

did leutaju]

| 19114 Anoojep mols |

Feedback

Awiejod inding
| 108110 1nding Bojeuy |

These variables allow you to interrupt this normal servo operation at various points
as illustrated by the diagram below. They perform the following:

e Read the result of the servo iteration command and write a user iteration
command before the next internal PID calculation (44 and 45).

e Read the result of the servo PID command and write a user PID command
(46 and 47).

¢ Disable the servo software (48) and allow the D/A command to come from
the ANLG_OUT function.

e CAUTION: Fault conditions are ignored when the servo software is dis-

abled.
Note: If the loop is open, the
software outputs the D/A offset.
User Iteration User PID
Command Command
WRITE PN WRITE _> ANLG_OUT|
Variable 45 ‘oﬁ Variable 47 Yes ° 3 Function
g 5 1 < o1
] & e 2] To D/A
| = =} (o]
teration o 3 . 5® | z 25 |
= T 0 No o g
. < 3 < S
Servo lteration| - o ServoPID | |) z |
Command | 7 Command | | < 3 |
READ = | Feedback READ ﬁ
Variable 45 | — Variable 47 | | sl |
. | ! I
Variable 44 Variable 46 | | 0oOpP OPEN?| Variable 48

Disable Servo Software

Typically, these variables will be used within user servo tasks (refer to the Soft-
ware Manual).

Chapter 2 Function/Function Block Description 2-315

READ_SV

In certain cases when using these variables, it may be helpful to know the sequence
in which execution occurs.

On every interrupt, the following occurs in the order given:
1. The PID code is executed.

If variable 44 = 0 read servo iteration command (the data servo iteration code
writes)

Else (variable 44 = 1) read user iteration command (the data variable 45 writes)
Compare to feedback
Perform internal PID calculations
Store result into servo PID command (the data variable 47 reads)
If variable 46 = 0 read servo PID command (the data PID calculations write)
Else (variable 46 = 1) read user PID command (the data variable 47 writes)
Apply output polarity and analog output offset
If variable 48 = 0, then write value to D/A register
2. The iteration code is executed.
Calculate iteration from move type, store in servo iteration command
3. The user servo TASK code is executed.
Read variable 45 (Read servo iteration command)
Write variable 45 (Write user iteration command)
Read variable 47 (Read servo PID command)
Write variable 47 (Write user PID command)

2-316 Chapter 2 Function/Function Block Description

READ_SV

V#

Definition (Continued)

44

Set user iteration command -when set to one, allows you to use the
user iteration command before the slow velocity filter. The user iter-
ation command is written with variable 45. A valid value should be
written to variable 45 before variable 44 is set to one.

0 = use servo iteration command (default)
1 = use user iteration command before PID calculations

F

45

[User iteration command - allows you to read the result of the servo
iteration command and write the user iteration command to the input
of the next PIC calculations when variable 44 is set to one. The value
read or written is the distance to travel per one update.

[To zero the command, a zero must be written with variable 45. Other-
wise, the most recent write value will be in effect.

The range is -32768 to 32767 FU/update
F in FU/update|

46

Set user PIC command - when set to one, allows you to use the user
PID command after the PID calculation and before the D/A com-
mand. You can then write a user PIC command with varible 47. A
valid PID command should be written to variable 47 before variable
16 1s set to one.

0 = use servo PID command (default)

1 = use user PID command

INOTE: Not available with the stepper axis module.

F

47

[User PID command - allows you to read the output of the servo PID
command that is to be sent to the D/A and write a user PID command
'when variable 46 is set to one.

To zero the PID command, a zero must be written to variable 47. Oth-
erwise, the most recent write value will be in effect.

Units are D/A bits where one bit is .33mV.
The range is -32768 to 32767 D/A bits.
INOTE: Not available with the stepper axis module.

F in D/A bits|

Chapter 2 Function/Function Block Description

2-317

READ_SV

48 |Disable servo software- when set to one, the ANLG_OUT function

can be used to control the D/A command or, with a SERCOS system,
the SCS_CTRL and the SCA_WCYC functions can be used to con-
trol the axis instead of the servo software.

[The most recent value from the servo software, from the
IANLG_OUT function, or the most recent position value from the
SCA_WCYC function, remains in effect regardless of any E-stop or
other fault conditions.

0 = use servo software (default)

1 = disable servo software {use ANLG_OUT) [use ANLG_OUT
function ro D/A command; for SERCOS, use the SCS_CTRL func-
tion (to set the control bits) and the SCA_WCYC function (to write
the position) or the battery box (to control velocity) of the axis.

INOTE: Not available with the stepper axis module.

49

Reserved

50

Override endlimit check - allows you to disable endlimit checking
whether referencing has occurred or not. It is used primarily when
you want to ignore endlimits even though referencing has occurred.

0 = endlimit check (default)

1 = ignore endlimit check even if reference has occurrred

F in FU

The table below summarizes the programming features that affect whether or not

endlimits are checked.

IDisable End Limit Check|In Servo Setup In LDO Status of
'Variable 50 Ignore limits until Ref?REF_END Function |Check Limits
0 Yes Not Occurred No Check
0 Yes Occurred Check
0 No NA Check
1 NA NA No Check
2-318 Chapter 2 Function/Function Block Description

READ_SV

V# Definition (Continued) w
51 SERCOS command position - reads the SERCOS position.
The value is in feedback units.
F
55 |Queued move type - The queued move type is indicated by a num-
ber:
11 position move 18 ratiopro
12 distance move 20 ratiosyn or ratiogr
14 velocity start 22 ratiocam
16 fast reference or 23 ratioslp
ladder reference ratioreal
F
Chapter 2 Function/Function Block Description 2-319

READ_SVF

READ SVF
Read Servo Fast Motion/DATA

READ_SVF Inputs: EN (BOOL) - enables execution

1N oKL AXIS (USINT) = identifies axis (servo, digitizing, or
time)

4AXIS RSLT}

lvan VAR (SINT) = variable to be read

Outputs: OK (BOOL) - execution completed without error
RSLT (DINT) = servo data read

The read servo fast function allows the specified variable (VAR) to be read for the
specified axis. The results of the read are displayed at RSLT. The READ_SVF
function performs the read faster than the READ_SV function. It consumes less
CPU time in exchange for some features. Less verification is performed on the
inputs to READ_SVEF. All values that involve velocity or distance are in feedback
units and updates rather than ladder units and minutes.

The variables that can be read using the function are listed at the READ_SV func-
tion.

2-320 Chapter 2 Function/Function Block Description

REAL2DI

REAL2DI
Real to Double Integer Datatype/REALCONV

REAL2DI Inputs: EN (BOOL) - enables execution

1EN oKL IN (REAL) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The REAL2DI function converts a real into a double integer. The result is placed
in a variable at OUT.

Chapter 2 Function/Function Block Description 2-321

REAL2DW

REAL2DW
Real to Double Word Datatype/REALCONV

REALZDW Inputs: EN (BOOL) - enables execution

JEN oKL IN (REAL) - value to convert

1IN outl Outputs: OK (BOOL) -execution completed without error
OUT (DWORD) - converted value

The REAL2DW function converts a real into a double word. The result is placed
in a variable at OUT.

2-322

Chapter 2 Function/Function Block Description

REAL2LR

REAL2LR
Real to Long Real Datatype/REALCONV

REALZLR Inputs: EN (BOOL) - enables execution

JEN oK IN (REAL) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

The REAL2LR function converts a real into a long real. The result is placed in a
variable at OUT.

Chapter 2 Function/Function Block Description 2-323

REAL2UDI

REAL2UDI
Real to Unsigned Double Integer Datatype/REALCONV

ReaLzopr] Imputs: EN (BOOL) - enables execution

JEN oK IN (REAL) - value to convert

1IN outl Outputs:OK (BOOL) - execution completed without error
OUT (UDINT) - converted value

The REAL2UDI function converts a real into a unsigned double integer. The
result is placed in a variable at OUT.

2-324 Chapter 2 Function/Function Block Description

REF_DNE?

REF DNE?

Reference Done? Motion/REF

Rer one?| Imputs: EN (BOOL) - enables execution

1N) ok L AXIS (USINT) - identifies axis (servo or digitizing)
AXIS RONEL Outputs: OK (BOOL) - execution completed without error
RDNE (BOOL) - indicates if machine reference is done

The reference done function asks the question “Is the machine reference cycle
complete?” If RDNE is set, a reference cycle is done. If not, then the reference
cycle is not done.

RDNE is cleared when servo reinitialization takes place and whenever a reference
function is called.

NOTE: This function cannot be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-325

REF_END

REF END
Reference End Motion/REF

REF END Inputs: EN (BOOL) - enables execution (Typically one-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or digitizing)
JAXIS Outputs: OK (BOOL) - execution completed without error

When the reference switch is tripped in a ladder machine reference, this function is
used to inform the software that the reference has occurred.

IMPORTANT

The REF_END function 1s always used when doing a ladder
(LAD_REF) machine reference.

See also LAD REF.

Note: This function cannot be used with the stepper axis module.

2-326 Chapter 2 Function/Function Block Description

REGIST

REGIST
Registration Motion/MOVE_SUP

RegrsT | Imputs: EN (BOOL) - enables execution (Typically one-shot)

EN ok L AXIS (USINT) - identifies the axis registration will be
applied to. (servo or digitizing)

AKIS NOTE: Fast input on axis feedback required.

DIST DIST (UDINT) - distance between registration marks

TOLR that identifies the second mark as a good mark. (Usu-
IGNR ally the same as LGTH.) Range of values is O to
LGTH 536,870,912 FU. Entered in LU.

DIM TOLR (UDINT) - error allowed to exist between two
marks when compared to DIST. Range of values is 0 to
536,870,912 FU. Entered in LU.

IGNR (UDINT) - distance after a mark in which any
mark will be ignored. Range of values is 0 to
536,870,912 FU. Entered in LU.

LGTH (UDINT) - theoretical distance between good
registration marks. Used to calculate the compensation
needed, if any, in master/slave applications. Range of
values is 0 to 536,870,912 FU. Entering a zero turns
registration off. Entered in LU.

DIM (DINT) - value axis position will take on when a
good registration mark occurs. Range of values is -
32,768 to 32,767 FU. Entered in LU.

Outputs: OK (BOOL) - execution completed without error
The OK will not be set if any of the following occur:
e The axis is not found.
¢ Any input is out of range.

¢ A reference move is in the active or next queue.

The registration function is used to set the axis position to a defined value when a
fast input occurs. It can be used on a servo or digitizing axis with any move type.

SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the REGIST function with a SER-
COS axis.

Registration is most frequently used in master/slave applications. When used with
master/slave moves, it has the additional ability of compensating for errors that

Chapter 2 Function/Function Block Description 2-327

REGIST

may occur. The end result is a system that remains synchronized with no accumu-
lated error. Repeatable accuracy throughout a process can be maintained.

The axis identified at AXIS may be a master or a slave axis. Registration can run
on either one. But because the PiC may not be controlling the master axis, any
compensation for error is done on the slave axis.

The software calculates how much compensation is required by the value entered
in LGTH. (Note: A zero entered in LGTH turns registration off.) This is the the-
oretical distance between good registration marks. In a packaging application, this
is often equivalent to the product length or the cycle length.

When registration is used in combination with master-slave ratio moves, you must
ensure that registration and the ratio moves work together properly. In most appli-
cations there is an integer relationship between the value entered at LGTH and the
associated distance traveled for both the master and slave.

The next three inputs, DIST, TOLR, and IGNR, are used to determine whether or
not the registration mark is good.

For a mark to be recognized as good, it must be the value entered in DIST from the
previous mark. A tolerance can be entered in TOLR which allows an error

between two marks when compared to DIST. A distance can be entered in IGNR
which allows any marks within that distance to be ignored following the last mark.

Note: This last mark is not necessarily a good mark.

2-328

Chapter 2 Function/Function Block Description

REGIST

This is illustrated in Figure 2-27. The second registration mark is recognized as a
good mark because it is within the distance + tolerance range and it is not in the
ignore region.

Note on tolerance: If a value of 10 units is entered at TOLR, then there is a range
of +10 which make up the tolerance band.

Figure 2-27. What Determines a Good Mark

i 3

Distance ——————»

| -1D| +0 |
—

Tolerance Band

Any registration mark not ignored Next registration mark

If all marks are to be recognized as good marks, enter a 0 in DIST and a O in
IGNR.

Whenever a good registration mark occurs, the axis position is reset to the value
entered in DIM.

PROGRAMMING NOTE

The REGIST function should be called only once when you are ready to begin reg-
istration. It is only necessary to call it again if any of the inputs have changed.
When the REGIST function is called, any pending non-motion reference is
cleared.

Note: Any motion reference in the active or next queue will prevent the regis-
tration function from executing.

SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the REGIST function with a SER-
COS axis.

Background on registration

In many closed-loop servo systems, it is often necessary to maintain synchroniza-
tion and accurate positioning repeatedly throughout a process. This can be diffi-
cult when the product or process itself is inconsistent. Using registration allows
you to overcome this difficulty.

Chapter 2 Function/Function Block Description 2-329

REGIST

Many factors can contribute to inconsistency. Some examples of the numerous
possibilities are listed below.

2-330 Chapter 2 Function/Function Block Description

REGIST

e Working with non-rigid material which may stretch or shrink during pro-
cessing.

e Working with the mechanics of a system where the revolution of a feedback
device may give you 5975 counts on one revolution and 5974 on the next.

e Unevenly spaced products on a belt.

Typically, when using registration, sensors are used to detect the position of the
product. With non-rigid materials which may stretch or shrink, a photo eye can
detect registration marks on the material. With rigid products (or processes), a

proximity switch could detect material spacing.

With the PiC, registration capabilities are available on any axis with any move
type. The fast input on the feedback module allows a position at a registration
event to be captured. When this occurs, the system recalculates the numerical rep-
resentation of the axis position.

This is important in applications such as packaging or converting where the pro-
cess must be precisely coordinated and any non-rigid material cannot be depended
upon to retain dimensional relationships. These applications usually involve mas-
ter/slave moves. The fast input signals can be used as repeatable references to
which the master and all subsequent slaves continually synchronize. This discus-
sion uses a master/slave application.

Registration example

This example uses the RATIOPRO move which is based on a master/slave algo-
rithm. The move has a defined cycle length. Registration compensation, when
required, takes place within this cycle with the insertion of an offset value calcu-
lated by the software. (There are also offsets that can be entered by you with the
WRITE_SYV function.)

Looking at a packaging process (Figure 2-28.) where a labeled product coming
off a web of non-rigid material (master axis) must be cut with a rotary knife (slave
axis) to 5 inch lengths so that the label is always in the center of the product, you
would want to compensate for any variation in product length during each cycle.

Chapter 2 Function/Function Block Description 2-331

REGIST

Figure 2-28. One example for registration

Correcting taking place on
Registration running on master axis slave drive

Feedback W | PIC 900

Module [.d
e,
| Fle)i(i?m Rotary Knife
Draw Rolls Slave Axis

Master Axis / I

Photo Eye |}

Motor JFeedback
Device

/
Stationary Machine ~ Cut product

Registration Shear Point 5" long with
Marks label in center”

Continuous Web
of Material

2-332 Chapter 2 Function/Function Block Description

REGIST

If you did not compensate, then the error would accumulate and the label would no
longer be centered. As an example, the product is being cut at a rate of 500 per
minute. If the product becomes stretched so that the actual length is 5.001 inch, in
one minute the label on the product would be off by 1/2 inch--in two minutes, by 1
inch, etc.

By using a photo eye to detect registration marks on the product, any error in prod-
uct length will be detected. The rotary knife will adjust its position to compensate
for any error in product length so that the product is always cut at the correct posi-
tion. Because the stretching of the material is gradual, the compensation will be
minimal. If there is no stretching of the product, no compensation will occur.

Block diagrams of registration showing the interaction between the various com-
ponents of registration are shown in Figure 2-29. and in Figure 2-30.

Some of the bits and variables of the servo data functions (STATUSSYV,
READ_SV, and WRITE_SV) are used in conjunction with registration.

With registration running on the master axis (Figure 2-28.), the actual axis posi-
tion is monitored by the PiC with the feedback device.

The photo eye is watching for registration marks and sending a fast input signal
when it sees one. The “good mark detector” decides if the mark is recognized as
good by the parameters you have defined in DIST, TOLR, and IGNR. Information
coming out of the good mark detector includes whether a good or bad mark has
been detected, if the distance plus tolerance has been exceeded, and the number of
consecutive bad marks.

When a good mark is detected, that information is sent to two places; the registra-
tion calculation and the axis position calculation. In the registration calculation,
the LGTH value, the good mark, and the actual axis position are all used to calcu-
late an offset value for the master.

This offset value is sent to the master/slave profile (through the offset filter if it is
turned on).

When a good mark occurs, the axis position is reset to the value entered in DIM.

Chapter 2 Function/Function Block Description 2-333

REGIST

Figure 2-29. Block diagram of master registration

1 —
' Good mark detected : KEY
L, ! STATUSSV function—| Bad mark detected '
Reglstratlon . Distance + tolerance exceeded : O Indicates an input to the
: ! ior. — f i REGIST functi
on master axis . READ_SV' functior. Number of consecutive bad marks (V11) : unction
: ' V Indicates a variable for the
' ! READ_SV or WRITE_SV
' @ @@ ! functions
1
1
Photo Eye : v y '
u— Fast Input ——| Good mark | Good '
' detector !
g § \ mark !
I 1
ic . !
! 1
1
1
Registration Marks : A 4 '
1
. o 1
|:|: Actual Axis Position > Re gistration ' Master offset
T
- calculation ' *
1
Master axis ! '
: ' Master offset filter
, ! (V18) (optional)
- :
1
1
! Lock on
' | @ X Information
1
' . :
: . . ' . Master/slave
) . Axis position 1 Numerical profile
Axis position ‘ representation of) (Ratio_gr
calculation the master axis Ratiosyn
position. Ratiopro)

When registration is running on the slave axis (Figure 2-30.), the block diagram
is very similar to the master registration one in Figure 2-29.

2-334 Chapter 2 Function/Function Block Description

Registration
on slave axis

Photo Eye

U Fast Input _

i i

Registration Marks

READ_SV functior. — Number of consecutive bad marks (V11)

"Good mark detected

Bad mark detected

STATUSSV function ‘|:

Distance + tolerance exceeded

@@

|:|: Actual Axis Position

Slave axis

—l Good mark | Good

) detector

' mark .

1

1

1

! \ 4

1
Registration

—> & .

calculation

REGIST

Figure 2-30. Block diagram of slave registration

KEY
O Indicates an input to the
REGIST function
V Indicates a variable for the
READ_SV or WRITE_SV
functions

Slave offset

Y

Slave offset filter
(V17) (optional)

Lock on
| Information
. . . Master/slave
. . Axis position Numerical profile
Axis posmon representation otl (Ratio_gr
calculation \ the master axis Ratiogyn
\ . position. Ratiopro)
! 1
Chapter 2 Function/Function Block Description 2-335

REGIST

Two ways in which registration could be used are explained below. Every mark is
recognized in Figure 2-31. This can be done by entering a 0 in the DIST and a 0
in the IGNR inputs. Now every mark will be recognized as good.

Figure 2-31. Registration with all good marks

Registration marks

Product length

This is acceptable when there is no chance for the photo eye to trigger off of any
other mark on the product.

Sometimes there are other marks occurring that you do not want to register off of,
such as those shown in Figure 2-32. It is possible to skip unwanted marks.

Figure 2-32. Registration that recognizes some marks as good

Distance between rising and
falling edge of registration mark

Registration marks

Product length |

2-336 Chapter 2 Function/Function Block Description

RENAME

RENAME
Rename lo/COMM

[R'EI%E 71 Imputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONEL NAMZ (STRING) - a string containing the complete
pathname
ANAMZ FAIL} . . .
Inaz eral NAMZ (STRING) - a string containing the new file-
name
Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0

FAIL (BOOL) - energized if ERR #0
not energized if ERR =0

ERR (INT) - 0 if data transferred successtully
0 if data transfer unsuccessful

See Appendix B in the software manual for error codes.

The RENAME function block allows you to rename an existing file on the RAM-
DISK or in PiCPro. The complete pathname is placed in the first NAMZ and the
new name is placed in the second NAMZ. The new name must not be the name of
an existing file.

At the first NAMZ input, enter the complete pathname to rename a file in PiCPro:

With a subdirectory, Without a subdirectory,
PICPRO:c:\sub\filename.ext$00 ©F PICPRO:c:filename.ext$00

or the following to rename a file on the RAMDISK.

With a subdirectory, Without a subdirectory,
RAMDISK:sub\filename.ext$00 ©F RAMDISK:filename.ext$00

At the second NAMZ input, enter the new filename in the format shown below.

filename.ext$00

Note: The RENAME function block cannot be used with the FMSDISK.

Chapter 2 Function/Function Block Description 2-337

REPLACE

REPLACE
Replace String/REPLACE
REPLACE Inputs: EN (BOOL) - enables execution
{EN (= OUT (STRING) - output STRING
JouT---0uT INT (STRING) - characters to replace
1IN IN2 (STRING) - characters which replace
4IN2 L (INT) - length
1L P (INT) - position
1P Outputs:OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The REPLACE function is used to replace one or more characters in a STRING
with all characters from another STRING. All characters in the variable at IN2
replace characters in the variable at IN1, starting at the position specified by the
input at P. The input at L specifies how many characters in the variable at IN1 are
being replaced. The variables at IN1 and IN2 must be unique from the variable at
OUT.

An error occurs:

IfP =0

IfP > 255

If P > length of IN1

IfL > 255

IfIN1 = OUT

IfIN2 = OUT

If length of IN1 - L + length of IN2 > length of OUT

Example of replace function

Var at IN1 Varat IN2 ValueatL. ValueatP Var at OUT
stringLong?2 Istring 4 7 string1string?2

2-338 Chapter 2 Function/Function Block Description

REP_END

REP END
Repeat Profile End Motion/RATIOMOV

rep ep | Inputs: EN (BOOL) - enables execution (One-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS Outputs: OK (BOOL) - execution completed without error

The repeat profile end function is required to stop repeating profiles that have been
started in the RATIOCAM, RATIOSLP, or RATIOPRO functions.

It will only stop repeating profiles if the function calling for repeating profiles is in
the active queue. It has no effect on moves that are not in the active queue.

A REP_END function was activated while a RATIOPRO move was in the active
queue at the point 1 shown in Figure 2-33. The profile will continue executing
until it reaches segment 5. (See point 2.) Then it will come to an end instead of
returning to segment 2 as it does when repeating.

Figure 2-33. Ending a repeating profile

REP_END
function
activated at
this point

Profile will be executed to this
point and then will not repeat but
follow segments 5 to end

Portion of profile that will be repeated
when repeat profile is selected.

First segment Last segment

Chapter 2 Function/Function Block Description 2-339

RIGHT

RIGHT
Right String String/RIGHT

RIGHT Inputs: EN (BOOL) - enables execution
{EN 0K = OUT (STRING) - output STRING
JouT---0uT IN (STRING) - STRING to extract from
JIN L (INT) - length
HL Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The RIGHT function is used to extract characters from the right side of a string.
The number of characters specified by the input at L are extracted from the right
side of the variable at IN and placed into the variable at OUT.

An error occurs:
IfL > OUT
IfL > 255

Example of right function

Var at IN1 Valueat . Var at OUT
string1string2 7 string?2

2-340 Chapter 2 Function/Function Block Description

ROL

ROL
Rotate Left Binary/ROL

ROL Inputs: EN (BOOL) - enables execution
1N 0K = IN (BITWISE) - value to have bits rotated
JIN ouTk N (USINT) - number of bits to rotate
AN Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - rotated value

The ROL function is similar to the shift left function. The bits in the variable or
constant at IN are moved to the left the number of positions specified by N. The
bits on the left are not discarded, but are rotated, replacing the bits on the right.
The result is placed in the variable at OUT.

Rotate left, where N = 2:

Lilifofou]ufifo]

—l

Examples of rotate left:

ROL (3) 11110000 = 10000111
ROL (4) 01110011 = 00110111
ROL (6) 11000011 = 11110000

Chapter 2 Function/Function Block Description 2-341

ROR

ROR
Rotate Right Binary/ROR

ROR Inputs: EN (BOOL) - enables execution
1N 0K = IN (BITWISE) - value to have bits rotated
JIN ouTk N (USINT) - number of bits to rotate
AN Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - rotated value

The ROR function is similar to the shift right function. The bits in the variable or
constant at IN are moved to the right the number of positions specified by N. The
bits on the right are not discarded, but are rotated, replacing the bits on the left.
The result is placed in the variable at OUT.

Rotate right, where N = 2:

Lefofifolefifofo]

Examples of rotate right

ROR (3) 11110000 = 00011110
ROR (4) 01110011 = 00110111
ROR (8) 11001101 = 11001101

2-342 Chapter 2 Function/Function Block Description

R_PERCEN

R_PERCEN
Rate Percent Motion/MOVE_SUP

R_PERCEN Inputs: EN (BOOL) - enables execution
JEN oK AXIS (USINT) - identifies axis (servo)

JIAXIS RPER (USINT) - percent to increase or decrease fee-
reER drate at for all moves for the specified axis. The range
is from 0 to 199% with 100% being the feedrate
entered at RATE for distance, position and velocity
moves.

NOTE: If 200 to 255% is entered, the software han-
dles it as if 199 was entered.

Outputs: OK (BOOL) - execution completed without error

The rate percent function allows the feedrate for all moves connected with the
specified axis to be changed.

Note: This is a temporary change in feedrates lasting until the servos are
reinitialized. At that point, it defaults to the feedrates entered in setup.
The velocity limit entered in setup will never be exceeded by what is
entered in the RPER input.

Chapter 2 Function/Function Block Description 2-343

R_PERCEN

NOTES

2-344 Chapter 2 Function/Function Block Description

SC_INIT

SC_INIT
SERCOS initialization Motion/SERC_SYS
SVUWE T Inputs: REQ (BOOL) - set to call (one-shot)
{REQ DONEL OPTN (USINT) - must be zero
10PN FAILL Outputs: DONE (BOOL) - set when initialization has completed
eral successfully
FAIL (BOOL) - Set if initialization error occurred

ERR (UINT) - # 0 if initialization error occurred

The SC_INIT function block copies the initialization data into all SERCOS inter-
face modules. It is used in conjunction with the user-defined function block cre-
ated in the SERCOS setup program. See the PiCPro Software Manual for more
information.

The REQ input should be one-shot at the beginning of the ladder after calling the
user-defined function block created in SERCOS setup. The SC_INIT function
block must be scanned every ladder scan. Never program a jump around this func-
tion block.

The OPTN input is reserved for future use and must be set to zero.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

Chapter 2 Function/Function Block Description 2-345

SCA_ACKR

SCA ACKR
SERCOS axis acknowledge reference Motion/REF
-SWECKR_ Inputs: REQ (BOOL) - set to acknowledge the reference cycle
(one-shot)
{REQ DONE
AXIS (USINT) - identifies servo SERCOS axis
{AXIS FAILF
erRl Outputs: DONE (BOOL) - set when the write is complete
serrl FAIL (BOOL) - set if an error occurred

ERR (INT) # 0 if an error occurred
SERR (UINT) - slave error; # 0 if ERR is 128

The SCA_ACKR function block is used with a servo SERCOS axis and acknowl-
edges the reference cycle. It sends IDN 148 with a value of zero.

The drive will again be controlled by the SERCOS master (the PiC) after this func-
tion block is called.

The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to acknowledge the reference
cycle are complete.

The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

2-346

Chapter 2 Function/Function Block Description

SCA_CLOS

SCA_CLOS

SERCOS axis close Motion/INIT

MM o] Inputs: REQ (BOOL) - set to read the drive IDNs (one-shot)
REQ DONEL AXIS (USINT) - identifies servo SERCOS axis
AXIS FAILE Outputs: DONE (BOOL) - set when the write is complete

ERR| FAIL (BOOL) - set if an error occurred
SERR} ERR (INT) - # 0 if a read error occurred

SERR (UINT) - slave error; # 0 if ERR is 128

The SCA_CLOS function block is used to close a servo SERCOS position loop. It
performs the following:

read drive IDN 76 and determine if the drive modulo (rollover) is set
read IDN 103 if modulo is set

read IDN 47 to determine current drive position

update the servo data with the new position

send the value as commanded position

set the control bits to cause the drive to close the feedback loop.

The REQ input is set to read the drive IDN. This can take several scans.
The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to close the loop are set.

The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

Note:

Rollover on position in the PiC is the same concept as modulo in the drive.
They are independent of each other. Their values can be the same or dif-
ferent and one or the other or both can be turned on or off.

Chapter 2 Function/Function Block Description 2-347

SCA_CTRL

SCA _CTRL
SERCOS axis control Motion/DATA
SCA_CTRL Inputs: EN (BOOL) - set to call function
{EN ok L AXIS (USINT) - identifies SERCOS axis
JAXIS ERRL IN1 (BOOL) - used to set the appropriate control word
bit
4 IN1
Ing IN2 (BOOL) - used to set the appropriate control word
bit
{IN3 .
IN3 (BOOL) - used to set the appropriate control word
4{0PTN bit

OPTN (USINT) - defines which control word bits are
affected by IN1-3

Outputs: OK (BOOL) - set if write is allowed
ERR (INT) - # 0 if error occurred

When the SERCOS slave is being controlled by the functions in Motion.lib, the
SCA_CTRL function is used to control bits 6 - 9 and 11 of the MDT control word.
Refer to the SERCOS specification for the definitions of the MDT control word.

Bits 8, 9, and 11 define the operation mode. They are normally set to zero which is
the default.

Bits 6 and 7 define the real time control bits. The SERCOS specification and your
drive manual define the purpose of these bits. Typically, bits 6 and 7 are left at
ZEer0.

The following table illustrates how the IN and OPTN inputs are used.

2-348 Chapter 2 Function/Function Block Description

SCA_CTRL

If the OPTN| Then |is control Description
Input is: word bit
0 (Not used for SCA_CTRL)

IN1 8 The chart below summarizes the mode options for INT1,
1 IN? 9 IN2 agd IN3 when OPTN 1 is chosen. Typically, primary
operation is used.
IN3 11
Bits
11 9 8 [Description
0 0 0 [Primary operation mode (IDN 32)
0 0 1 [Secondary operation mode 1 (IDN 33)
0 1 0 [Secondary operation mode 2 (IDN 34)
0 1 1 [Secondary operation mode 3 (IDN 35)
1 0 0 [Secondary operation mode 4 (IDN 284)
1 0 1 [Secondary operation mode 5 (IDN 285)
1 1 0 [Secondary operation mode 6 (IDN 286)
1 1 1 [Secondary operation mode 7 (IDN 287)
IN1 6 Real time control bit 1
2 IN2 | not used
IN3 not used
IN1 7 Real time control bit 2
3 IN2 | not used
IN3 not used

Note: All bits default to zero.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a

list of errors.

Chapter 2 Function/Function Block Description 2-349

SCA_CTRL

Application Note

When the SERCOS slave is controlled by Motion. lib, you follow the steps sum-
marized below.

1. Initialize the SERCOS axis.
2. Initialize the servo axis.

3. Use the SCA_CTRL function to set the operation mode and the realtime
bits 1 and 2. NOTE: The primary operation mode is the default mode and
typically used for most applications.

4. Control bits 13, 14, and 15 for the drive loop closure with Motion.lib logic.
NOTE: If the loop closure bits must be controlled by the ladder,
WRITE_SV variable 48 must be set to 1 and the bits controlled by
SCS_CTRL.

2-350 Chapter 2 Function/Function Block Description

SCA_ERST

SCA_ERST
SERCOS axis error reset Motion/ERRORS
SWERST Inputs: REQ (BOOL) - set to reset internal E-errors (one-shot)
{REQ DONEL AXIS (USINT) - identifies servo SERCOS axis
1ax1s FAILL Outputs: DONE (BOOL) - set when errors are reset
ERR| FAIL (BOOL) - set if an error occurred
SERR | ERR (INT) # 0 if an error occurred

SERR (UINT) - slave error; # 0 if ERR is 128

The SCA_ERST function block is used to reset internal E-errors and can close the
loop on a servo SERCOS axis.

The REQ input is set to reset internal E-errors.

The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to reset the E-errors are com-
plete.

The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385 for
a list of errors.

Chapter 2 Function/Function Block Description 2-351

SCA_PBIT

SCA PBIT
SERCOS axis probe initalize Motion/MOVE_SUP
§ANé'g%T_ Inputs: REQ (BOOL) - executes function block (one-shot)
l AXIS (USINT) - SERCOS axis number (servo or digi-
{REQ DONE tizing
AXIS FALLF PRB (USINT) - SERCOS probe input direction
1PRB ERRF Qutputs: DONE (BOOL) - function block complete
SERR} FAIL (BOOL) - function block failure

ERR (INT) function block errror
SERR (UINT) - SERCOS slave error

The SCA_PBIT function block is used to initialize the SERCOS fast input.
Before executing a REGIST, MEASURE, or FAST_QUE function with a
SERCOS axis, this function block must be called to initialize the SERCOS fast
input. The SERCOS specification refers to the fast input as a "probe input".
Most SERCOS drive manufacturers provide two fast inputs: one for the
SERCOS servo axis and one for the SERCOS digitizing axis. When executed,
the SCA_PBIT function block will communicate with the SERCOS drive to
set up the drive’s fast input as requested by the PRB input.

The AXIS input identifies the SERCOS servo or digitizing axis.
The PRB input selects the probe input direction. Valid input values are:

Value Description of when to capture the SERCOS fast input

No SERCOS fast input capture
On the positive edge only

On the negative edge only

On both edges, positive edge first
On both edges, negative edge first

AL =O

The DONE output is set when the function block completes successfully.

The FAIL output is set if an error occurs.

The ERR output will return the error number if an error occurred. See Table 2-
11 on page 383 for a list of errors.

SERR output will return the SERCOS slave error number if ERR = 128. See
Table 2-12 on page 385 for a list of errors.

2-352 Chapter 2 Function/Function Block Description

SCA_PBIT

Note: The SCA_PBIT function block uses the SERCOS slave’s real-time
control bits and may also use the real-time status bits. Therefore, while
SCA_PBIT and the subsequent registration, measure, or fast queue
operations are active, the ladder should NOT attempt to do any of the
following:

Assign IDN numbers to the real-time status bits.

Assign IDN numbers to the real-time control bits.

Modify the control bits.

Modify any IDN related to the probe inputs.

Chapter 2 Function/Function Block Description 2-353

SCA_RCYC

SCA RCYC
SERCOS axis read cyclic Motion/DATA

SCA_RCYC Inputs: EN (BOOL) - set to call function

1N ok L AXIS (USINT) - identifies the servo SERCOS axis
IAXIS ERRLE TASK (STRUCT) - structure that accesses data elements
17ask within a servo task

MAIN (STRUCT) - structure that accesses data ele-
ments in the main ladder

Outputs: OK (BOOL) - set if read is allowed
ERR (INT) - # 0 if error occurred

-{MAIN

The SCA_RCYC function allows you to read cyclic data between the ladder and
the SERCOS hardware. It can be called either in a servo task or in the main ladder,
but never in both. When used in a servo task, the function needs to be called
once.When used in the main ladder, the function needs to be called continuously.

The STRUCT input at TASK and at MAIN must match the order and size of the
list of IDNs selected for the AT in IDN16. (In SERCOS setup, it is possible to copy
the IDN list to the clipboard from within the Define Cyclic Data dialog box and
then paste it into the software declarations table.) The structure is labeled ILISTR
and would have the following format:

ILISTR STURCT
IDN51 DINT
JDN... (varies)
IDN... (varies)

SIZE USINT

The SIZE member of the structure indicates the number of bytes in the AT cyclic
data as well as the number of bytes in the structure less the SIZE byte. The SIZE
will be compared with the size indicated on the SERCOS module and an error will
be generated if they are not equal. This preserves the integrity of the data.

Note: Regardless of where this function is used (in a servo task or in the main
ladder), you must enter the above structure at both the TASK input and
the MAIN input. The structure name must be different for each one, but
the members must be the same. Or you can make an array of structures
entering a different array on each input.

2-354

Chapter 2 Function/Function Block Description

SCA_RCYC

When the function is initially called, the address of TASK is stored in servo data
memory. During each servo update, the TASK structure is copied from the SER-
COS module to data memory.

Every time the function is called, the information in the TASK structure is copied
to the MAIN structure. There are internal checks that ensure the entire group of
IDNs came from the same interrupt.

The ERR output will be # 0 if an error occurred.See Table 2-11 on page 383 for a
list of errors.

Chapter 2 Function/Function Block Description 2-355

SCA_RECV

SCA_RECV
SERCOS axis receive Motion/DATA
-SC%MECV_ Inputs: REQ (BOOL) - request for receiving data (one-shot)
{REQ DONEL AXIS (USINT) - identifies the servo SERCOS axis
IAXIS FAILL DATA (STRUC) - structure that sets up the format for
loata emnl the data received
seppl Outputs: DONE (BOOL) - set when the data is received

FAIL (BOOL) - set if error occurred
ERR (INT) - # 0 if receive error occurred
SERR (UINT) - slave error; # 0 if ERR is 128

The SCA_RECYV function block is used to receive information from the service
channel section of the SERCOS communication.

The AXIS input identifies the servo SERCOS axis.

The DATA input is a structure with the following members:

2-356 Chapter 2 Function/Function Block Description

SCA_RECV

Member | Type Description
IDN UINT IDN value
IDTYPE [BYTE [0=(S)ystem 1 = (P)roduct
ELEM [USINT |l = Read procedure command status (SIZE = 1)
2 = Name string (SIZE = 3)
3 = Attribute (SIZE = 2)
4 = Units string (SIZE = 3)
5 = Minimum value (SIZE = 1 or 2)
6 = Maximum value (SIZE =1 or 2)
7 = Operation data (SIZE =1, 2, 3, or 4)
INOTE: When the SIZE is 3 or 4, a string must be provided at
the STRARR member and the string size must be entered at
the AVAIL member.
[f a 3 (attribute) is entered, the value will be put into the
[LDATA member DINT since the attribute is always a 4-byte
value.
[f a 5 (minimum value) or 6 (maximum value) is entered, the
data size must be the same as the operation data size above.
SIZE UINT 1 =two bytes 2 =four bytes 3 =String 4 = Array
AVAIL [UINT Quantity of bytes available in the array
ACTUAL [UINT Quantity of bytes actually in the array
SDATA [UINT Data received if 1 is entered in SIZE
[LDATA [DINT Data received if 2 is entered in SIZE
STRARR [STRING/ |(Optional - only required if a 3 or 4 is entered in SIZE)
ARRAY [Data received is a string if 3 is entered in SIZE or

data received is an array if 4 is entered in SIZE

The DONE output is set after the internal conditions to receive are set.

The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385 for
a list of errors.

Chapter 2 Function/Function Block Description

2-357

SCA_REF

SCA REF
SERCOS axis reference Motion/REF

[SI&%EF_ Inputs: REQ (BOOL) - request for reference cycle (one-shot)

{REQ DONEL AXIS (USINT) - identifies the servo SERCOS axis

IAXIS FAILL DIM (DINT) - the value to assign to the index mark

lom eral (feedback marker pulse) or the switch position

11127 serrl 1147 (WORD) - bits for IDN147

{opPTN sTaTlh QPTN (WORD) - 0if IDN 147 is not sent; 1 if IDN 147
is sent.

RSLT} '
Outputs: DONE (BOOL) - set when the reference cycle is com-

plete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; # 0 if a read error
occurred

SERR (UINT) - slave error; # 0 if ERR is 128

STAT (INT) - indicates which IDN is being sent or
received

RSLT (DINT) - the commanded position after the refer-
ence is complete NOTE: This value must be sent to the
slave before the SCA_ACKR function block is called.

The SCA_REF function block is used to run a reference cycle on the servo SER-
COS slave axis identified at the AXIS input.

The DIM input is the value assigned to the index mark or the reference switch
position.

The 1147 input holds the bits for IDN 147. Refer to the SERCOS specification for
more information. Typically, bits 2, 3, and 4 are 101 respectively. The other bits
depend on the application and the features offered by the drive.

The OPTN input determines whether IDN147 is sent during the reference cycle.
For some drives, IDN 147 must be sent during phase 2. Set bit 0 of the option word
to 1 if you are sending IDN 147 during the reference cycle. Set bit O of the option
word to 0 if you are not sending IDN 147 during the reference cycle.

The DONE output is set when the reference cycle is complete. The SCA_ACKR
function must be called after the reference cycle is complete.

The FAIL output is set if there is an error.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

2-358

Chapter 2 Function/Function Block Description

SCA_REF

SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385 for
a list of errors.

The STAT output indicates which IDN is being sent or received. It is used only for
troubleshooting failure conditions. See the chart below.

STAT# IDN

1 [Sending IDN 147 - option bits
Sending IDN 52 - reference position
Sending IDN 148 - start reference
Receiving IDN 148 - reference started?
Receiving IDN 403 - reference done?
Receiving IDN 47 - position?
Reference complete

S|l W|IN

The RSLT output gives the commanded position for your information after the ref-
erence is complete.

Chapter 2 Function/Function Block Description 2-359

SCA_RFIT

SCA_RFIT

SERCOS axis reference initalize

Motion/REF

— NAVE — :
SCARPIT| Lputs

REQ DONE}
AXIS FAILF
PRB MFAL}

OPTN ERRF} Outputs:
SERRF

REQ (BOOL) - executes function block (one-shot)
AXIS (USINT) - SERCOS axis number (servo or digi-
tizing)

PRB (USINT) - selects SERCOS probe input direction
OPTN (WORD) - reference options

DONE (BOOL) - initialization is complete

FAIL (BOOL) - initialization failure

MFAL (BOOL) - monitor failure

ERR (INT) - SERCOS errror

SERR (UINT) - SERCOS slave error

The SCA_RFIT function block must be executed before calling a FAST_REF
or LAD_REF function. The function block performs two functions:

1. When the REQ input is energized, it initializes the SERCOS drive’s fast
input (referred to as a probe input in the SERCOS specification) and index

mark detection as

requested by the PRB and OPTN inputs.

2. After the DONE output is set and after the FAST_REF or LAD_REEF func-
tion has begun, it continually communicates with the SERCOS drive to
monitor the occurrence of the reference switch or index mark and then
reads the latched position from the drive. Because of this monitoring fea-
ture, the SCA_RFIT function block must be scanned every ladder scan
while the reference cycle is active. Never program a jump around this func-

tion block.

The AXIS input specifies the SERCOS servo or digitizing axis.

The PRB input selects the probe input direction. Valid input values are:

Value

Description

0 Do not capture the axis position with SERCOS probe input

1 |Capture the axis position on the SERCOS probe input positive edge

2 |Capture the axis position on the SERCOS probe input negative edge

The OPTN input provides the following options:

Description

0 [Ignore index (binary value = 0000000000000001)

1-15 [Notused

2-360 Chapter 2 Function/Function Block Description

SCA_RFIT

Setting bit 0 will cause the SERCOS drive to capture the axis position at the
reference switch. Leaving bit O reset will cause the SERCOS drive to capture
the axis position at the first occurrence of the index mark after the reference
switch.

Note: The state of bit O (set or reset) must match the state of bit O of the
OPTN input of the FAST_REF or LAD_REF function.

IMPORTANT: If the SERCOS drive is not a Giddings & Lewis Centurion
drive, bit O must be set. Currently, only the Giddings & Lewis Centurion drives
support capturing the axis position at the first occurrence of the index mark
after the reference switch.

The DONE output is set when the initialization phase completes successfully.
It is then OK to execute the FAST REF or LAD REF function.

The FAIL output is set if an error occurs during the initialization phase.

The MFAL output is set if an error occurs during the monitoring phase. If
MFAL is set, the reference will be aborted.

The ERR output will return the error number if an error occurred during either
the initialization phase or the monitoring phase.

The SERR output will return the SERCOS slave error number if ERR = 128.

NOTE: The SCA_RFIT function block uses the SERCOS slave’s real-time
control bits. Therefore, while the SCA_RFIT function block and the
subsequent fast reference or ladder reference operations are active, the ladder
should not attempt to:

1. Assign IDN numbers to the real-time controls bits.
2. Modify the real-time controls bits.
3. Modify any IDN related to the probe inputs.

Chapter 2 Function/Function Block Description 2-361

SCA_SEND

SCA _SEND
SERCOS axis send Motion/DATA
-SCX%END_ Inputs: REQ (BOOL) - request to send data (one-shot)
{REQ DONEL AXIS (USINT) - identifies the servo SERCOS axis
IAXIS FAILL DATA (STRUC) - structure that sets up the format for
loata emnl the data sent
Serml Outputs: DONE (BOOL) - set when the send is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; # 0O if a send error
occurred

SERR (UINT) - slave error; # 0 if ERR is 128

The SCA_SEND function block is used to send information to the service channel
section of the SERCOS communication.

The AXIS input identifies the servo SERCOS axis.

The DATA input is a structure with the following members:

2-362

Chapter 2 Function/Function Block Description

SCA_SEND

IMember [Iype IDescription
IDN UINT DN value
IDTYPE [BYTE 0 = (S)ystem 1 = (P)roduct

ELEM [USINT |2 = Name string (SIZE = 3)

3 = Attribute (SIZE = 2)

4 = Units string (SIZE = 3)

5 = Minimum value (SIZE =1 or 2)

6 = Maximum value (SIZE =1 or 2)

7 = Operation data (SIZE =1, 2, 3, or 4)

INOTE: When the SIZE is 3 or 4, a string must be provided at
the STRARR member and the string size must be entered at
the AVAIL member.

[f a 3 (attribute) is entered, the value will be put into the
[LDATA member DINT since the attribute is always a 4-byte
value.

[f a 5 (minimum value) or 6 (maximum value) is entered, the
data size must be the same as the operation data size above.
SIZE UINT 1 =two byte 2 =fourbyte 3=String 4= Array
AVAIL [UINT Quantity of bytes available in the array

ACTUAL [UINT Quantity of bytes actually in the array

SDATA [UINT Data to be sent if 1 is entered in SIZE

LDATA [DINT Data to be sent if 2 is entered in SIZE

STRARR [STRING/ |(Optional - only required if a 3 or 4 is entered in SIZE)
IARRAY |Data received is a string if 3 is entered in SIZE or

data received is an array if 4 is entered in SIZE

NOTE: The same structure members are used for the SCA_RECYV and the
SCA_SEND function blocks.

The DONE output is set after the internal conditions to send are set.
The FAIL output is set if an error occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385 for
a list of errors.

Chapter 2 Function/Function Block Description 2-363

SCA_STAT

SCA STAT
SERCOS axis status Motion/DATA

SCA STAT Inputs: EN (BOOL) - set to read
1N oK} AXIS (USINT) - identifies the SERCOS axis
AXIS STATL Outputs: OK (BOOL) - set if read is allowed

STAT (WORD) - the status word of the most recent AT
info

The SCA_STAT function is used for monitoring the ready-to-operate drive mode,
for diagnostic troubleshooting, or for monitoring the two real-time status bits
returned from the drive. For the definition of the bit assignments to the AT status
word, consult the SERCOS specification.

2-364 Chapter 2 Function/Function Block Description

SCA_wcycC

SCA WCYC
SERCOS axis write cyclic Motion/DATA

SCA_WCYC Inputs: EN (BOOL) - set to call function (one-shotted)

1N ok L AXIS (USINT) - identifies the servo SERCOS axis
IAXIS ERRL TASK (STRUCT) - structure that accesses data elements
17ask within a servo task

Outputs: OK (BOOL) - set if read is allowed
ERR (INT) - # 0 if error occurred

The SCA_WCYC function allows you to write cyclic data between the ladder and
the SERCOS hardware. It is called once and may only be used in a servo task.

The STRUCT input at TASK must match the order and size of the list of IDNs
selected for the MDT in IDN24. (In SERCOS setup, it is possible to copy the IDN
list to the clipboard from within the Define Cyclic Data dialog box and then paste
it into the software declaration table.) The structure would have the following for-
mat:

ILISTW STRUCT
IDN47 DINT
JDN... (varies)
IDN... (varies)

SIZE USINT

The SIZE member of the structure indicates the number of bytes in the MDT
cyclic data as well as the number of bytes in the structure less the SIZE byte. The
SIZE will be compared with the size indicated on the SERCOS module and an
error will be generated if they are not equal. This preserves the integrity of the
data.

When the function is initially called, the address of TASK is stored in servo data
memory. During each servo update, the TASK structure is copied from data mem-
ory to the SERCOS module.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

Chapter 2 Function/Function Block Description 2-365

SCR_CONT

SCR_CONT
SERCOS ring continue Motion/SERC_SYS

SCR_CONT Inputs: EN (BOOL) - enables execution (one-shot)

JEN ok SR (STRUCT) -structure that identifies the SERCOS
ring affected

Outputs: OK (BOOL) -set if continuation is allowed
ERR (USINT) - 0 if OK is set; # 0 if an error occurs

1SR ERR}

If you have chosen in SERCOS setup to pause SERCOS communication of this
ring after phase 2 in order to send additional IDN numbers, use the SCR_CONT
function to continue through phase 4.

The SR input is a structure consisting of the following members which identify the
SERCOS axis:

SLOT (UINT)

RING (UINT)

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

2-366

Chapter 2 Function/Function Block Description

SCR_ERR

SCR _ERR
SERCOS ring error Motion/SERC_SYS
NME . Inputs: EN (BOOL) - set to read errors
SCR_ERR puts:
1N okl SR (STRUCT) - structure that identifies the SERCOS
ring
1SR ERRF
stvl Outputs: OK (BOOL) - set if the SR input is valid
onk ERR (INT) - 0 if there is no error; # O if an error occurs
SERRL SLV (UINT) -identifies slave 1 - 8 if ERR =128, 136, or
144

IDN (UINT) - indicates the most recent IDN read or
written if ERR = 128 or 144

SERR (UINT) - slave error; # 0 if ERR is 128
NOTE: SLV, IDN, and SERR are valid only if ERR # 0.

The SCR_ERR function block identifies ring errors that can occur during the
transfer of IDNs. It can also represent a hardware failure such as a break in the
fiber optic cable or a failure during initialization. In addition, it can supply some
information as to what is happening before the error occurred. See the background
information at the end of this description.

The SR input is a structure consisting of the following members which identify the
SERCOS ring:

SLOT (UINT)
RING (UINT)

The ERR output will be # 0 if an error occurred.

Note: You must always return to phase 0 and reinitialize the SERCOS ring after
a ring error occurs.

Chapter 2 Function/Function Block Description 2-367

SCR_ERR

ERR# |Descripti0n What to do/check
0 [Noerror
3 |Axis is not initialized, is not a SER- [* SERCOS board in correct slot
COS axis, or the slot/ring/slave spec-[e SR structure members correct
ification is incorrect.
17 [The SERCOS module did not receive|[®* Check connection
an expected AT response. Cable
could be disconnected.
20 |Phase O detected that the ring is not |® Verify SERCOS baud rate
complete. e Check connection
e Ensure drive is turned on
65 [Error occurred calculating when * Too many slaves on one ring
MDT should occur. e One or more drives cannot accommodate
required MDT
66 |Error occurred calculating when * Too many slaves on one ring
drive data valid. e One or more drives cannot accommodate
command times
67 |[Error occurred calculating when Too many slaves on one ring
feedback data valid. ¢ One or more drives cannot accommodate
feedback capture times
68 |Error occurred calculating total time [* 100 many slaves on one ring
required for communication cycle |e Cyclic data on slaves too long
e Update rate too fast
69 [Error occurred calculating cyclic data[® 100 many slaves on one ring
memory for SERCON processor. e Cyclic data on slaves too long
70 [Error occurred calculating cyclic data[® 100 many slaves on one ring
memory for internal memory map. |e Cyclic data on slaves too long
71 [Error occurred calculating service |* 100 many slaves on one ring
channel memory map. e Cyclic data on slaves too long
74 [CPU on SERCOS module has too [100 many slaves on one ring
many tasks during update. Too many |e Cyclic data on slaves too long
slaves on one ring
128 [Slave error occurred. Read SERR |[* SLV output contains slave number
output to identify error. The SLV outHe IDN output contains the IDN transfer that
put indicates the slave number. caused the error
¢ SERR output contains the drive generated
error number
e Read Drive diagnostic IDN 95
2-368 Chapter 2 Function/Function Block Description

SCR_ERR

136 [Individual slave will not respond. [® Address switch on drive does not match
The SLV output indicates the slave [slave number
number. e Baud rate switch on drive does not match
rate in ring definition
e SLV output contains slave number that does
not respond
144 [Individual slave cannot carry outa |® SLV output contains slave number

Procedure Command Function. The
SLV output indicates the slave num-
ber.

e IDN output contains the Procedure Com-
mand Function that caused the error

e For IDN = 127, read IDN 22 to read list of
IDNSs still required by the drive

e For IDN = 128, read IDN 23 to read list of
IDNs still required by the drive

e Read Drive diagnostic IDN 95

The SLV output is valid only if the ERR output equals 128, 136, or 144. Then it
can be helpful in identifying which slave (1 - 8) has the problem.

The IDN output is valid only if the ERR output equals 128 or 144. Then it indi-
cates the most recent IDN read or written.

SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385 for

a list of errors.

Background Information on Using SCR_ERR for Diagnostics

Phase 0

Phase 1

If the SCR_PHAS function does not return a "4" at the PHAS output within a few
seconds of calling SC_START, looking at the outputs of the SCR_ERR function
block will be helpful to diagnose problems that may have occurred. (Remember
that you may have chosen to pause at phase 2.)

If a ring error occurs during the initialization through the phases, the SCR_ERR
function block outputs show the most recent IDN number and the slave to which it
was sent or received. If the slave returned an error due to an IDN transfer, this
error number defined by the slave manufacturer can be read at the SERR output.
This information in addition to knowing the sequence of the IDN send and receive
activity will aid in diagnosing the initialization failure. This activity is described

below.

During phase 0 a test is performed to determine if a communication telegram is
able to make it all the way around the ring. If it can, the fiber optic ring is com-
plete and all slaves are turned on. If it cannot, error 20 will occur.

Each slave is individually addressed and a response is expected. If the address
switches on the drive are not set correctly, it will not respond when addressed by

Chapter 2 Function/Function Block Description 2-369

SCR_ERR

the PiC. If a slave does not respond, error 136 occurs and the number of the unre-
sponsive slave will appear at the SLV output. When phase 1 is completed, all the
drives are addressed properly.

Phase 2
Several IDNs are read, calculations are made and several IDNs are written for each
slave on the ring. If a slave cannot respond with data due to an IDN read or does
not accept IDN data from an IDN write, error 128 will occur and the most recent
IDN and slave read or written will appear at the IDN and SLV output. If an error
occurs, no more IDNss are read or written to any slave. The order in which the
IDNSs are read and written are:
For each slave in numerical order:
Read the following IDNs: 3,4, 5, 88, 90, and 96.
Timing calculations are done based on this read information.
For each slave in numerical order:
Write the following IDNs: 1, 2, 6, 89, 8,7, 9, 10, 15, and 32.
Note: IDN 32 is not sent if telegram type of IDN 151is 0 or 7.
For each slave:
The IDNs in the SERCOS setup list are written.
For each slave:
IDNs 99 and 127 are written.
If pause after phase 2 was set, IDNs are transferred as requested by the ladder. If
phase 2 is complete, all timing is calculated, all configuration IDNs have been
written and accepted by the slaves.

Phase 3
For each slave:
IDN 128 is written.
Note: Phase 3 is a brief preparation for phase 4.

Phase 4
All initializing operations are complete.
The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

2-370 Chapter 2 Function/Function Block Description

SCR_PHAS

SCR_PHAS
SERCOS ring phase Motion/SERC_SYS

SCR PHAS Inputs: EN (BOOL) - set to call function

JEN) oKL SR (STRUC) -structure that identifies SERCOS ring
SR pPHASE Outputs: OK (BOOL) -set if phase number is returned

PHAS (USINT) - highest phase number completed

The SCR_PHAS function identifies the completed phase (0 - 4).

The SR input is a structure consisting of the following members which identify the
SERCOS ring:

SLOT (UINT)
RING (UINT)

The OK output will remain clear until phase 0 has begun.

The PHAS output gives the highest phase (0 - 4) completed by the SERCOS ring
identified at the SR input.

Chapter 2 Function/Function Block Description 2-371

SCS_ACKR

SCS ACKR
SERCOS slave acknowledge reference Motion/SERC_SLV

SWECKR Inputs: REQ (BOOL) - set to acknowledge the reference cycle
(one-shot)
{REQ DONE} S
SRS FATL SRS (STRUC) - structure that identifies SERCOS slave
eral Outputs: DONE (BOOL) - set when the write is complete
sernl FAIL (BOOL) - set if an error occurred

ERR (INT) # 0 if a read error occurred
SERR (UINT) - slave error; # 0 if ERR is 128

The SCS_ACKR function block acknowledges the reference cycle. It sends IDN
148 with a value of zero.

CAUTION

You must write the newly referenced value (using the
SCS_SEND or WRITE_SYV function) that is returned from the
SCS_REF function before calling this function block.

The drive will again be controlled by the SERCOS master (the PiC) after this func-
tion block is called.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

SLOT (UINT)
RING (UINT)
SLAVE (UINT)

The DONE output is set after the internal conditions to acknowledge the reference
are set.

The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

2-372

Chapter 2 Function/Function Block Description

SCS_CTRL

SCS CTRL
SERCOS slave control Motion/SERC_SLV

SCS_CTRL Inputs: EN (BOOL) - set to call function
1EN oKk SRS (STRUC) - structure that identifies SERCOS slave
ISRS ERRL IN1 (BOOL) - used to set the appropriate control word
11N bit
1 IN2 (BOOL) - used to set the appropriate control word
bit
4{IN3 .
IN3 (BOOL) - used to set the appropriate control word
4{0PTN bit

OPTN (USINT) - defines which control word bits are
affected by IN1-3

Outputs: OK (BOOL) - set if write is allowed
ERR (INT) - # 0 if error occurred

The SCS_CTRL function is used to control bits 6 - 9, bit 11, and bits 13 - 15 of the
MDT control word. Refer to the SERCOS specification for the definitions of the
MDT control word.

Typically, bits 13 - 15 are all set to 1 to enable the drive. Bits 8 and 9 define the
operation mode. They are normally set to zero which is the default.

Bits 6 and 7 define the real time control bits. The SERCOS specification and your
drive manual define the purpose of these bits. Typically, bits 6 and 7 are left at
ZEero.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

Chapter 2 Function/Function Block Description 2-373

SCS_CTRL

The table below illustrates how the IN and OPTN inputs are used.

SLOT (UINT)
RING (UINT)
SLAVE (UINT)

If the OPTN| Then |is control Description
Input is: word bit
IN1 13 Halt/restart drive
0* IN2 14 Enable drive
IN3 15 Drive on/off
IN1 The chart below summarizes the mode options for IN1,
1 IN2 9 IN2 and IN3 when OPTN 1 is chosen. Typically, primary
operation is used
IN3 11
Bits
11 9 8 |Description
0 0 0 |Primary operation mode (IDN 32)
0 0 1 [Secondary operation mode 1 (IDN 33)
0 1 0 [Secondary operation mode 2 (IDN 34)
0 1 1 [Secondary operation mode 3 (IDN 35)
1 0 0 [Secondary operation mode 4
(IDN 284)
1 0 1 [Secondary operation mode 5
(IDN 285)
1 1 0 [Secondary operation mode 6
(IDN 286)
1 1 1 [Secondary operation mode 7
(IDN 287)
IN1 6 Real time control bit 1
2 IN2 | not used
IN3 | not used
IN1 7 Real time control bit 2
3 IN2 | not used
IN3 | not used

*If the SERCOS slave is being controlled by the functions in Motion.lib, the
CLOSLOOQOP and OPENLOORP functions will control these bits and SCS_CTRL
must not be called with option 0 or 1.

2-374

Chapter 2 Function/Function Block Description

SCS_CTRL

Note: All bits default to zero.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

Chapter 2 Function/Function Block Description 2-375

SCS_RECV

SCS RECV
SERCOS slave receive Motion/SERC_SLV

Sclglé'\F/%lECV Inputs: REQ (BOOL) - request for receiving data (one-shot)

{REQ DONEL SRS (STRUCT) - structure that identifies the SERCOS
slave

4{SRS FAILF

loata emal DATA (STRUCT) - structure that sets up the format for

the data received

Outputs: DONE (BOOL) - set when data received
FAIL (BOOL) - set if error occurred
ERR (INT) - # 0 if receive error occurred
SERR (UINT) - slave error, # 0 if ERR = 128

SERR}

The SCS_RECYV function block is used to receive information from the service
channel section of the SERCOS communication.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

SLOT (UINT)
RING (UINT)
SLAVE (UINT)

2-376

Chapter 2 Function/Function Block Description

SCS_RECV

The DATA input is a structure with the following members:

IMember

Type

|Description

IDN

UINT

[DN value

IDTYPE

BYTE

0 = (S)ystem 1 = (P)roduct

ELEM

USINT

1 = Read procedure command status (SIZE = 1)

2 = Name string (SIZE = 3)

3 = Attribute (SIZE = 2)

4 = Units string (SIZE = 3)

5 = Minimum value (SIZE = 1 or 2)

6 = Maximum value (SIZE =1 or 2)

7 = Operation data (SIZE =1, 2, 3, or 4)

INOTE: When the SIZE is 3 or 4, a string must be provided at
the STRARR member and the string size must be entered at
the AVAIL member.

[f a 3 (attribute) is entered, the value will be put into the
[LDATA member DINT since the attribute is always a 4-byte
value.

[f a 5 (minimum value) or 6 (maximum value) is entered, the
data size must be the same as the operation data size above.
1 =two bytes 2= four bytes 3 =String 4 = Array
Quantity of bytes available in the array

Quantity of bytes actually in the array

SIZE
AVAIL
ACTUAL
SDATA
LDATA
STRARR

UINT
UINT
UINT
UINT
DINT

STRING/
ARRAY

Data received if 1 is entered in SIZE
Data received if 2 is entered in SIZE
(Optional - only required if a 3 or 4 is entered in SIZE)

Data received is a string if 3 is entered in SIZE or
data received is an array if 4 is entered in SIZE

The DONE output is set after the internal conditions to receive are complete.
The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

Chapter 2 Function/Function Block Description 2-377

SCS_REF

SCS REF
SERCOS slave reference Motion/SERC_SLV

[S%@%EF_ Inputs: REQ (BOOL) - request for reference cycle (one-shot)

{REQ DONEL SRS (STRUC) - identifies the servo SERCOS slave

1SRS FAILL DIM (DINT) - the value to assign to the index mark

lom eral (feedback marker pulse) or the switch position

11127 serrl 1147 (WORD) - bits for IDN147

{opPTN sTaTlh QPTN (WORD) - 0if IDN 147 is not sent; 1 if IDN 147
is sent.

RSLT} '
Outputs: DONE (BOOL) - set when the reference cycle is com-

plete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; # 0 if a read error
occurred

SERR (UINT) - slave error; # 0 if ERR is 128

STAT (INT) - indicates which IDN is being sent or
received

RSLT (DINT) - the commanded position after the refer-
ence is complete NOTE: This value must be sent to the
slave before the SCS_ACKR function block is called.

The SCS_REF function block is used to run a reference cycle on the non-servo
SERCOS slave axis identified at the SRS input.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

SLOT (UINT)
RING (UINT)
SLAVE (UINT)

The DIM input is the value assigned to the index mark or the reference switch
Position.

2-378 Chapter 2 Function/Function Block Description

SCS_REF

The 1147 input holds the bits for IDN 147. Refer to the SERCOS specification for
more information. Typically, bits 2, 3, and 4 are 101 respectively. The other bits
depend on the application and the features offered by the drive.

The OPTN input determines whether IDN147 is sent during the reference cycle.
For some drives, IDN 147 must be sent during phase 2. Set bit 0 of the option word
to 1 if you are sending IDN 147 during the reference cycle. Set bit O of the option
word to 0 if you are not sending IDN 147 during the reference cycle.

The DONE output is set when the reference cycle is complete. The SCS_ACKR
function must be called after the reference cycle is complete.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

The STAT output indicates which IDN is being sent or received. It is used only for
troubleshooting failure conditions. See the chart below.

STAT# [IDN

1 [Sending IDN 147 - option bits
Sending IDN 52 - reference position
Sending IDN 148 - start reference
Receiving IDN 148 - reference started?
Receiving IDN 403 - reference done?
Receiving IDN 47 - position?
Reference complete

S|l |W|IN

The RSLT output gives the commanded position after the reference is complete. If
the ladder is using the SCS_SEND function to write the drive position, this new
value must be used prior to calling the SCS_ACKR function.

Chapter 2 Function/Function Block Description 2-379

SCS_SEND

SCS SEND
SERCOS slave send Motion/SERC_SLV

Sclglé’\SAEND Inputs: REQ (BOOL) - request to send data (one-shot)

{REQ DONEL SRS (STRUCT) - structure that identifies the SERCOS
slave

4{SRS FAILF

loata emal DATA (STRUCT) - structure that sets up the format for

the data sent
Outputs: DONE (BOOL) - set when the send is complete
FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; # O if a send error
occurred

SERR (UINT) - slave error, # 0 if ERR = 128

SERR}

The SCS_SEND function block is used to send information to the service channel
section of the SERCOS communication.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

SLOT (UINT)
RING (UINT)
SLAVE (UINT)

2-380

Chapter 2 Function/Function Block Description

SCS_SEND

The DATA input is a structure with the following members:

IMember Type |Descripti0n

IDN UINT IDN value

IDTYPE [BYTE [0=(S)ystem 1 = (P)roduct

ELEM USINT [2 = Name string (SIZE = 3)

3 = Attribute (SIZE = 2)

4 = Units string (SIZE = 3)

5 = Minimum value (SIZE =1 or 2)

6 = Maximum value (SIZE = 1 or 2)

7 = Operation data (SIZE =1, 2, 3, or 4)

INOTE: When the SIZE is 3 or 4, a string must be provided at the
STRARR member and the string size must be entered at the
AVAIL member.

[f a 3 (attribute) is entered, the value will be put into the LDATA
imember DINT since the attribute is always a 4-byte value.

[f a 5 (minimum value) or 6 (maximum value) is entered, the data
size must be the same as the operation data size above.

SIZE UINT 1 =two bytes 2= fourbytes 3 =String 4= Array
AVAIL [UINT Quantity of bytes available in the array

ACTUAL |UINT Quantity of bytes actually in the array

SDATA [UINT Data sent if 1 is entered in SIZE

[LDATA [DINT Data sent if 2 is entered in SIZE

STRARR [STRING/ |(Optional - only required if a 3 or 4 is entered in SIZE)
ARRAY |Data sent is a string if 3 is entered in SIZE or
data sent is an array if 4 is entered in SIZE

NOTE: The same structure members are used for the SCS_RECV and the
SCS_SEND function blocks.

The DONE output is set after the internal conditions to send are complete.

The FAIL output is set if an ERR occurs.

The ERR output will be # 0 if an error occurred. See Table 2-11 on page 383 for a
list of errors.

The SERR output will be # 0 if the ERR output is 128. See Table 2-12 on page 385
for a list of errors.

Chapter 2 Function/Function Block Description 2-381

SCS_STAT

SCS STAT
SERCOS slave status Motion/SERC_SLV

SCS_STAT Inputs: EN (BOOL) - set to read

JEN oKL SRS (STRUC) - structure that identifies the SERCOS
slave

Outputs: OK (BOOL) - set if read is allowed

STAT (WORD) - the status word of the most recent AT
info

SRS STAT}

The SCS_STAT function is used for monitoring the ready-to-operate drive mode,
for diagnostic troubleshooting, or for monitoring the two real-time status bits
returned from the drive. For the definition of the bit assignments to the AT status
word, consult the SERCOS specification.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

SLOT (UINT)
RING (UINT)
SLAVE (UINT)

2-382 Chapter 2 Function/Function Block Description

SERCOS Errors

SERCOS Errors

The errors listed in Table 2-11 can appear at the ERR output of certain SERCOS
functions\function blocks described in the preceding section.

Table 2-11 List of ERR Errors

ERR # |Descripti0n

0 No error

1 IDN queue was busy when called.

2 Quantity specified in the .AVAIL structure member is not large enough for
received data.

3 [Axis is not initialized, is not a SERCOS axis, or the slot/ring/slave specification is
incorrect.

4 [nvalid data in DATA input structure

5 Error reset function could not be completed.

6 SERCOS ring 1 busy*

7 SERCOS ring 2 busy*

8 SERCOS ring 1 configuration size error**

9 SERCOS ring 2 configuration size error**

10 Function block enabled while already in process

1 Bit 3 or bit 8 set in the procedure command acknowledgment (data status)
Either operation data invalid or procedure command error

12 [Not enough pool memory available

13 Change bit in status word was zero after reference complete.

14 [The IDN queue was cleared during an IDN transfer, typically caused by calling
the SC_INIT function while an IDN is being read or written.

15 SERCOS module is unavailable for IDN transfer because the phase-to-phase tran-|
sistion in progress is between phase 2 and phase 4.

16 Slave response timed out

17 The SERCOS module did not receive an expected AT response. SERCOS cable
may be disconnected.

18 Number of SERCOS slots equals zero.

19 The SERCOS module did not receive an expected MDT response. SERCOS
cable may be disconnected.

20 Phase 0 detected that the ring is not complete. The optic cable could be open or
drive turned off.

21 The SERCOS module firmware is outdated for the features requested from a
newer version of the motion library.

22 [The SERCOS module firmware is a newer version and the motion library is out-
dated and unable to interface.

23 [The version of PiCPro used to create the SERCOS setup data is outdated for the
features requested from the library or the SERCOS module firmware.

24 [The version of PiCPro used to create the SERCOS setup data is a newer version
and the library is unable to interface.

Chapter 2 Function/Function Block Description 2-383

SERCOS Errors

25 A two-ring SERCOS module was specified in SERCOS setup but the module is a
one-ring SERCOS module.

26 Invalid PRB or INDX input on the SCA_PBIT or SCA_RFIT function blocks or
invalid OPTN input on the SCA_RFIT function block.

27 Either the setup data was configured for an MMC but the CPU is a PiC or the
setup data was configured for a PiC but the CPU is an MMC.

30 [The drive status word (bit 13=1) indicates an error.

31 An E-stop condition exists for this axis in the PiC900.

32 Incorrect phase number, contact Giddings & Lewis.

33 Incorrect address error, contact Giddings & Lewis.

34 Incorrect AT number error, contact Giddings & Lewis.

35 Variable 48 is set to 1 and you attempt to close the loop

36 OPTN input is invalid.

48 Service channel not ready when attempt to send/receive non-cyclic data

49 [No data to send or receive

50 The value of the .SIZE member of the TASK input structure does not match the
byte count in the SERCOS module.

51 [The value of the .SIZE member of the MAIN input structure does not match the
byte count in the SERCOS module.

65 Error occurred calculating when MDT should occur.

66 Error occurred calculating when drive data valid.

67 Error occurred calculating when feedback data valid.

68 Error occurred calculating total time required for communication cycle.

69 Error occurred calculating cyclic data memory for SERCON processor.

70 Error occurred calculating cyclic data memory for internal memory map.

71 Error occurred calculating service channel memory map.

72 Incorrect ring error, contact Giddings & Lewis.

73 Incorrect AT count error, contact Giddings & Lewis.

74 CPU on SERCOS module has too many tasks during update.

128 [Slave error occurred. Read SERR output to identify error. The SLV output indi-
cates the slave number.

136 [Slave will not respond in phase 1. The SLV output indicates the slave number.

144 [Procedure command error - The slave number can be viewed at the SLV output
and the IDN number at the IDN output.
*This busy error may occur if the SC_INIT function is not one-shotted and a sec-
ond store operation is attempted before the first one is done.
**This size error will occur if too many IDNs are defined in the SERCOS setup
data.
The errors listed in Table 2-12 can appear at the SERR output of certain SERCOS
functions/function blocks described in the preceding section.

2-384 Chapter 2 Function/Function Block Description

Table 2-12 List of SERR Errors

SERCOS Errors

SERR #|Descripti0n

4097

This IDN does not exist.

4105

[The data for this IDN may not be accessed.

8193

The name does not exist

8194

The name transmission is too short

8195

The name transmission is too long

8196

[The name may not be changed

8197

The name is write-protected

12290

The attribute transmission is too short

12291

[The attribute transmission is too long

12292

The attribute may not be changed

12293

The attribute is write-protected at this time

16385

The units do not exist

16386

The units transmission is too short

16387

[The units transmission is too long

16388

[The units may not be changed

16389

[The units are write-protected at this time

20481

The minimum value does not exist

20482

The minimum value transmission is too short

20483

The minimum value transmission is too long

20484

[The minimum value may not be changed

20485

The minimum value is write-protected

24577

The maximum value does not exist

24578

The maximum value transmission is too short

24579

The maximum value transmission is too long

24580

The maximum value may not be changed

24581

The maximum value is write-protected

28674

The data is too short.

28675

[The data is too long

28676

[The data may not be changed.

28677

[The data is write-protected at this time.

28678

The data is smaller than the minimum value.

28679

The data is larger than the maximum value.

28680

[The bit pattern for this IDN is invalid.

Chapter 2 Function/Function Block Description

2-385

SCURVE

SCURVE
S Curve Motion/MOVE_SUP
SCURVE Inputs: EN (BOOL) - enables execution (One-shot)
1N 0K = AXIS (USINT) - the time axis (range 25 to 28)
JAXIS ACC (LREAL) - the maximum acceleration rate in
1AcC counts/min?
4 JERK JERK(LREAL) - the constant jerk in counts/min>

Outputs: OK (BOOL) - execution complete without errors

NOTE: A math coprocessor is required to use the SCURVE function.

The SCURVE function allows a master time axis to follow an s-curve velocity pro-
file instead of a trapezoidal velocity profile as shown below. In the typical trape-
zoidal profile, there will be jerks (shown by arrows below) when motion starts and
accelerates, when the commanded velocity is reached, when deceleration begins,
and when deceleration ends. These jerks can be suppressed by using an s-curve
profile which smooths out the acceleration and deceleration.

2-386

Chapter 2 Function/Function Block Description

SCURVE

Jerk Jerk
2 \ / >
= 2
9 Trapezoidal Profile § S-Curve Profile
Time \
Jerk Jerk

You create an s-curve profile by defining a maximum acceleration rate (ACC) and
a constant jerk rate (J) for a master time axis in the SCURVE function. (See the
Notes that follow.) Then you can use the DISTANCE, POSITION, or VEL_STR/
VEL_END functions to move a distance, reach an endpoint, or follow a velocity.

Two other functions can be used with the SCURVE function. The IN_POS? func-
tion is used to indicate when the distance or position move is complete. The
NEWRATE function is used to change the velocity of the time axis while it is
moving.

The command velocity (variable 6) can be read with the READ_SV function. This
value is given in counts/sec. It will read the velocity command due to the s-curve
profile. When the axis is accelerating or decelerating, the value will be different
than the value commanded . NOTE: Do not write a command velocity with vari-
able 6 when a non-zero value is entered in the ACC and JERK inputs.

You can turn the s-curve off by entering a zero in the ACC input and in the JERK
input. The acceleration and deceleration of the time axis will then work with a
position and a step velocity written with variables 1 and 6 using the WRITE_SV
function. DISTANCE, POSITION, and VEL_STR/END functions are not used.

To improve performance, it is recommended that the velocity compensation flag
(read servo variable 32) be turned off for any slaves following the s-curve master
time axis.

Time axes do not use the queue like servo axes do. If the time axis is already mov-
ing when another function call is made, the new move will begin immediately.
The moves are blended together. For example if a second distance move is called
before the first is completed, the distance values of the first and second move will
be summed. The rate specified in the second move will also take effect immedi-
ately. Depending upon distance, endpoint, or direction selected in a distance, posi-
tion or velocity move, the axis could reverse direction.

Chapter 2 Function/Function Block Description 2-387

SCURVE

Notes on Determining ACC and JERK Inputs

The following guidelines may help you determine the maximum acceleration
[ACC input (Am)] and the constant jerk [JERK input (J)] for your application.
The two examples below present two ways to approach this.

Example 1

In the first example, assume that when going from O to maximum velocity (Vm)
the first third of the velocity change is spent in constant jerk, the second third is
spent in constant acceleration, and the final third is spent in constant jerk as shown

below.

Constant jerk

Constant
Acceleration

Constant jerk

Time

When this 1/3 relationship is true, the relationship between acceleration, jerk,
velocity and time can be expressed as follows:

Vm "3 time

\Sh

2-388 Chapter 2 Function/Function Block Description

SCURVE

If you select an approximate time for acceleration from 0 to Vm (left column) and
a value for the maximum velocity (top row), then the table provides the value for
constant jerk (first line) and maximum acceleration (second line) in each row.
Typically, you set the ACC and JERK inputs once based on the maximum your

application can handle.

Tim
(Secf 1x10° 1x10* 1x10° 1x10° 1x107 | Velocity FU/min
0.01 |15x107 |1.5x10'2 [1.5x10° [1.5x10"* |1.5x101° [erk FU/min’
1.0x10° [r.ox10® [1.0x10° [1.0x10'° [1.0x10'" |A (max) FU/min?
0.1 f15x10° [1.5x10% f1.5x10t [1.5x10'2 1.5x10'3 Perk FU/min’
1.0x106 [1.0x107 |1.0x10® [1.0x10° [1.0x10'® |A (max) FU/min?
I l15x107 15x108 [1.5x10° [1.5x10'0 |1.5x10"" erk FU/min?
1.0x10° [1.0x10° |1.0x107 [1.0x10% [1.0x10° |A (max) FUmin?
10 15x10° [1.5x10° [1.5x107 [1.5x10% [1.5x10° [Jerk FU/min?
1.0x10* [1.0x10° [1.0x10° [1.0x107 [1.0x10® |A (max) FU/min?
100 15x10° f1.5x10* [1.5x10° [1.5x10% [1.5x107 Perk FU/min’
1.0x10®> [1.ox10* |1.0x10° [1.0x10® [1.0x10® |A (max) FU/min?
Chapter 2 Function/Function Block Description 2-389

SCURVE

Example 2

The second example is shown below.

Vmt - - — - — — — — — = = = - = =

Velocity
N\

|
N N\
T o 4 + ta# 0.5 ¢ d fime

= constant jerk

B > = constant acceleration
tm
Vi, = Maximum velocity
tn = The total time to reach velocity Vm if the axis starts at O
t; = The total constant jerk time
t, = The total constant acceleration time
S = The fraction of time spent in constant jerk calculated by:

i
t

m

S =

2-390 Chapter 2 Function/Function Block Description

SCURVE

If you know V, t., and s, then you can calculate jerk and acceleration using the
following formulas.

2><Vm
JERK =
sx12(1-0.5xs)
\%
ACCL = L

t (1-05xs)

The units for JERK are ladder units per minute3; therefore, V ,, is in ladder units

per minute and t, is in minutes. The units for ACCL are ladder units per minute?.

Chapter 2 Function/Function Block Description 2-391

SEEK

SEEK
Seek lo/COMM
‘LS"E“ EK_ Inputs: REQ (BOOL) - enables execution (One-shot)
{REQ DONE HNDL (INT) - output from OPEN function block
{HNDL FAIL} ORG (INT) - origin
10RG ERRL OFF (DINT) - offset
4 OFF Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0
FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0
ERR (INT) - 0 if data transfer successful
0 if data transfer unsuccessful
See Appendix B in the software manual for ERR codes.
When you use the OPEN function block, the file or device is set up for a sequential
read/write. The SEEK function block allows you to change the location of the
pointer.
This function block positions a pointer in a RAMDISK or FMSDISK file. A
READ or WRITE executed after this function block will start reading from or
writing at that point. The pointer is positioned from one of three origins specified
by the value at ORG. It is offset from the origin by the number of bytes specified
at OFF. The offset value can be positive (for forward) or negative (for backward).
If the offset value moves the pointer beyond the end of file, the pointer will be at
the end of the file. If the offset value moves the pointer before the beginning of
file, the pointer will be at the beginning of the file.
Enter at ORG Positions pointer at OFF bytes from:
16#A00 beginning of file
16#A01 its current location
16#A02 end of file

2-392 Chapter 2 Function/Function Block Description

SEEK

Examples of SEEK function

Value at ORG Value at OFF Positions pointer at OFF bytes from:
16#A00 10 10 bytes beginning of file

16#A02 0 the end of the file

16#A00 -5 the beginning of file

SEEK is used in conjunction with the CLOSE, CONFIG, OPEN, READ, STA-
TUS, and WRITE I/O function blocks.

Chapter 2 Function/Function Block Description 2-393

SEL

SEL

Select

Filter/SEL

4EN

4 INO
1IN

SEL

Inputs: EN (BOOL) - enables execution
oKl G (BOOL) - value selector

ouT = INO (ANY except STRUCT) - value to be
selected

IN1 (same type as INO) - value to be selected

Outputs: OK (BOOL) - execution completed without
error

OUT (same type as INO) - selected value

The SEL function is used to select one of two values and place it in the output vari-
able. The selection is based on the value of the BOOLEAN input at G.

If power flow/logic continuity does not exist to the point at G, then the value of the
variable or constant at INO is placed into the variable at OUT. If power flow/logic
continuity exists to the point at G, then the value of the variable or constant at IN1
is placed into the variable at OUT.

2-394

Chapter 2 Function/Function Block Description

SERVOCLK

SERVOCLK
Servo Clock Xclock/SERVOCLK

SERVOCLK Inputs: EN (BOOL) - enables execution (One-shot)

1N ok = RATE (TIME) -1, 2, 4, 8, or 16 ms

RATE ERR Outputs: OK (BOOL) - interrupt started without error

ERR (USINT) - 0 if OK is set. # 0 if an error occurs.

The SERVOCLK function is used in conjunction with the task feature. It allows
you to run a task tied to the servo interrupt clock without actually running any ser-
vos. This gives you the ability to run a faster, higher-priority task than either the
hardware or system tasks.

NOTE: When you are running servos, the servo interrupt clock is started when
you call the STRTSERYV function.

The SERVOCLK function is called only once to start the servo interrupt clock. It
may be called before or after the task(s) that is to run on the servo clock.

If the STRTSERYV and the SERVOCLK functions are both called in the same lad-
der, the most recent one called will be in effect. Calling SERVOCLK after STRT-
SERV will stop the servos.

The errors that can appear at the ERR output are listed below.

ERR =1 Invalid rate value entered. Mustbe 1, 2, 4, 8, or 16* ms.
ERR =2 Out of memory.
ERR =3 Invalid CPU revision. Outdated EPROMs.

*If you are using a Turbo? control, do not set the servo interrupt clock at 16 ms.

Chapter 2 Function/Function Block Description 2-395

SHL

SHL
Shift Left Binary/SHL

SHL Inputs: EN (BOOL) - enables execution
1N 0K = IN (BITWISE) - value to have bits shifted
JIN ouTk N (USINT) - number of bits to shift
AN Outputs: OK (BOOL) - execution completed without
error

OUT (same type as IN) - shifted value

The SHL function moves all bits in the variable or constant at IN to the left. The
bits are shifted the number of positions specified by the variable or constant at N.
N bits on the left side are dropped. N bits on the right side are replaced with zeros.
The result is placed in the variable at OUT.

Shift left, where N = 2:

Annnnonnn

M/‘//‘// Os inserted
discarded | 1|1|0|0|1|1|0|0|
Examples of shift left:
SHL (3) 11110000 = 10000000
SHL (4) 01110011 = 00110000
SHL (8) 11111111 = 00000000

2-396 Chapter 2 Function/Function Block Description

SHR

SHR
Shift Right Binary/SHR

SHR Inputs: EN (BOOL) - enables execution
1N 0K = IN (BITWISE) - value to have bits shifted
JIN ouTk N (USINT) - number of bits to shift
AN Outputs: OK (BOOL) - execution completed without
error

OUT (same type as IN) - shifted value

The SHR function moves all bits in the variable or constant at IN to the right. The
bits are shifted the number of positions specified by the variable or constant at N.
N bits on the right side are dropped. N bits on the left side are replaced with zeros.
The result is placed in the variable at OUT.

Shift right, where N = 2:

s inserted | 10| 1] 1]ofofi]1]

SRR

lofo|i]o]1]1]0fo]| discarded

Examples of shift right:

SHR (3) 10101010 = (00010101
SHR (4) 01110011 = 00000111
SHR (8) 11111111 = (00000000

Chapter 2 Function/Function Block Description 2-397

SIN

Sine

Arith/TRIG

SIN Inputs: EN (BOOL) - enables execution

1N ok L ANGL (REAL/LREAL) - angle value (in radians)
ANGL SINE Outputs: OK (BOOL) - execution completed without error
SIN (REAL/LREAL) - sine calculated

NOTE: The data types entered at ANGL and SIN
must match, i.e. if ANGL is REAL, then SIN must be
REAL.

The SIN function calculates the sine of the angle entered at ANGL. The result is
placed at SIN.

2-398

Chapter 2 Function/Function Block Description

SINT2BYT

SINT2BYT
Short Integer to Byte Datatype/SINTCONV
SINTZBYT Inputs: EN (BOOL) - enables execution
1N 0K = IN (SINT) - value to convert
JIN ouTk Outputs: OK (BOOL) - execution completed without

error
OUT (BYTE) - converted value

The SINT2BYT function changes the data type of the value at IN from a short
integer to a byte. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-399

SINT2DI

SINT2DI
Short Integer to Double Integer Datatype/SINTCONV
SINTZDI Inputs: EN (BOOL) - enables execution
1N 0K |- IN (SINT) - value to convert
JIN ouTk Outputs: OK (BOOL) - execution completed without

error
OUT (DINT) - converted value

The SINT2DI function changes the data type of the value at IN from a short inte-
ger to a double integer. The sign of the short integer is extended into the leftmost
24 bits of the double integer. The result is placed in the variable at OUT.

2-400 Chapter 2 Function/Function Block Description

SINT2INT

SINT2INT
Short Integer to Integer Datatype/SINTCONV
SINTZINT Inputs: EN (BOOL) - enables execution
1N 0K |- IN (SINT) - value to convert
JIN ouTk Outputs: OK (BOOL) - execution completed without

error
OUT (INT) - converted value

The SINT2INT function changes the data type of the value at IN from a short
integer to an integer. The sign of the short integer is extended into the leftmost
8 bits of the integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-401

SINT2LI

SINT2LI
Short Integer to Long Integer Datatype/SINTCONV

SINTzLL | Imputs: EN (BOOL) - enables execution

1N oKL IN (SINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The SINT2LI function converts a short integer into a long integer. The sign bit of
the DINT is extended into the leftmost 56 bits of the long integer. The result is
placed in a variable at OUT.

2-402 Chapter 2 Function/Function Block Description

SINT2USI

SINT2USI
Short Integer to Unsigned Short Integer Datatype/SINTCONV
SINT2USI Inputs: EN (BOOL) - enables execution
1N 0K |- IN (SINT) - value to convert
JIN ouTk Outputs: OK (BOOL) - execution completed without

error
OUT (USINT) - converted value

The SINT2USI function changes the data type of the value at IN from a short inte-
ger to an unsigned short integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-403

SIZEOF

SIZEOF

Size of variable

Datatype/SIZEOF

SIZEOF

Inputs: EN (BOOL) - set to call the function (one-shot)
IN (any data type) - variable name
1N OKp Outputs: OK (BOOL) - set when EN is on
IN SIZEp SIZE (UINT) - size in bytes of the variable entered at IN

The SIZEOF function is used to give you the size of the variable name you

enter at IN.

The OK will be set if the EN is on and off when the EN is off.
The SIZE output reports the size in bytes of the variable at IN.

Data Type| SIZE Data Type SIZE Output
of Output of Variable (in bytes)
Variable | (in bytes)
BOOL 1 STRING Declared length +2
BYTE 1 DATE 2
WORD 2 TIME_OF_DAY 4
DWORD ¢4 DATE_AND_TIME 4
LWORD 8 TIME 4
SINT 1 Variable (ARRAY) Size of one element in array
INT 2 STRUCT Number of bytes in structure
DINT 4 STRUCT.member Size of member
LINT 8 STRUCT.member (ARRAY) Size of one element in array member|
USINT 1 STRUCT (ARRAY) Size of one structure in the array
UNIT 2 STRUCT (ARRAY).member Size of member
UDINT 4 STRUCT (ARRAY).member Size of one element in array member|
(ARRAY)
ULINT 8 Variable name of array only Not supported
REAL 4 Name of structure array only Not supported
LREAL §8 Constant 4 unless DATE (D#) which is 2

2-404 Chapter 2 Function/Function Block Description

SIZEOF

Below is an example of what the size output would be for the structure MACH
and each of its members.

Variable Name | Data Type [SIZE Output

at IN of Variable| (in bytes)
MACH STRUCT (14
.ONE BYTE 1
TWO DWORD @*

(2)

.END STR (3) 5
END_STRUCT

*The 4 represents DWORD (0). There are another 4 bytes in DWORD (1)
which brings the total for the structure to 14.

Chapter 2 Function/Function Block Description 2-405

SQRT

SQRT
Square Root Arith/ARITH

SORT Inputs: EN (BOOL) - enables execution
{eN oK = SQR (USINT, UINT, UDINT, REAL constant) -
value to find square root of
4SQR ROOT |~
Outputs:OK (BOOL) - execution completed without error

ROOT (same type as SQR) - square root of the
number

The SQRT function determines the square root of the number at SQR and places it
inthe variable at ROOT. The value at SQR must be greater than or equal to zero.

The square root function, operating on a non-negative number S, is defined as:

5= 1

wherer * r = S

If the value at ROOT is not an integer, it is rounded up to the nearest integer if the
fractional value is greater than or equal to .5. It is rounded down to the nearest
integer if the fractional value is less than .5.

Note: You can use other datatypes such as INTs, DINTS, etc. as long as they
are positive values.

2-406 Chapter 2 Function/Function Block Description

STATUS

STATUS
Status lo/COMM

S¢TJAU 'ErUS_ Inputs: REQ (BOOL) - enables execution (One-shot)

1iEe DoNE= HNDL (INT) - output from OPEN function block
{H\DL FAIL|- Outputs: DONE (BOOL) - energized if ERR =0
FRR |- not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transfer successful
0 if data transfer unsuccessful

STAT -

See Appendix B in the software manual for ERR codes.
STAT (INT) - number of bytes in buffer

The STATUS function block outputs the number of bytes that are in the input
buffer for the device designated by HNDL. The number of bytes is placed in the
variable at STAT. The value of STAT should be used as an input to the READ
function (at CNT) to specify how many bytes should be read from the port.

e Use this function block only for a device at the User Port, and only when the
device is opened in the READ or READ/WRITE mode. ERR code # 9 will
be returned if this function is used on workstation or DISK files.

¢ The maximum number of characters that will be buffered by the PiC is 128.
If a read is not done, the buffer will fill up. Subsequent characters will be
lost.

STATUS is used in conjunction with the CLOSE, CONFIG, OPEN, READ,
SEEK, and WRITE I/O function blocks.

Chapter 2 Function/Function Block Description 2-407

STATUSSV

STATUSSV
Status Servo Motion/DATA

sTaTUSsy | Imputs: EN (BOOL) - enables execution

1N oKL AXIS (USINT) - identifies axis (servo or digitizing)
AXIS STATL Outputs: OK (BOOL) - execution completed without error
STAT (WORD) - gives the status of the axis

The STATUSSV function identifies the following axis characteristics in the STAT
word output:

Characteristic Binary Value Hex Value
1.Move started 00000000 00000001 0001
2.Fast input occurred 00000000 00000010 0002
3.Fast input on 00000000 00000100 0004
4.Good mark detected 00000000 00001000 0008
5.Bad mark detected 00000000 00010000 0010
6.DIST + TOLR exceeded | 00000000 00100000 0020
7 Fast input rising 00000000 01000000 0040

These bits are “read and clear” (one shot) bits except the fast input on bit. A set bit
means that the event has occurred since the last time the function was called.
Therefore, it is recommended that the function be called only once in the ladder to
prevent missing the event.

Move started - This bit will be set when the software starts iterating a move. It
will be set whenever a move begins.

A situation where checking the status of this bit is helpful is when the start of a
move has been held off by the distance requirement in the FAST_QUE function.
The bit will be set when the move actually begins.

Fast input occurred - This bit will be set by the software whenever a fast input
occurs on the servo or digitizing axis. The module must be configured to watch for
the fast input by using the FAST_QUE, the FAST_REF, REGIST, or MEASURE.
The FAST_QUE and FAST_REF functions must be called each time you want to
perform the function and configure the module. REGIST and MEASURE are
called once.

Typically, the Fast input occurred bit will be set anytime the fast input occurs on
the axis. However, if it is an encoder axis that uses the index mark to reference,
the bit is set when the index mark occurs. With the FAST_REF function, the bit is
set when the index mark occurs after the fast input transitions. With the
LAD_REEF function, the bit is set when the index mark occurs after the REF_END
function is called in the ladder.

2-408

Chapter 2 Function/Function Block Description

STATUSSV

Fast input on - This bit is set by the hardware when the fast input is on.

NOTE: If the STATUS_SV function is called after the fast input turns on but
before a servo interrupt occurs, the Fast input on bit is set and the Fast input
occurred bit will not be set until the next scan.

SERCOS NOTE: The "fast input on" bit is not supported with SERCOS and will
always be reset for a SERCOS axis.

Good mark detected- This bit will be set when a good mark is detected.

Bad mark detected - This bit keeps track of bad marks.
NOTE: Since the first mark is always “bad,” it will be set on the first mark after
registration is called.

Distance + tolerance exceeded - This bit is set as soon as the distance from the
last mark exceeds the value of DIST + TOLR whether or not a mark has occurred.
It will be reset when any mark occurs.

Fast input rising - This bit indicates the direction of the most recent fast input
until the next fast input occurs.

If the transition direction is defined as rising (a O entered in variable 19 of
WRITE_SV), then this bit will always be on.

If the transition direction is defined as falling (a 1 entered in variable 19 of
WRITE_SV), then this bit will always be off.

If the transition direction is defined as both rising and falling (a 2 entered in
variable 19 of WRITE_SV), then this bit will alternate between on and off as the
fast input signal alternates.

See also the table of variables at the READ_SV function.

Chapter 2 Function/Function Block Description 2-409

STEPCNTL

STEPCNTL
Stepper Control lo/STEPPER

stepenTL] Imputs: EN (BOOL) - enables execution (Typically one-shot)

JEN oK STRC (STRUCT) - handle of axis initialized in
STEPINIT at STRC input (See STEPINIT function.)

CNTL (UINT) - control word number for axis at STRC
Outputs: OK (BOOL) - execution completed without error

4 STRC
4{CNTL

The STEPCNTL function is used to send a control word to the stepper motor con-
trol module (SMCM). The number entered in CNTL represents a control word
from those listed in the table that follows.

IMPORTANT

When the STEPCNTL function is called, it can take the SMCM up to 3
ms to process it. To ensure proper operation, always check that the "con-
trol word not processed" bit in the status word is clear before sending a
control word.

2-410

Chapter 2 Function/Function Block Description

STEPCNTL

Control # [Name |Descripti0n

1 Enable profile [The enable profile control word is required to allow profile com-
mands to be entered into the command queue.

2 Pause profile [The pause profile control word will prevent any further profile
commands in the command queue from being executed until a
continue control word is received.

INOTE: An active distance or position command will complete its

execution.
3 Continue pro- [The continue control word will cause profile command execution
file to resume. It resets the pause bit and goes to the next command in

the command queue.

[f a continue control word is received before the current command
is completed, that command will be aborted and the next com-
mand in the command queue will be executed.

INOTE: If the current command is a velocity move and the continue profile word is written,
the velocity command will remain active and the axis will continue moving until another
move command is executed, i.e., position, distance, or velocity. Also, if there are no more
commands in the queue, the velocity command will remain active and the axis will continue
moving. If you want to end the velocity command you should use either the controlled stop or
emergency stop control words.

4 Emergency [The emergency stop control word causes the SMCM to stop out-
stop putting pulses to the stepper regardless of the current acc/dec rate.
[The command queue is emptied.
5 Controlled [The controlled stop control word causes the SMCM to immedi-
stop ately decelerate to zero velocity at the current acc/dec rate. The

command queue is emptied.

6 Step/direction [The step/direction control word causes pulses to be output on the
step/cw output and direction to be output on the direction/ccw out-
put as shown below. The step/direction mode is the default.

SN I S O A

Step/cw

Direction/ccw (FWD) | (REV)

Chapter 2 Function/Function Block Description 2-411

STEPCNTL

7 CW/CCW [The CW/CCW control word causes steps to be output on the step/
cw output when the stepper motor moves in a forward direction
and on the direction/ccw output when the stepper motor moves in
the reverse direction.

(FWD)

(REV)
Direction/ccw |__|_|_|_|_

Step/cw

Interrupting distance, position, and velocity moves

Moves can be interrupted in various ways--a controlled stop, an emergency stop, or
a continue control word. The effects each of these has on a move are illustrated in
the next three figures.

When a controlled stop control word is received from the ladder, the move is
aborted and the axis decelerates to zero at the current acc/dec rate as shown in Fig-
ure 2-34.

Figure 2-34. Controlled stop control word received before end of a move

Move Without
Controlled Stop

Move Controlled
Start Stop

When an emergency stop control word is received from the ladder, the axis comes
to an immediate halt as shown in Figure 2-35.

2-412 Chapter 2 Function/Function Block Description

STEPCNTL

Figure 2-35. Emergency stop control word received before end of distance move

Move Without
Err)le}gency Stop
A%

* T
Move Emergency
Start Stop

When the word to continue is received from the ladder, the next command in the
profile is executed as shown in Figure 2-36.

Figure 2-36. Velocity move with continue control word received before velocity
reached

Velocity Without
vV Continue

\ Next Command

Executed Here

Command
Velocity

Move Continue
Start Received

Chapter 2 Function/Function Block Description 2-413

STEPINIT

STEPINIT
Step Initialization lo/STEPPER

sTepintT| Inmputs: EN (BOOL) - enables execution (One-shot)

JEN oKL STRC (STRUCT) - contains the following members:
RACK, SLOT, CHAN, ERROR, and ID which

15THC identifies the axis as a stepper axis

Outputs: OK (BOOL) - execution completed without error

The STEPINIT function initializes an axis as a stepper axis. It verifies the integ-
rity of the rack, slot, and channel location and assigns a handle (ID) to the axis at
that location.

It also returns the errors listed in the table below at the ERROR member of the
structure.

Error number for ERROR member of structure

|Name of Error IFunction OK not set with error

0 |No error N/A

1 [Invalid rack number or remote rack not available STEPINIT

2 [[nvalid slot number STEPINIT

3 |Invalid channel number STEPINIT

4 [Module not found at rack and slot location or not STEPINIT
enough channels on the module

5 [Invalid command number STEP_CMD

6 |Invalid data for the command STEP_CMD

7 |Invalid control number STEPCNTL

8 |A stepper function called before the STEPINIT func- STEP_COM, STEPCNTL,
fion STEPSTAT, and STEP_POS

O |A BLOCK_IO error has occurred STEP_COM, STEPCNTL,

STEPSTAT, and STEP_POS

You enter a structure in the software declarations table following the format shown
below. The name of the structure in this example is STEP1.

2-414 Chapter 2 Function/Function Block Description

STEPINIT

Structure for STEPINIT function

Hame Type
STEP STRUCT
RACHK LISIMT
SLOT ISIMT
CHAM SIMT
ERROR IMNT
D IMT

EMD_STRUCT
IMPORTANT

The structure you enter in the software declarations table must have the
members entered in the order shown above. The data type for each
member of the structure must be as shown in the Type column in order
for the software to recognize the information.

Initial values are entered by you for the rack, slot, and channel numbers for the
stepper axis at the RACK, SLOT, and CHAN members of the structure.

NOTE: With the block stepper/encoder/DCin module, the RACK must be set to
100, the SLOT is the module number from 1 to 77 (1 for the block module con-
nected to the CPU, 2 for the block module connected to #1, 3 for the module con-
nected to #2, etc., and CHAN is 1 or 2.

The software assigns values to ERROR and ID. Never enter any values for them.

Chapter 2 Function/Function Block Description 2-415

STEPSTAT

STEPSTAT
Step Status lo/STEPPER

STEPSTAT Inputs: EN (BOOL) - enables execution

JEN oK STRC (STRUCT) - handle of axis initialized in
STEPINIT at STRC input

Outputs:OK (BOOL) - execution completed without error
STAT (WORD) - stepper status for AXIS

STRC STAT

The STEPSTAT function allows you to read the data on the status of the axis. See
the table below.

IMPORTANT

It takes the stepper motor control module (SMCM) up to 3 ms to process
a control word. If the "control word not processed" bit in the status word
is clear, the status word reflects the last control word that was written.

2-416 Chapter 2 Function/Function Block Description

STEPSTAT

Table 2-13. WORD Output from STEPSTAT Function

Name |Description Binary value Dec | Hex
Profile |When set, this bit indicates that commands 00000000 00000001 1 |0001
enabled |can be sent to the queue for execution. Itis
set by sending the enable profile control
word.

The following conditions will reset this bit:
e Sending an emergency stop control word
e Completing a controlled stop

e Controller scan loss

e Illegal command/data is executed

¢ Illegal control word received

e (alculation error occurred

e Command queue overflow

'When reset, the following occurs:

The SMCM stops outputting pulse

The queue is emptied

Any commands sent to the queue are lost

Status information for the axis is invalid
Profile [When set, this bit indicates that no more com-| 00000000 00000010 2 10002
paused |mands will be executed from the queue. The
following commands will set this bit:

e A pause profile command or control word
e A velocity move command

This bit is reset by sending a continue profile
control word.

At veloc- |[When set, this bit indicates that the desired 00000000 00000100 4 10004
ity velocity has been reached. This bit is set
when a velocity move command is executed
and the desired velocity is reached.

This bit is reset by sending a continue profile
control word.

Que This bit is set when the final command in the | 00000000 00001000 8 10008
empty |queue has completed execution.

This bit is reset when a command is placed
into the queue for execution.

Chapter 2 Function/Function Block Description 2-417

STEPSTAT

Name |Description Binary value ‘ Dec ‘ Hex
NOTE: If a velocity command is executed and there are no more commands in the command
queue, the que empty bit will be set as soon as the continue profile word is written. The
velocity command will remain active and the axis will continue moving. The que empty bit
will come on since there are no more commands to execute. The velocity command will
remain active until a position, distance or velocity command is executed or the controlled
stop or emergency stop control word is written to end the velocity command.
Que full [This bit is set when the queue is full (500 00000000 00010000 | 16 |0010
commands). An E-stop will occur if another
command is sent to the queue.
This bit is reset when a command is removed
trom the queue for execution.
Control [This bit is set until the control word is pro- | 00000000 00100000 | 32 0020
word not |cessed.
processed
(not used) 00000000 0X000000 | 64 [0040
(not used) 00000000 X0000000 | 128 |0080
(not used) 0000000X 00000000 | 256 [0100
(not used) 000000X0 00000000 | 512 |0200
(not used) 00000X00 00000000 | 1024 | 0400
(not used) 0000X000 00000000 | 2048 | 0800
(not used) 000X0000 00000000 | 4096 | 1000
(not used) 00X00000 00000000 | 8192 |2000
Reserved for future version # of firmware 0V000000 00000000 | 16384 | 4000
Reserved for future version # of firmware V0000000 00000000 | 32768 | 8000
2-418 Chapter 2 Function/Function Block Description

STEP_CMD

STEP CMD
Step Command lo/STEPPER

STEP_CVD Inputs: EN (BOOL) - enables execution (Typically one-shot)

JEN oK STRC (STRUCT) - handle of axis initialized in
STEPINIT at STRC input (See STEPINIT function.)

4{STRC
I CMD (UINT) - stepper command for STRC
1paTa DATA (DINT) - command data for STRC

Outputs: OK (BOOL) - execution completed without error

The STEP_CMD function sends a profile command and its related data to the step-
per axis identified in STRC. The commands available and their range of data are
listed in the table below. Several commands (up to 500) can be sent to the com-
mand queue on the stepper motor control module (SMCM) to run a profile for the
axis identified at STRC.

IMPORTANT

When the STEP_CMD function is called, the command 1s moved
into a command queue on the SMCM. It can take up to 3 ms for
the SMCM to process a command after it has been moved into
the command queue. In some cases, it is important that the com-
mand be processed before some other action is taken (i.e. sending
a control word).

To ensure that the command is processed before some other

action, send a pause command immediately after the command.
Check to see that the pause bit in the status word is set before ini-
tiating the next action.

NOTE

If the command queue 1s empty when the SMCM 1s ready to exe
cute another command, the SMCM will force the stepper to
decelerate to zero at the current acc/dec rate. If another com-
mand is sent to the command queue during this deceleration, that
command will be executed immediately.

Chapter 2 Function/Function Block Description 2-419

STEP_CMD

Profile Commands

Com #

Profile Command

Range

Distance

The distance command will cause the stepper to move the indi-
cated number of steps relative to the current position.

For example, if the current position is 200 and the commanded
distance is 1000, the endpoint will be 1200. The SMCM will
output 1000 steps.

The SMCM will cause the motor to accelerate, decelerate, or
reverse direction in order to move the required distance.

At the end of an uninterrupted distance move, the velocity is
always zero.

The distance move will accelerate towards (or decelerate to) the
maximum velocity set with command 4.

All acceleration and deceleration required to move the com-
manded distance will be at the acc/dec rate set with command 5.

A distance move is aborted when a continue control word is
received from the ladder.

+2,147,352,575
steps

Position

The position command is identical to the distance command
except the move is relative to absolute zero. When power is first
applied to the SMCM, the absolute position is zero. Any dis-
tance moved from this point is added to or subtracted from (for
reverse move) the current position to form the new absolute
position.

For example, if the current position is 200 and the commanded

position is 1000, the endpoint will be 1000. The SMCM will
output 800 steps.

The SMCM will cause the motor to accelerate, decelerate, and
reverse directions, if necessary, in order to move to the com-
manded position.

At the end of an uninterrupted position move, the velocity is
always zero.

The position move will accelerate towards (or decelerate to) the
maximum velocity set with command 4.

All acceleration and deceleration required to move the com-
manded distance will be at the acc/dec rate set with command 5.

A position move is aborted when a continue control word is
received from the ladder.

+2,147,352,575
steps

2-420

Chapter 2 Function/Function Block Description

STEP_CMD

3 Velocity +1,000,000

The velocity command will cause the stepper to accelerate or steps/sec

decelerate at the current acc/dec rate from the current velocity to
the commanded velocity.

'When the velocity command is executed, the "pause" bit in the
status word is set immediately. The next command will not be
executed until a continue control word from the ladder is
received. If a continue control word is received during the acc
dec portion of the move, the velocity command is aborted and
the next command is executed.

If no continue control word is received during the acc/dec sec-
tion, the commanded velocity is reached and the "at velocity" bit
in the status word is set. The axis will continue at that velocity
until a continue control word is received.

The velocity that will be reached is the velocity specified by the
command and is not related in any way to the maximum velocity
. Three examples of velocity moves are shown in Figures 9-37
through 9-39.

The starting velocity is “0” and the move accelerates at the current acc/dec rate to
the commanded velocity in Figure 2-37. It will continue at the commanded
velocity until the next command is received.

Figure 2-37. Velocity move with starting velocity = 0

\Y

Command
Velocity |~~~ "~ Tttt >

Move
Start

Chapter 2 Function/Function Block Description 2-421

STEP_CMD

A velocity move where the starting velocity is greater than the commanded veloc-
ity is illustrated in Figure 2-38. The move decelerates at the current acc/dec rate
until it is at the commanded velocity.

Figure 2-38. Velocity move with starting velocity > commanded velocity

\Y%

Command :
Velocity |- - - oo R -

Move
Start

A velocity move where the starting velocity is forward and the commanded veloc-
ity is reverse is illustrated in Figure 2-39. The move decelerates to “0” and then
reverses direction as commanded.

2-422 Chapter 2 Function/Function Block Description

STEP_CMD

Figure 2-39. Velocity move with starting velocity forward (+), commanded velocity
reverse (-)

Command
Velocity

-V

Chapter 2 Function/Function Block Description 2-423

STEP_CMD

The pause command causes the SMCM to remain at the current
command until a continue control word is received from the lad-
der.

Com # Command Range
4 Set Maximum Velocity 1 to 1,000,000
The set maximum velocity command defines the maximum steps/sec
velocity that will be allowed during a distance or position move. (Default - 200
steps/sec)
5 Set Acc/Dec Rate 1to 16,777,215
The set acc/dec rate command defines the rate at which the step- steps/sec/sec
per motor will accelerate or decelerate. (Default - 200
) | steps/sec/sec)
Note: ACC/DEC rates above 1,000,000 steps/sec/sec during dis-
tance or position moves may cause an overshoot in the number
of steps sent to the drive. Avoid this by setting the rate below
1,000,000 steps/sec/sec.
6 Set Reference +2.147,352,575
The set reference command is used to establish an absolute Steps
..| (Default-0)
position for subsequent position moves. The absolute position is
forced to the reference position defined by the set reference data.
7 Pause --

Profile example

The table below gives an example of a profile for one stepper axis. This example
sends 10 commands to the command queue via the STEP_CMD function. The
position of the axis at the end of each command is given in the last column.

Note:

The first command is a reference to zero. By including this command

you ensure that the stepper axis position will always be reset to zero when

restarting the ladder scan.

2-424

Chapter 2 Function/Function Block Description

STEP_CMD

Example profile commands for one stepper axis
CMD from DATA from Absolute

STEP_CMD STEP_CMD Steps output Direction position
6 (Set Reference) 0 0 N/A 0
4 (Set Max Vel) 5000 0 N/A 0
5 (Set acc/dec rate) 2000 0 N/A 0
1 (Distance) 1,000 1,000 Forward +1,000
1 (Distance) 1,000 1,000 Forward +2,000
1 (Distance) -3,000 3,000 Reverse -1,000
2 (Position) 1,000 2,000 Forward +1,000
6 (Set Reference) 10,000 0 N/A +10,000
1 (Distance) 1,000 1,000 Forward +11,000
2 (Position) -1,000 12,000 Reverse -1,000

Programming suggestion

In the previous example, it would be necessary to enter 10 STEP_CMD functions
in the ladder to send all the profile commands to the module. The variables at the
CMD and DATA inputs would hold the values listed in the table.

In order to transfer all the profile commands and data needed for one stepper axis
in the STEP_CMD function, an array of structures can be used.

The structure P1 (profile 1) would have two members; .C (command) and .D
(data). The array would be long enough to hold all the profile commands needed
for the stepper axis identified at STRC plus an additional element holding zeros to
mark the end of the array. In the ladder example that follows, the EQ function will
reset LOAD_PRO when the command equals zero.

NOTE: You may want to declare an array with several extra elements. This would
allow you to easily add additional commands and data to an existing profile.
Always ensure that the last array element contains zeros.

One method of using this array of structures with the STEP_CMD function in the
ladder is shown below.

Chapter 2 Function/Function Block Description 2-425

STEP_CMD

MOVE LOAD_PRO
;Pi EN OK S) |
04 IN1 OUTI1|—N
A3, T T T T 7
LOAD_PRO STEP_CMD ADD

i i EN OK EN OK
DA (0) —} STRC N—|INT suM

P1 (N).C — CMD I — IN2
P1 (N).D - bATA | = F——— —~-

LOAD._PRO EQ
|| EN OK|—
N LOAD_PRO
PI (N).C—| INI oUT— ® :
0— IN2

2-426 Chapter 2 Function/Function Block Description

STEP_POS

STEP POS
Stepper Position lo/STEPPER

STEP_POS Inputs: EN (BOOL) - enables execution

1EN oKL STRC (STRUCT) - handle of axis initialized in STE-
PINIT at STRC input (See STEPINIT function.)

Outputs: OK (BOOL) - execution completed without error
POS (DINT) - latest position read for axis at STRC

STRC POS

The STEP_POS function allows you to read the position of the stepper axis.

Chapter 2 Function/Function Block Description 2-427

STR2D_T

STR2D T
String to Date and Time Datatype/STRCONV

STR?2D T Inputs: EN (BOOL) - enables execution
N o STR (STRING) - string to convert

STR NM Outputs: OK (BOOL) - execution completed without error

NUM (DATE_AND_TIME) - Date and time conver-
sion

The STR2D_T function converts a string into a date and time.

The string at STR consists of six fields (three required, three optional) entered in
the following order:

Required Optional
Field Year Month | Day | Hour | Minute |Second
Range 1988 to
2051 Itol2 [1to31 0to23 |0to59 0 to 59
Example|1992 - 10 - 25 - 12+ 30 . 15
string

Guidelines for entering strings

e If any of the three required fields are not entered, the OK will not be set.
e The three optional fields will default to zero if nothing is entered in them.
e Whenever a field is entered, all fields to the left of it must also be entered.

e Every field must be separated by a delimiter character. Use dashes, colons,
or commas. Alpha/numeric characters are not recommended.

e [f a number is out of range, the OK will not be set. The function will return
to the base of the calendar clock--1988-01-01:00:00:00.

To set the time of day clock in the control, use the DATE_AND_TIME output
from the STR2D_T function as the input to the IN on the CLOCK function.

2-428 Chapter 2 Function/Function Block Description

STR2NUM

STR2NUM
String to Numeric Datatype/STRCONV

STR2NUM Inputs: EN (BOOL) - enables execution

1N 0K = STR (STRING) - STRING to convert (may include

lstn NuMb plus (+) or minus (-) sign)

Outputs: OK (BOOL) - execution completed without error
NUM (NUMERIC) - converted value

The STR2NUM function converts the STRING value of the variable at STR into a
numeric value, and places the result into the variable at NUM. If the STRING
contains non-numeric characters, other than + or -, the output at OK will not ener-
gize and the value of the variable at NUM will be unpredictable.

Chapter 2 Function/Function Block Description 2-429

STR2USI

STR2USI
String to Unsigned Short Integer Datatype/STRCONV

sTRoust | Imputs: EN (BOOL) - enables execution

JEN 0K |- STR (STRING) - string to convert

1sSTR NuMl= Outputs: OK (BOOL) - execution completed without error
NUM (USINT) - usint (ASCII code)

The STR2USI function converts the first character of the STRING value at STR
into a USINT at NUM. Any ASCII character may be converted to USINT.

For example, if the string 'A'" appears at STR, the value of NUM becomes 65.

The output at OK will not be energized if the actual length of the string at STR is
zero (no characters).

2-430 Chapter 2 Function/Function Block Description

STRTSERV

STRTSERV
Start servo Motion/INIT

STRTSERy | Imputs: EN (BOOL) - enables execution (One-shot)
1N okl Outputs: OK (BOOL) - execution completed without error

ERRL ERR (USINT) - An integer indicates an error (See
STRTSERYV function error table below.)

The STRTSERV function is used with the user-defined setup function
(USER_SET) to initialize all the setup data for your application. When STRT-
SERYV is activated it finds the setup data, initializes it, and places it in the RAM
memory of the PiC. The servo software is then running and interrupts are occur-
ring. Everything is ready for a ladder command for motion. A basic method of
entering these two functions into your ladder is shown below.

STRT_SER
(S) I
STRT_SER USER_SET STRTSERV INIT_OK

i Pi EN OK EN OK (S) |

ERR |- STR_ERR

The positive transition contact (STRT_SER) is used as a one shot and the set coil “

(INIT_OK) latches the initialization OK for multiple scans.

Chapter 2 Function/Function Block Description 2-431

STRTSERV

The ERR output will contain one of the numbers listed in the table below.

STRTSERY function errors

ERR Name Description
0 [No error
1 Bad user function data Either the Servo setup program created bad data or

you did not make a call to the setup function you made
for your application.

NOTE: The STRTSERYV function can be called more
than once but each time you must call the setup func-
tion before you call the STRTSERYV function.

NOTE: This error will also occur if you have a 486
CPU and have all digitizing axes and they are all set at
l16ms. Changing one of the digitizing axes to 8ms will
correct this.

Not enough low memory

There are too many axes called for in the user-defined
setup function for the available memory.

Feedback module(s) not found

One or more feedback modules identified in setup can-
not be found. This error will also occur if the channel

selected is three or four and the feedback module in the
rack is only a two channel module.

Analog module(s) not found

One or more analog output modules identified in setup
cannot be found. This error will also occur if the chan-
nel selected is five through eight and the analog mod-
ule in the rack is only a four channel module.

Update rate
(SERCOS axis only)

The SERCOS axis update rate does not match the
servo axis update rate.

CPU type

Either the setup data was configured for an MMC but
the CPU is a PiC or the setup data was configured for a
PiC but the CPU is an MMC.

'Wrong CPU

The CPU is not the required 486-based processor. You
must either upgrade to a 486-based CPU or use a pre-
11.0 release of the motion library.

Bad cyclic data (SERCOS axis
only)

The required feedback IDN or command position IDN
for a SERCOS axis is not in the cyclic data.

23

Outdated servo setup data

The setup data was made with a pre-11.0 version of
PiCPro. Open the servo setup file and recompile it.

24

Servo setup data

The setup data was made with a pre-11.0 version of
PiCPro. Either update the motion library or recompile

the setup file with a pre-11.0 version of PiCPro.

2-432

Chapter 2 Function/Function Block Description

SuB

SUB
Subtract Arith/ARITH

SUB Inputs: EN (BOOL) - enables execution
1N 0K |- INO (NUMERIC or TIME duration) - minuend
JIN® DIFFl INT1 (same type as INO) - subtrahend
1IN Outputs: OK (BOOL) - execution completed without error

DIFF (same type as INO) - difference

The SUB function subtracts the value of the variable or constant at IN1 from the
value of the variable or constant at INO, and places the result in the variable at

DIFF.
X INO
-Y IN1
Z DIFF

Chapter 2 Function/Function Block Description 2-433

SYN_END

SYN_END
Synchronization End Motion/RATIOMOV

syN eno | Imputs: EN (BOOL) - enables execution (One-shot)
JEN oK AXIS (USINT) - identifies axis (servo)
JAXIS DROP (DINT) - slave position when it is to drop out of
1orop synchronization
If DROP is outside the range of -536,870,912 to

536,870,911 FU, the OK will not be set.
Outputs: OK (BOOL) - execution completed without error

The syn end function ends a ratio syn move. When it is called in the ladder, the
slave axis will stop moving immediately when it reaches the position entered at the
DROP input with no ramping.

A ratio syn move may also be stopped by aborting the move:

¢ with no move in the queue. The ratio syn move will ramp down at the
default deceleration rate and motion will stop.

OR

e with another move in the queue. The velocity will ramp to the new move
rate and continue with the new move, or the velocity will step and continue
if a master/slave move is next.

Note: A ratio syn move may also be ended with a GR_END function. However,
you cannot specify a slave drop point with GR_END.

2-434 Chapter 2 Function/Function Block Description

S DT_DT

S DT DT
Subtract: Date and Time Minus Date and Time Arith/DATETIME

S DT DT Inputs: EN (BOOL) - enables execution
1N 0K |- IN1 (DATE_AND_TIME) - minuend
JINT oUTk IN2 (DATE_AND_TIME) - subtrahend
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (TIME duration) - difference

The S_DT_DT function subtracts the value in the variable or constant at IN2 from
the value in the variable or constant at IN1. The result is a TIME duration value
that is placed in the variable at OUT.

Example of subtract: DATE_AND_TIME minus DATE_AND_TIME
Value at IN1 Value at IN2 Value at OUT
DT#1994-09-15-03:31:14 DT#1994-09-13-11:31:00 T#1d16h14s

Chapter 2 Function/Function Block Description 2-435

S DT T

S DT T
Subtract: Date and Time Minus Time Arith/DATETIME
SOT T Inputs: EN (BOOL) - enables execution
1N 0K |- IN1 (DATE_AND_TIME) - minuend
JINT ouTk IN2 (TIME) - subtrahend
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - difference

The S_DT _T function subtracts the value in the variable or constant at IN2 from
the value in the variable or constant at IN1. The result is a DATE_AND_TIME
value that is placed in the variable at OUT.

Example of subtract: DATE_AND_TIME minus TIME
Value at IN1 Value at IN2 Value at OUT
DT#1994-09-15-03:31:14 T#1h DT#1994-09-15-02:31:14

2-436 Chapter 2 Function/Function Block Description

SDD

SDD
Subtract: Date Minus Date Arith/DATETIME

SDD Inputs: EN (BOOL) - enables execution
1N 0K = IN1 (DATE) - minuend
JINT oUTk IN2 (DATE) - subtrahend
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (TIME duration) - difference

The S_D_D function subtracts the value in the variable or constant at IN2 from the
value in the variable or constant at IN1. The result is a TIME duration value that is
placed in the variable at OUT.

Example of subtract: DATE minus DATE
Value at IN1 Value at IN2 Value at OUT
DT#1991-06-04 D#1991-06-02 T#2d

Chapter 2 Function/Function Block Description 2-437

S TOD T

S TOD T

Subtract: Time of Day minus Time

Arith/DATETIME

S_TOD_T
HEN oK
4INT OUT
4 IN2

Inputs:

Outputs:

EN (BOOL) - enables execution

IN1 (TIME_OF_DAY) - minuend

IN2 (TIME duration) - subtrahend

OK (BOOL) - execution completed without error
OUT (TIME_OF_DAY) - difference

The S_TOD_T function subtracts the value of the variable or constant at IN2 from
the value of the variable or constant at IN1. The result is a TIME_OF_DAY value
that is placed in the variable at OUT.

Example of subtract: TIME_OF_DAY minus TIME
Value at IN1
TOD#14:57:34

Value at IN2 Value at OUT
T#4h54m23s TOD#10:03:11

2-438

Chapter 2 Function/Function Block Description

S _TOD_TO

S TOD TO
Subtract: Time of Day Minus Time of Day Arith/DATETIME

S T0D 10 Inputs: EN (BOOL) - enables execution
1N 0K |- IN1 (TIME_OF_DAY) - minuend
JINT ouTk IN2 (TIME_OF_DAY) - subtrahend
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (TIME duration) - difference

The S_TOD_TO function subtracts the value in the variable or constant at IN2
from the value in the variable or constant at IN1. The result is a TIME duration
value that is placed in the variable at OUT.

Example of subtract: TIME_OF_DAY minus TIME_OF_DAY
Value at IN1 Value at IN2 Value at OUT
TOD#14:57:34 TOD#10:03:11 T#4h54m?23s

Chapter 2 Function/Function Block Description 2-439

TAN

TAN
Tangent Arith/TRIG
AN Inputs: EN (BOOL) - enables execution
1N ok L ANGL (REAL/LREAL) - angle value (in radians)
IANGL TANE Outputs: OK (BOOL) - execution completed without error
TAN (REAL/LREAL) - tangent calculated
NOTE: The data types entered at ANGL and TAN
must match, i.e. if ANGL is REAL, then TAN must be
REAL.
The TAN function calculates the tangent of the angle entered at ANGL. The result
is placed at TAN.
2-440 Chapter 2 Function/Function Block Description

TIM2UDIN

TIM2UDIN
Time to Unsigned Double Integer Datatype/D TCONV

7imzupinl Imputs: EN (BOOL) - enables execution

JEN 0K |- IN (TIME) - time value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (UDINT) - value in milliseconds

The TIM2UDIN function converts the TIME at IN to a UDINT at OUT. The units
of the value at OUT are milliseconds.

For example, an IN value of T#10s results in an OUT of 10000 (milliseconds).

Chapter 2 Function/Function Block Description 2-441

TIME2STR

TIME2STR
Time to String Datatype/D TCONV

TiMezsTr| Inmputs: EN (BOOL) - enables execution
JEN 0K |- OUT (STRING) - STRING output
J0UT---0UT = IN (TIME duration) - value to convert
JIN Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The TIME2STR function converts the value in the variable or constant at IN to a
STRING value. The result is placed in the variable at OUT.

Example of TIME to STRING function
Value at IN1 Value at OUT
TOD#14:57:34 45d23h

Note: The minimum length entered in software declarations for the STRING at
OUT must be 17 characters.

2-442

Chapter 2 Function/Function Block Description

TME_ERR?

TME_ERR?

Timing Error ? Motion/ERRORS

T™ME err? | Inmputs: EN (BOOL) - enables execution
JEN okl Outputs: OK (BOOL) - execution completed without error

ERRL ERR (BOOL) - indicates a timing error has occurred if
set

The timing error inquiry asks if the time required to carry out the servo calcula-
tions exceeds the allotted interrupt time.

IMPORTANT: Set an E-stop on all axes when a timing error occurs.

Chapter 2 Function/Function Block Description 2-443

TOD2STR

TOD2STR
Time_of_Day to String Datatype/D TCONV

TOD2STR Inputs: EN (BOOL) - enables execution
1N 0K = OUT (STRING) - STRING output
JouT---0uT IN (TIME_OF_DAY) - value to convert
JIN Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The TOD2STR function converts the value in the variable or constant at IN to a
STRING value. The result is placed in the variable at OUT. OUT.

Example of TIME_OF_DAY to STRING function
Value at IN1 Value at OUT
TOD#16:27:45 16:27:45

2-444 Chapter 2 Function/Function Block Description

TOF

TOF
Timer Off Timers/TOF

'}'é"FAE Inputs: IN (BOOL) - enables execution
IN 0 PT (TIME duration) - preset time (minimum
10ms)
PT ET

Outputs: Q (BOOL) - energized from the time IN is ener-
gized until preset time (PT) elapses then deener-
gizes

ET (TIME duration) - elapsed time

The TOF function block de-energizes an output after a duration of time. When the
input at IN is energized, the output at Q is energized. When power to IN drops, the
output at Q stays energized until the time specified by the variable or constant at
PT has passed. Then the output at Q is deenergized. The amount of time that has
passed is placed into the variable at ET, as the time passes.

If power flow to the point at IN occurs before the preset value is reached, the
counting is stopped and the output at Q is not deenergized.

To enter a constant at the PT (preset time) input, type T# followed by the amount
and type [d (day), h (hour), m (minute), s (second), ms (millisecond)]. For exam-
ple, to enter a preset time of 5 seconds type the following at PT:

T#5s

Note: A variable declared in software declarations can also be used at PT.

Chapter 2 Function/Function Block Description 2-445

TON

TON

Timer On

Timers/TON

'%ME Inputs: IN (BOOL) - enables execution

IN 0 PT (TIME duration) - preset time (minimum 10ms)

PT rTl— Outputs: Q (BOOL) - energized after IN is energized for the pre-
set time

ET (TIME duration) - elapsed time

The TON function block energizes an output after a duration of time. The output
at Q is energized after the input at IN has been energized for the amount of time
specified by the variable or constant at PT. The count starts when the block begins
executing (power flow occurs at IN). The variable at ET contains the amount of
time that has passed, as it passes.

If power flow to the point at IN drops before the preset value is reached, the count-
ing is stopped and the output at Q does not energize. If power flow to the point at
IN drops after Q has been energized, Q is deenergized immediately.

To enter a constant at the PT (preset time) input, type T# followed by the amount
and type [d (day), h (hour), m (minute), s (second), ms (millisecond)]. For exam-
ple, to enter a preset time of 5 seconds type the following at PT:

T#5s

Note: A variable declared in software declarations can also be used at PT.

2-446

Chapter 2 Function/Function Block Description

TP

P

Timer Pulse Timers/TP

'}'éME Inputs: IN (BOOL) - enables execution
IN 0 PT (TIME duration) - preset time (minimum 10ms)

PT eT L= Outputs: Q (BOOL) - energized for the time period specified at
PT

ET (TIME duration) - elapsed time

The TP function block energizes an output for a duration of time. The output at Q
is energized when power flow occurs at IN. Q remains energized for the amount
of time specified by the variable or constant at PT, regardless of the power flow at
IN. The variable at ET holds the amount of time that has elapsed since the output
at Q was energized.

To enter a constant at the PT (preset time) input, type T# followed by the amount
and type [d (day), h (hour), m (minute), s (second), ms (millisecond)]. For exam-
ple, to enter a preset time of 5 seconds type the following at PT:

T#5s

Note: A variable declared in software declarations can also be used at PT.

Chapter 2 Function/Function Block Description 2-447

TUNEREAD

TUNEREAD

Tune Read

Motion/DATA

TUNereap] Imputs: EN (BOOL) - enables execution (Typically one-shot)

1N oKL AXIS (USINT) - identifies axis (servo)
JAXIS RSLTL VAR (SINT) - number of variable to read
JVAR Outputs: OK (BOOL) - execution complete without error

RSLT (DINT) - servo data read

The TUNEREAD function allows you to read from your LDO the variables listed
in the table in TUNEWRITE. These are the same variables that can be read on the
servo setup view list.

The slow speed filter variable 5 is the only TUNEREAD/TUNEWRITE variable
that can be used with the Stepper Axis module.

2-448

Chapter 2 Function/Function Block Description

TUNEWRIT

TUNEWRIT

Tune Write

Motion/DATA

TuNewRzT| Imputs: EN (BOOL) - enables execution (Typically one-shot)

1N ok L AXIS (USINT) - identifies axis (servo)

IAXIS ERRL VAR (SINT) - number of variable to write to
VAR DATA (DINT) - servo data to write

4 DATA Outputs: OK (BOOL) - execution complete without error

1 to 3 if data transfer is unsuccessful

ERR (INT) - 0O if data transfer is successful

The TUNEWRIT function allows you to change the variables listed in the table
below from your LDO. These are the same variables that can be changed with the

servo setup force list.

VARIABLES AVAILABLE FOR THE TUNE READ/WRITE FUNCTIONS

Key for the variable table

V# - identifies the variable number you enter in the tune read and/or write

functions at VAR.

R column- indicates the variable can be used with the tune read function.

W column-indicates the variable can be used with the tune write function.

S = initialized servo axis

V#

Definition

Proportional Gain - Proportional gain calibrates corrective action
proportional to the amount of following error. The value written/read
represents the axis units per minute for each axis unit of following
error. .

Range: 0 - 20000

Integral Gain - Integral gain determines corrective action propor-
tional to the amount of following error summed over the time dura-
tion of the error. The longer the following error exists, the greater the
integral error. The value written/read represents the number of axis
units per minute per axis unit of following error times minutes.

Range: 0 - 32000

Chapter 2 Function/Function Block Description

2-449

TUNEWRIT

3 |Derivative Gain - Derivative gain determines the corrective action
proportional to the magnitude of change of the following error. The
value written/read represents the number of axis units per minute for
each axis unit of following error per minute.

Range: 0 - 1000

4 |Offset - If it is not possible to get a zero volts reading from a voltme-
ter placed across the analog output channel for the axis, write the
amount of voltage in millivolts that allows you to reach a zero read-
ing.

Range: -10000 to 10000 mV

5 Slow Speed Filter - Write the milliseconds the filter will take to
smooth out a “step” change in velocity while the axis is moving at
slow velocities.

NOTE: Specifically, the value entered represents the milliseconds
that the servo software takes to carry out 63.2% of the step change.

Range: 0 - 10000 ms

6 [Feed Forward Percent - Write a percentage (from 0 to 100%) that
you want the position loop to compensate for the lag that occurs
between the generation of the following error and the correction of
that error by the PID calculations.

Range: 0 - 100%

The outputs at ERR of TUNEWRIT are listed below.

Err # Description
0 No error
1 Axis number not initialized or out of range
2 Variable is not from 1 through 6
3 Datais out of range or value cannot be calculated

2-450 Chapter 2 Function/Function Block Description

TUNEWRIT

NOTE

When using the TUNEREAD AND TUNEWRIT functions, note
that:

e The values you enter with TUNEWRIT are stored in the PiC memory as
approximate conversions. Therefore, there may be some discrepancy when
these values are read back with TUNEREAD.

e Calculated values are stored directly in the PiC memory and used to issue
servo commands. Be aware that when gains are changed, it has an immedi-
ate effect on the axis. The D/A signal may step to a new voltage causing the
axis to jump. The larger the change, the greater the jump.

e If Servo Setup Force and the TUNEREAD and TUNEWRIT are all being
used, the last data written from any source will be what is in effect.

Note: The CPU must have a math coprocessor in order to use the TUNEREAD
and TUNEWRIT functions. The axis must be an initialized servo axis.

Chapter 2 Function/Function Block Description 2-451

UDIN2DI

UDIN2DI
Unsigned Double Integer to Double Integer Datatype/UDINTCNV

UDIN?ZDI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (UDINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The UDIN2DI function changes the data type of the value at IN from an unsigned
double integer to a double integer. The result is placed in the variable at OUT.

2-452 Chapter 2 Function/Function Block Description

UDIN2DW

UDIN2DW
Unsigned Double Integer to Double Word Datatype/UDINTCNV
UDINZDW Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (UDINT) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error

OUT (DWORD) - converted value

The UDIN2DW function changes the data type of the value at IN from an
unsigned double integer to a double word. The result is placed in the variable at

OUT.

Chapter 2 Function/Function Block Description 2-453

UDIN2RE

UDIN2RE
Unsigned Double Integer to Real Datatype/UDINTCNV

UDINZRE Inputs: EN (BOOL) - enables execution

1EN oKL IN (DINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (REAL) - converted value

The UDIN2RE function converts an unsigned double integer into a real. The
result is placed in a variable at OUT.

2-454 Chapter 2 Function/Function Block Description

UDIN2TIM

UDIN2TIM
Unsigned Double Integer to Time Datatype/UDINTCNV

UDINZTIM Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (UDINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (TIME) - time value

The UDIN2TIM function converts the UDINT or constant at IN to TIME. The
units of the value at IN are milliseconds.

For example, an IN value of 10000 (milliseconds) results in an OUT of T#10s.

Chapter 2 Function/Function Block Description 2-455

UDIN2UI

UDIN2UI
Unsigned Double Integer to Unsigned Integer Datatype/UDINTCNV

UDIN2UI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (UDINT) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error
OUT (UINT) - converted value

The UDIN2UI function changes the data type of the value at IN from an unsigned
double integer to an unsigned integer. The leftmost 16 bits of the unsigned double
integer are truncated. The result is placed in the variable at OUT.

2-456 Chapter 2 Function/Function Block Description

UDIN2ULI

UDIN2ULI
Unsigned Double Integer to Unsigned Long Integer Datatype/UDINTCNV

winzuLr | Imputs: EN (BOOL) - enables execution

JEN oK IN (UDINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The UDIN2ULI function converts an unsigned double integer into an unsigned
long integer. The leftmost 32 bits of the unsigned long integer are filled with
zeros. The result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-457

UDIN2USI

UDIN2USI
Unsigned Double Integer to Unsigned Short Integer Datatype/UDINTCNV

UDIN2USI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (UDINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (USINT) - converted value

The UDIN2USI function changes the data type of the value at IN from an unsigned
double integer to an unsigned short integer. The leftmost 24 bits of the unsigned
double integer are truncated. The result is placed in the variable at OUT.

2-458 Chapter 2 Function/Function Block Description

UINT2INT

UINT2INT
Unsigned Integer to Integer Datatype /UINTCONV

UINT2INT Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (UINT) - value to convert

1IN ouTl Outputs:OK (BOOL) - execution completed without error
OUT (INT) - converted value

The UINT2INT function changes the data type of the value at IN from an unsigned
integer to an integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-459

UINT2UDI

UINT2UDI
Unsigned Integer to Unsigned Double Integer Datatype /UINTCONV

UinT2upz] Inmputs: EN (BOOL) - enables execution

JEN 0K |- IN (UINT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (UDINT) - converted value

The UINT2UDI function changes the data type of the value at IN from an
unsigned integer to an unsigned double integer. The leftmost 16 bits of the
unsigned double integer are filled with zeros. The result is placed in the variable at
OUT.

2-460 Chapter 2 Function/Function Block Description

UINT2ULI

UINT2ULI
Unsigned Integer to Unsigned Long Integer Datatype /UINTCONV

UINT2ULT Inputs: EN (BOOL) - enables execution

1N oKL IN (UINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The UINT2ULI function converts an unsigned integer into an unsigned long inte-
ger. The leftmost 48 bits of the unsigned long integer are filled with zeros. The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-461

UINT2USI

UINT2USI
Unsigned Integer to Unsigned Short Integer Datatype /UINTCONV

UINT2USI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (UINT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (USINT) - converted value

The UINT2USI function changes the data type of the value at IN from an unsigned
integer to an unsigned short integer. The leftmost 8 bits of the unsigned integer are
truncated. The result is placed in the variable at OUT.

2-462 Chapter 2 Function/Function Block Description

UINT2WO

UINT2WO
Unsigned Integer to Word Datatype /UINTCONV

UiNnT2wo | Inputs: EN (BOOL) - enables execution

1N 0K |- IN (UINT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The UINT2WO function changes the data type of the value at IN from an unsigned
integer to a word. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-463

ULIN2LI

ULIN2LI
Unsigned Long Integer to Long Integer Datatype /ULINTCNV

ULnzLr | Inputs: EN (BOOL) - enables execution

JEN oK IN (ULINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The ULIN2LI function converts an unsigned long integer into a long integer. The
result is placed in a variable at OUT.

2-464 Chapter 2 Function/Function Block Description

ULIN2LR

ULIN2LR
Unsigned Long Integer to Long Real Datatype /ULINTCNV

ULINz2LR | Inputs: EN (BOOL) - enables execution

JEN oK IN (ULINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

The ULIN2LR function converts an unsigned long integer into a long real. The
result is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-465

ULIN2LW

ULIN2LW

Unsigned Long Integer to Long Word

Datatype /ULINTCNV

LNzl | Inputs: EN (BOOL) - enables execution

JEN oK IN (ULINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The ULIN2LW function converts an unsigned long integer into a long word.

result is placed in a variable at OUT.

The

2-466

Chapter 2 Function/Function Block Description

ULIN2UDI

ULIN2UDI
Unsigned Long Integer to Unsigned Double Integer Datatype /ULINTCNV

oLinzupr | Imputs: EN (BOOL) - enables execution

JEN oK IN (ULINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (UDINT) - converted value

The ULIN2UDI function converts an unsigned long integer into a unsigned double
integer. The leftmost 32 bits of the unsigned long integer are truncated. The result
is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-467

ULIN2UI

ULIN2UI
Unsigned Long Integer to Unsigned Integer Datatype /ULINTCNV

oLnzur | Inputs: EN (BOOL) - enables execution

JEN oK IN (ULINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (UINT) - converted value

The ULIN2UI function converts an unsigned long integer into a unsigned integer.
The leftmost 48 bits of the unsigned long integer are truncated. The result is
placed in a variable at OUT.

2-468 Chapter 2 Function/Function Block Description

ULIN2USI

ULIN2USI
Unsigned Long Integer to Unsigned Short Integer Datatype /ULINTCNV

uLinzus | Imputs: EN (BOOL) - enables execution

JEN oK IN (ULINT) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (USINT) - converted value

The ULIN2USI function converts an unsigned long integer into a unsigned short
integer. The leftmost 56 bits of the unsigned long integer are truncated. The result
is placed in a variable at OUT.

Chapter 2 Function/Function Block Description 2-469

UPR_CASE

UPR_CASE
Upper Case String/UPR_CASE

UPR_CASE Inputs: EN (BOOL) - enables execution

JEN oK OUT (STRING) - output STRING
JoUT---ouTh IN (STRING) - string of characters to convert to upper
1 case

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input) - converted string

The UPR_CASE function converts the characters in a string to all upper case char-
acters. The result is placed in the string at OUT.

The OK will not be set if the number of characters in the string at IN is larger than
the maximum number of characters you have declared in the string at OUT.

See also LWR_CASE function.

2-470 Chapter 2 Function/Function Block Description

USIN2BYT

USIN2BYT
Unsigned Short Integer to Byte Datatype/USINTCNV

USINZBYT Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (USINT) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The USIN2BYT function changes the data type of the value at IN from an
unsigned short integer to a byte. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-471

USINZ2SI

USIN2SI
Unsigned Short Integer to Short Integer Datatype/USINTCNV

USIN?SI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (USINT) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without
error

OUT (SINT) - converted value

The USIN2SI function changes the data type of the value at IN from an unsigned
short integer to a short integer. The result is placed in the variable at OUT.

2-472 Chapter 2 Function/Function Block Description

USIN2STR

USIN2STR
Unsigned Short Integer (ASCII Code) to String Datatype/USINTCNV

USIN?2STR Inputs: EN (BOOL) - enables execution
JEN 0K |- STR (STRING) - output string
{STR---STR|~ NUM (USINT) - usint (ASCII code)
{NUM Outputs: OK (BOOL) - execution completed without error

STR (STRING) - converted string

The USIN2STR function converts the USINT or constant at NUM into the first
character of the STRING at STR. Any ASCII code may be converted to STRING.

For example, it NUM = 65, the first character of STRING becomes 'A’".

Note: The string at STR will always be a one-character string.

Chapter 2 Function/Function Block Description 2-473

USIN2UDI

USIN2UDI
Unsigned Short Integer to Unsigned Double Integer Datatype/USINTCNV

USINZUDI Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (USINT) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error
OUT (UDINT) - converted value

The USIN2UDI function changes the data type of the value at IN from an unsigned
short integer to an unsigned double integer. The leftmost 24 bits of the unsigned
double integer are filled with zeros. The result is placed in the variable at OUT.

2-474 Chapter 2 Function/Function Block Description

USIN2uI

USIN2UI
Unsigned Short Integer to Unsigned Integer Datatype/USINTCNV

USIN2UI Inputs: EN (BOOL) - enables execution
JEN 0K |- IN (USINT) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution complete
OUT (UINT) - converted value

The USIN2UI function changes the data type of the value at IN from an unsigned
short integer to an unsigned integer. The leftmost 8 bits of the unsigned integer are
filled with zeros. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-475

USIN2ULI

USIN2ULI
Unsigned Short Integer to Unsigned Long Integer Datatype/USINTCNV

usinzuLr | Imputs: EN (BOOL) - enables execution

JEN oK IN (USINT) - value to convert

1IN outl Outputs:OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The USIN2ULI function converts an unsigned short integer into an unsigned long
integer. The leftmost 56 bits of the unsigned long integer are filled with zeros.
The result is placed in a variable at OUT.

2-476 Chapter 2 Function/Function Block Description

VEL_END

VEL_END
Velocity End Motion/MOVE

VeL o | Imputs: EN (BOOL) - enables execution (One-shot)
1EN oKL AXIS (USINT) - identifies axis (servo or time)
JAXIS Outputs: OK (BOOL) - execution completed without error

The velocity end function is required to stop a move started by the VEL_STRT
function.

Chapter 2 Function/Function Block Description 2-477

VEL_STRT

VEL_STRT
Velocity Start Motion/MOVE

VEL STrT | Inputs: EN (BOOL) - enables execution (One-shot)
1N ok L AXIS (USINT) - identifies axis (servo or time)
IAXIS QUEL PLUS (BOOL) - indicates direction of motion
JPLUS RATE (UDINT) - feedrate at which motion occurs
1RaTE (entered in LU/MIN)
Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of velocity start move for
queue

The velocity start function moves an axis at a specified feedrate and direction. If
the input at PLUS is set, then movement occurs in the positive direction as defined
for your system. If it is not set, then movement occurs in the negative direction.
When the velocity move is used with a time axis, the S_CURVE function must be
called first.

To end a velocity start move you must include the VEL_END function in your lad-
der program.

IMPORTANT

Remember that a VEL_END function only ends the velocity
move in the active queue. A VEL_END function never ends the
velocity move in the next queue. Only call the VEL_END func-
tion when the velocity move you want to end is in the active
queue.

2-478 Chapter 2 Function/Function Block Description

WORD2BYT

WORD2BYT
Word to Byte Datatype /WORDCONV

WORDZBYT Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (WORD) - value to convert

1IN ouTl= Outputs: OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The WORD2BYT function changes the data type of the value at IN from a word to
a byte. The leftmost 8 bits of the word are truncated. The result is placed in the
variable at OUT.

Chapter 2 Function/Function Block Description 2-479

WORD2DW

WORD2DW
Word to Double Word Datatype /WORDCONV

WORDZDW Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (WORD) - value to convert

1IN ouTle Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The WORD2DW function changes the data type of the value at IN from a word to
a double word. The leftmost 16 bits of the double word are filled with zeros. The
result is placed in the variable at OUT.

2-480

Chapter 2 Function/Function Block Description

WORD2INT

WORD2INT
Word to Integer Datatype /WORDCONV

WORDZINT Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (WORD) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (INT) - converted value

The WORD2INT function changes the data type of the value at IN from a word to
an integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-481

WORD2LW

WORD2LW
Word to Long Word Datatype /WORDCONV

WORDZLW Inputs: EN (BOOL) - enables execution

JEN oK IN (WORD) - value to convert

1IN outl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The WORD2LW function converts a word into a long word. The leftmost 48 bits
of the long word are filled with zeros. The result is placed in a variable at OUT.

2-482

Chapter 2 Function/Function Block Description

WORD2UI

WORD2UI
Word to Unsigned Integer Datatype /WORDCONV

WORD2UT Inputs: EN (BOOL) - enables execution

JEN 0K |- IN (WORD) - value to convert

1IN ouTl Outputs: OK (BOOL) - execution completed without error
OUT (UINT) - converted value

The WORD2UI function changes the data type of the value at IN from a word to
an unsigned integer. The result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-483

WRITE

WRITE

Write

lo/COMM

—NAME — .
WRITE Inputs:

REQ DONE —
HNDL FAIL |-
4CNT ERR|-
BUFR ACT |—

Outputs:

REQ (BOOL) - enables execution (One-shot)
HNDL (INT) - output from OPEN function block
CNT (INT) - number of bytes to write
BUFR (MEMORY AREA) - to write data from

MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE MEM-
BER

DONE (BOOL) - energized if ERR =0
not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR =0

ERR (INT) - 0 if data transfer successful
0 if data transfer unsuccessful

See Appendix B in the software manual for ERR codes.
ACT (INT) - number of bytes written

The WRITE function block writes data to the file or device at the User Port speci-
fied by the input at HNDL. It writes the number of bytes specified by the value at

CNT, from the variable

at BUFR. It replaces or writes over any existing data in a

file. The number of bytes actually written is placed into the variable at ACT. ACT
will be less than CNT when the number of bytes in the variable at BUFR is less
than CNT, or when there is an error. Otherwise the value of ACT will equal the

value of CNT.

WRITE is used in conjunction with the CLOSE, CONFIG, OPEN, READ, SEEK,
and STATUS I/O function blocks.

Note: The FMSDISK does not support the WRITE function block.

2-484

Chapter 2

Function/Function Block Description

WRITE_SV

WRITE_SV
Write Servo Motion/DATA

WRITE SV Inputs: EN (BOOL) - enables execution (Typically one-shot)

1N oKL AXIS (USINT) = identifies axis (servo, digitizing, or
time)

{AXIS

lvan VAR (SINT) = variable to be written to

1paTa DATA (DINT) - servo data to be written

Outputs: OK (BOOL) - execution completed without error

The write servo function allows the specified variable (VAR) to be written with
DATA for the specified axis.

The variables that can be written to using the function are listed in the variables
table at the READ_SV function.

Chapter 2 Function/Function Block Description 2-485

WRIT_SVF

WRIT SVF
Write Servo Fast Motion/DATA

WRIT SVF Inputs: EN (BOOL) - enables execution
1N oKL AXIS (USINT) = identifies axis (servo, digitizing, or
time)
{AXIS
lvan VAR (SINT) = variable to be written to
1paTa DATA (DINT) = servo data to be written
Outputs: OK (BOOL) - execution completed without error

The write servo fast function allows the specified variable (VAR) to be written
with DATA for the specified axis. The WRIT_SVF function performs the write
faster than the WRITE_SV function. It consumes less CPU time in exchange for
some features. Less verification is performed on the inputs to WRIT_SVE. All
values that involve velocity or distance are in feedback units and updates rather
than ladder units and minutes.

The variables that can be written using the function are listed at the READ_SV
function.

2-486 Chapter 2 Function/Function Block Description

XOR

XOR
Exclusive Or Binary/XOR

OR Inputs: EN (BOOL) - enables execution
1N 0K = IN1 (BITWISE) - number to be XORed
JINT oUTk IN2 (same type as IN1) - number to be XORed
JIN? Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN1) - XORed number

The XOR function exclusive ORs the variable or constant at IN1 with the variable
or constant at IN2, and places the results in the variable at OUT. This is an exten-
sible function which can XOR up 17 inputs.

If two inputs of the XOR function are different, the output is 1. If two inputs are
the same, the output is 0. See the example below.

Example of XOR function with a value at IN1 and IN2:

11000011 value at IN1
10101010 value at IN2
01101001 value at OUT

If a third value would be at IN3, it would be XORed with the first two as shown
below (this would continue with each additional input).

11000011 value at IN1
10101010 value at IN2
01101001 result
11001100 value at IN3
10100101 value at OUT

Chapter 2 Function/Function Block Description 2-487

XOR

NOTES

2-488 Chapter 2 Function/Function Block Description

A.1 - Operator Interface ASFB

Your TrueView and Cimrex operator interface device requires the following
ASFBs in your LDO to set up communications between the PiC and the operator
interface device.

A1 -1

Operator Interface ASFB

Ol_SER

Operator Interface Serial

USER/OI

—NAME —
0I_SER
1N oK
{PORT FAIL
{CFG ERR
NODE
OIFL
OIER
RMSG

Inputs:

| Outputs:

EN (BOOL) - enables execution

PORT (STRING) - name of the port

CFG (STRING) - port configuration

OK (BOOL) - initialization complete

FAIL (BOOL) - initialization failed

ERROR (INT) - error number

See Appendix B in the software manual for ERR codes.
NODE (USINT) - assigned node number

OIFL (BOOL) - operator interface message fail
OIER (INT) - operator interface error number
RMSG (BOOL) - energized if a message is received

The OI_Serial function block implements the communication protocol
between the PiC and a Cimrex or TrueView operator interface device. It
handles RS232 and RS422 serial communication.

The EN input causes an I/O port to be opened and configured based on the
other inputs. When enabled, the function block will then be ready to receive a
protocol message from the operator interface device. Dropping the enable
input will cause the I/0 port to be closed.

The PORT input defines the name of the serial port to be used for
communications. The standard port on any MMC or PiC900 family CPU is
"USER:$00’. The port name is entered as a string. If a port on a Serial
Communication Module is to be used, the module must be assigned in the main
ladder using the ASSIGN function block. The port name used as the input to
the ASSIGN function block would also be passed as the PORT input.

The CFG input defines the characteristics of the port defined at the PORT
input. Values are the same as for the CONFIG function block.

Baud rate Parity Data bits Stop bits Synch mode Terminator
19200,

N,

8, 1, N $00

String = 19200,N,8,1,N$00

A1 -2

Operator Interface ASFB

If you need to change the default values for the parameters at the CFG string
input, refer to the table of acceptable values found at the CONFIG function
block.

The OK output is set if the function block was successful in opening and
configuring the serial port. It is latched and reset only when the enable is
dropped and enabled again.

The FAIL output is set if the function block was not successful in opening and
configuring the serial port. It is latched and reset only when the enable is
dropped and enabled again.

The ERR output contains an error number if the FAIL output is set. These
errors are listed in Appendix B of the PiCPro Software Manual.

The NODE output contains the node number specified at the /Ol command line
switch. It is provided for information purposes only. If no node number has
been entered, the output will be "0".

The OIFL output is the operator interface message fail. It is set for one scan
when a failure occurs attempting to process a command from the operator
interface.

The OIER output is the operator interface error number. When OIFL is set, this
output will hold one of the following error codes. This error number
corresponds to the Remote error number displayed at the bottom of the
operator interface device

The RMSG output is energized for one scan when a message is received from
the OL..

Code Description

1

Data Table Mismatch - The OID file used in the operator interface
configuration does not match the PiC’s data table.
Index Number Out of Range - The index number of the data ele-

ment requested by the operator interface is beyond the end of the
PiC’s data table.

Invalid Data Size - The specified data size of a specific data ele-
ment requested by the operator interface does not match the data
size of that data element in the PiC’s data table.

Response Message Too Long - The length of the response string
generated within OI_SER exceeds the declared length of the
response string.

A1-3

Operator Interface ASFB

NOTES

A1 -4

B.1 - OPC Server ASFB

The OPC [OLE (Object Linking and Embedding) for Process Control] Server was
designed to read and write data to and from the control via Ethernet.

B.1-1

OPC Server ASFB

OPC ENET
OPC_Ethernet USER/OPC ENET
_OﬁéMENE Inputs: EN (BOOL) - enables execution, set every scan
- SLOT (USINT) - slot number of Ethernet - TCP/IP mod-
1EN OK = ule in rack
13LOT FAILI- PORT (UINT) - UDP protocol port number
{PORT ERR|— Choose any available UDP port above 1024.
DERR|— Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - error, execution incomplete

ERR (INT) - error number from IP functions that
occurred during execution

DERR (INT) - data transfer errors

The OPC_ENET function block enables the control to communicate with the
Giddings & Lewis OPC Server. It provides a protocol for this communication
and error checking capabilities for the data sent. Any OPC compliant client
can be used with the OPC server.

The function block is configured as a UDP server. It will service incoming
UDP requests but will not solicit information from other controls or PCs.

All the variables to be passed to the OPC Server via this function block must
be declared globally within the ladder. For more information on setting up the
OPC server, refer to the OPC server manual.

When the EN input is set, a UDP socket is created on the TCP/IP module
defined in SLOT. It binds that socket to the PORT. It services requests for read
or write data from an OPC server.

The PORT input defines the port to be used for Ethernet communications. You
must assign an available port number above 1024. Use this same number in
your OPC setup to ensure that communications will be established.

The OK output is set if the function block was successful in opening and
configuring the port.

The FAIL output is set if the function block was not successful in opening and
configuring the port.

B.1-2

OPC Server ASFB

The ERR output contains an error number if the FAIL output is set. These are
the same errors that can occur in the IP function/function blocks.

ERR# Description ERR# Description
0 [No error 40 |Destination address required
1 |Not owner 41 |Protocol wrong type for socket
2 |No such file or directory 42 [Protocol not available
3 [No such process 43 [Protocol not supported
4 |Interrupted system call 44 [Socket type not supported
S [l/O error 45 |Operation not supported on socket
6 [No such device or address 46 |Protocol family not supported
7 |Arg list too long 47 |Address family not supported
8 |[Exec format error 48 |Address already in use
9 |Bad file number 49 [Can’t assign requested address
10 |No children 50 |[Socket operation on non-socket
11 [No more processes 51 |Network is unreachable
12 [Not enough core 52 [Network dropped connection on reset
13 |Permission denied 53 |Software caused connection abort
14 |[Bad address 54 |Connection reset by peer
15 |Directory not empty 55 |No buffer space available
16 |Mount device busy 56 |[Socket is already connected
17 |File exists 57 [Socket is not connected
18 |Cross-device link 58 |Can’t send after socket shutdown
19 |No such device 59 |Too many references: can’t splice
20 |Not a directory 60 |Connection timed out
21 |Is a directory 61 |Connection refused
22 |Invalid argument 62 [Network is down
23 [File table overflow 63 [Text file busy
24 [Too many files open 64 [Too many levels of symbolic links
25 |Not a typewriter 65 [No route to host
26 |File name too long 66 [Block device required
27 |File too large 67 [Hostis down
28 |No space left on device 68 [Operation now in progress
29 |lllegal seek 69 |[Operation already in progress
30 |Read-only file system 70 [Operation would block
31 |[Too many links 71 [Function not implemented
32 |Broken pipe 72 |Operation cancelled
33 |Resource deadlock avoided 1000 |[There is a non-zero terminated string which
requires zero termination.
34 |No locks available 1001 (There is a CNT input which is too large.

B.1-3

OPC Server ASFB

35 |[Unsupported value 1002 (The SLOT number requested does not contain
an Ethernet board.

36 |Message size 1003 |Either the firmware does not support TCP/IP or
there is no Ethernet board in the rack.

37 |Argument too large 1004 [The IPZ buffer is too small.

38 [Result too large

The DERR output is a data transfer error and can contains one of the numbers
listed below.

Code Description

1 Data Table Mismatch - The message has an invalid CRC value.
The OID file used in the OPC server configuration does not match
the PiC’s data table.

2 Index Number Out of Range - The index number of the data ele-
ment requested by the OPC server is beyond the end of the PiC’s
data table.

3 Invalid Data Size -The specified data size of a specific data ele-
ment requested by the OPC does not match the data size of that data
element in the PiC’s data table.

4 Output Oversize - More than 500 bytes of data have been
requested in one UDP packet.

5 Byte Count Wrong - The byte count of the request message from
the OPC server is inconsistent with the requested data (incomplete
message).

B.1-4

INDEX

Symbols
+10V DC output module 2-7, 2-9
Numerics

4-20 mA output 2-9
4-20 mA output module 2-7, 2-9

A

A_DT T function 1-7, 2-25
A_IN_MMC function 1-32, 2-26
A_INCHIT function 1-32, 2-27
errors 2-29
A_INCHRD function block 1-32, 2-30
errors 2-31
A_INMDIT function 1-32, 2-33
errrors 2-33
A_TOD_T function 1-7, 2-34
abort move 2-3
ABRTALL function 1-52, 2-2
ABRTMOVE function 1-52, 2-2
ABS function 1-6, 2-3
acc/dec rates
limits 2-4
ACC_DEC function 1-51, 2-4
ACOS function 1-8, 2-5
ADD function 1-6, 2-5, 2-433
algorithm
independent gains 2-208
ISA 2-208
analog
functions 1-32
analog output
units 2-10
volts 2-10
AND function 1-9, 2-6
ANLG_OUT function 1-33, 2-9
anlgin group functions 1-32
ANLGINIT function 1-33, 2-7
anlgout group functions 1-33
anti-reset windup 2-207
APPEND mode 2-197
arith group functions 1-6
arithmetic
arith

ABS 2-3
ADD 2-5, 2-433
DIV 2-83
MOD 2-176
MUL 2-178
NEG 2-181
datetime
A_DT_T 2-25
A_TOD_T 2-34
S_DT DT 2-435
S_DT _T 2-436
S_TOD_T 2-438
functions 1-6
trig
ACOS 2-5
ASIN 2-17
ATAN 2-19
COS 2-64
EXP 2-95
LN 2-158
LOG 2-159
SIN 2-398
TAN 2-440
ARTDCHIT function 1-41, 2-12
errors 2-13
ARTDCHRD function block 1-41, 2-14
errors 2-15
ARTDMDIT function 1-41, 2-16
errors 2-16
ASIN function 1-8, 2-17
ASSIGN function block 1-36, 2-17
errors 2-18
ATAN function 1-8, 2-19
ATMPCHIT function 1-37, 2-20
errors 2-21
ATMPCHRD function 1-37
ATMPCHRD function block 2-22
errors 2-23
ATMPMDIT function 1-37, 2-24
errors 2-24

B

BAT_OK? function 1-34, 1-35, 2-36
binary

AND 2-6

functions 1-9

IND-1

NOT 2-195

OR 2-200

ROL 2-341

ROR 2-342

SHL 2-396

SHR 2-397

XOR 2-487
BIO_PERF function block 2-36
bipolar

example 2-32

range 2-28
bit

rotate functions 1-9

shift functions 1-9
BOOL2BYT function 1-11, 2-39

BOOL2BYTE group function 1-11, 1-22

buffer 2-281

bumpless transfer 2-204
BYT2BOOL function 1-11, 2-40
BYTE2DW function 1-11, 2-40
BYTE2LW function 1-11, 2-41
BYTE2SI function 1-11, 2-41
BYTE2USI function 1-11, 2-42
BYTE2WO function 1-11, 2-42
byteconv group functions 1-11

Cc

C_ERRORS function 1-48, 2-66
C_RESET function 1-48, 2-68
C_STOP function 1-48, 2-68
errors 2-67
C_STOP? function 1-48, 2-69
cam output
conditions 2-43
example 2-45
CAM_OUT function 1-51, 2-43
CAPTINIT function 1-44, 2-46
errors 2-48
CAPTSTAT function 1-44, 2-52
Celsius 2-22
changing ratios
RATIO_GR 2-192
RATIO_RL 2-192
RATIOSLP 2-192
RATIOSYN 2-192
clock

IND-2

get time 2-53

set 2-53
CLOCK function 1-57, 2-53
CLOSE function block 1-36, 2-54
CLOSLOOP function 1-49, 2-55
CLSLOOP? function 1-49, 2-56
comm group function blocks 1-36
communication parms 2-58
comparison

ratio moves 2-280

RATIOSLP, RATIOCAM, RATIOPRO

2-246
CONCAT function 1-56
errors 2-57
CONFIG function block 1-36, 2-58

COORD2RL function 1-44, 2-60, 2-272

errors 2-63
structures 2-60
COS function 1-8, 2-64
counter function blocks 1-10
counters
CTD 2-64
CTU 2-65
CTUD 2-65
C-stop
define 1-47
errors
bit locations 2-67
hex value 2-67
CTD function block 1-10, 2-64
CTU function block 1-10, 2-65
CTUD function block 1-10, 2-65

D

d_tconv group functions 1-14
D_TOD2DT function 1-14, 2-93
data
send/receive 1-36
data capture
tasks 2-47
variables
actual position 2-49
command change 2-49, 2-50
commanded position 2-49
fast input occurred 2-49
feedback position 2-49

filter error 2-49 LINT2LW 2-155

position change 2-49, 2-50 LINT2SI 2-156
position error 2-49 LINT2ULI 2-157
prefilter command change 2-49, 2-50 Irealecnv
prefilter commanded 2-49 LREA2LW 2-161, 2-162
remaining master offset 2-50 LREA2ULI 2-163
remaining slave offset 2-50 Iwordenv
datatype LWOR2BYT 2-165
BOOL2BYT 2-39 LWOR2DW 2-166
byteconv LWOR2LR 2-168
BYT2BOOL 2-40 LWOR2WO 2-170, 2-171
BYTE2DW 2-40 LWORD2ULI 2-169
BYTE2LW 2-41 NUM2STR 2-196
BYTE2SI 2-41 realconv
BYTE2USI 2-42 REAL2DI 2-321
BYTE2WO 2-42 REAL2DW 2-322
d_tconv REAL2LR 2-323
D_TOD2DT 2-93 REAL2UDI 2-324, 2-325
DATE2STR 2-71 sintconv
DT2DATE 2-84 SINT2BYT 2-399
DT2STR 2-85 SINT2DI 2-400
DT2TOD 2-86 SINT2INT 2-401
TIM2UDIN 2-441 SINT2LI 2-402
dintconv SINT2USI 2-403
DINT2DW 2-74 strconv
DINT2INT 2-75 STR2NUM 2-429
DINT2LI 2-76, 2-77 STR2USI 2-430
DINT2SI 2-78 udintcnv
DINT2UDI 2-79 UDIN2DI 2-452
dwordcnv UDIN2DW 2-453
DWOR2BYT 2-87 UDIN2RE 2-454
DWOR2DI 2-88 UDIN2TIM 2-455
DWOR2LW 2-89 UDIN2ULI 2-457
DWOR2RE 2-90 uintconv
DWOR2UDI 2-91 UINT2ULI 2-461
DWOR2WO 2-92 ulintcny
intconv ULIN2LI 2-464
INT2DINT 2-123 ULIN2LR 2-465
INT2LINT 2-124 ULIN2LW 2-466
INT2SINT 2-125 ULIN2UDI 2-467
INT2UINT 2-126 ULIN2UI 2-468
INT2WORD 2-127 ULIN2USI 2-469
lintconv usintcnv
LINT2DI 2-152 USIN2STR 2-473
LINT2INT 2-153 USIN2ULI 2-476
LINT2LR 2-154 wordconv

IND-3

WORD2BYT 2-479
WORD2DW 2-480
WORD2INT 2-481
WORD2LW 2-482
WORD2UI 2-483
datatype functions 1-11
DATE2STR function 1-14, 2-71
datetime group functions 1-7
deadband 2-206
DELETE function 1-56, 2-72
DELFIL function block 1-36, 2-73
derivative 2-204
control 2-204
DeviceNet
if status code 2-113
if status flags 2-113
network status 2-112
network status flags 2-111
digitizing axes 2-147, 2-225, 2-236, 2-245, 2-
259, 2-269, 2-273, 2-296, 2-301, 2-
303, 2-305, 2-307, 2-311
DINT2DW function 1-12, 2-74
DINT2INT function 1-12, 2-75
DINT?2LI function 1-12, 2-76, 2-77
DINT2RE function 1-12
DINT?2SI function 1-12, 2-78
DINT2UDI function 1-12, 2-79
dintconv group functions 1-12
DIRECT function block 1-36, 2-80
DISTANCE function 1-50, 2-82
DIV function 1-6, 2-83
DNS (Domain Name Server) 2-134, 2-136
DOS
file read/write 1-36
DT2DATE function 1-14, 2-84
DT2STR function 1-14, 2-85
DT2TOD function 1-14, 2-86
DWOR2BYT function 1-13, 2-87
DWOR2DI function 1-13, 2-88
DWOR2LW function 1-13, 2-89
DWOR2RE function 1-13, 2-90
DWOR2UDI function 1-13, 2-91
DWOR2WO function 1-13, 2-92
dwordcnv group functions 1-13

IND-4

E

E_ERRORS function 1-48, 2-96
E_RESET function 1-48, 2-98
E_STOP function 1-48, 2-99
E_STOP? function 1-48, 2-100
encoder 2-103, 2-146
ignore index 2-104, 2-147
end a move
ratio gear 2-118
syn end 2-434
vel end 2-477
EQ function 1-28, 2-94
ERR errors 2-383
error (registration)
accumulate 2-333
errors
C-stop 1-47
ERR 2-383
E-stop 1-47
programming 1-47
SERCOS 2-383
SERR 2-385
timing 1-47
E-stop
define 1-47
errors
bit locations 2-97
hex value 2-97
reset 2-98
ethernet-TCP/IP
errors 2-144
ethernet-TCP/IP functions
IPACCEPT 2-130
IPCLOSE 2-131
IPCONN 2-132
IPHOST 2-133
IPIP2NAM 2-134
IPLISTEN 2-135
IPNAM2IP 2-136
IPREAD 2-137
IPRECV 2-138
IPSEND 2-139
IPSOCK 2-140
IPWRITE 2-141
evaluate
EQ 2-94

GE 2-116

GT 2-119

LE 2-148

LT 2-164

NE 2-180
evaluate functions 1-28
excess following error 2-97
EXP function 1-8, 2-95

F

Fahrenheit 2-22
FAST_QUE function 1-52, 2-101, 2-219

programming error 2-102, 2-219

uses 2-101
FAST_REF function 1-54, 1-55, 1-56, 2-103
FB_CLS function block 1-30, 2-107
FB_OPN function block 1-30, 2-108
FB_RCYV function 1-30, 2-109
FB_SND function 1-30, 2-110
FB_STA function 1-30, 2-111
feedrate

change

all moves 2-343

field bus function/blocks

FB_CLS 2-107

FB_OPN 2-108

FB_RCV 2-109

FB_SND 2-110

FB_STA 2-111
filter

LIMIT 2-151

MAX 2-172

MIN 2-175

MOVE 2-177

MUX 2-179

SEL 2-394
filter functions 1-30
filter value

derivative 2-206

proportional 2-206
FIND function 1-56, 2-114
FRESPACE function block 1-36
FU2LU function 1-44
functions

menu 1-2

G

GE function 1-28, 2-116
GETDAY function 1-57, 2-117
GR_END function 1-53, 2-118
GT function 1-28, 2-119

H

HOLD function 1-51, 2-120
HOLD_END function 1-51, 2-121

I/0 function blocks 1-31
IDN
147 2-358
148 2-346
IN_POS? function 1-51, 2-128
INSERT function 1-56, 2-122
INT2DINT function 1-15, 2-123
INT2LINT function 1-15, 2-124
INT2SINT function 1-15, 2-125
INT2UINT function 1-15, 2-126
INT2WORD function 1-15, 2-127
intconv group functions 1-15
integral 2-204
control 2-204
i0
anlgin
A_INCHIT 2-27
A_INCHRD 2-30
A_INMDIT 2-33
anlgout
ANLG_OUT 2-9
ANLGINIT 2-7
BAT_OK? 2-36
BIO_PERF 2-36
comm
ASSIGN 2-17
CLOSE 2-54
CONFIG 2-58
DELFIL 2-73
DIRECT 2-80
OPEN 2-197
READ 2-281
RENAME 2-337
SEEK 2-392
WRITE 2-484

IND-5

JKtherm
ATMPCHIT 2-20
ATMPCHRD 2-22
ATMPMDIT 2-24
network
NETCLS 2-182
NETFRE 2-183
NETMON 2-184
NETOPEN 2-185
NETRCYV 2-187
NETSND 2-189
NETSTA 2-191
PID 2-204
READFDBK 2-283
rtdtemp
ARTDCHIT 2-12
ARTDCHRD 2-14
ARTDMDIT 2-16
stepper
STEP_POS 2-427
STEPCNTL 2-410
STEPINIT 2-414
IP socket
error numbers B.1-3
IPACCEPT function block 1-42, 2-130
IPCLOSE function block 1-42, 2-131
IPCONN function block 1-42, 2-132
IPHOST function block 2-133
IPHOSTID function block 1-42
IPIP2NAM function block 1-42, 2-134
IPLISTEN function block 1-42, 2-135
IPNAMZ2IP function block 1-42, 2-136
IPREAD function block 1-42, 2-137
IPRECYV function block 1-42
IPRECYV funtion block 2-138
IPSEND function block 1-42, 2-139
IPSOCK function block 1-42, 2-140
IPWRITE function block 1-42, 2-141

J

jerks 2-387
J-K thermocouple module 2-22
JKtemp group functions 1-37

L
LAD_REEF function 1-54, 1-55, 1-56, 2-106,

IND-6

2-146
ladder reference 2-146
ladder units 1-43
LE function 1-28, 2-148
LEFT function 1-56, 2-149
LEN function 1-56, 2-150
less than 2-164
LIMIT function 1-30, 2-151
LINT2DI function 1-16, 2-152
LINT2INT function 1-16, 2-153
LINT2LR function 1-16, 2-154
LINT2LW function 1-16, 2-155
LINT2SI function 1-16, 2-156
LINT2ULI function 1-16, 2-157
lintconv group functions 1-16
LN function 1-8, 2-158
LOG function 1-8, 2-159
loss of feedback 2-97
LREA2LI function 1-17
LREA2LW function 1-17, 2-161, 2-162
LREA2RE function 1-17
LREA2ULI function 1-17, 2-163
Irealcnv group functions 1-17
LT function 1-28, 2-164
LU2FU function 1-44
LWOR2BYT function 1-18, 2-165
LWOR2DW function 1-18, 2-166
LWOR2LI function 1-18, 2-167
LWOR2LR function 1-18, 2-168
LWOR2ULI function 1-18, 2-169
LWOR2WO function 1-18, 2-170, 2-171
Iwordenv group functions 1-18
LWR_CASE function 1-57

machine reference 2-103, 2-146
machine reference switch
set up 2-104
master/slave moves
programming errors 2-219
ratio gear 2-268
ratio profile 2-237
ratio slope 2-245
ratio synchronization 2-258
math coprocessor 2-1
MAX function 1-30, 2-172

MEASURE function 1-51, 2-173

MID function 1-57, 2-174
MIN function 1-30, 2-175
MMC
A_IN_MMC function 2-26
MOD function 1-6, 2-176
mode
APPEND 2-197
READ 2-197
WRITE 2-197
module 2-9
+10V DC output 2-7, 2-9
4-20 mA output 2-7
J-K thermocouple 2-22
motion
data
CAPINIT 2-48
CAPSTAT 2-52
COORD2RL 2-60
READ_SV 2-295
STATUSSV 2-408
TUNEREAD 2-448
TUNEWRIT 2-449
WRITE_SV 2-485
errors
C_ERRORS 2-66
C_RESET 2-68
C_STOP 2-68
C_STOP? 2-69
E_ERRORS 2-96
E_RESET 2-98
E_STOP 2-99
E_STOP? 2-100
P_ERRORS 2-219
P_RESET 2-222
TME_ERR? 2-443
init
CLOSLOOP 2-55
CLSLOOP? 2-56
OPENLOOP 2-199
STRTSERYV 2-431
move
DISTANCE 2-82
POSTION 2-218
VEL_END 2-477
VEL_STR 2-478

move_sup
ACC_DEC 2-4
CAM_OUT 2-43
HOLD 2-120
HOLD_END 2-121
IN_POS 2-128
MEASURE 2-173
NEW_RATE 2-194
NEWRATIO 2-192
R_PERCEN 2-343
RATIOSCL 2-241
REGIST 2-327
SCURVE 2-386
que
ABRTALL 2-2
ABRTMOVE 2-2
FAST_QUE 2-101
Q_AVAIL?2-223
Q_NUMBER 2-224
ratiomov
GR_END 2-118
RATIO_GR 2-268
RATIO_RL 2-272
RATIOCAM 2-225
RATIOPRO 2-236
RATIOSLP 2-245
RATIOSYN 2-258
REP_END 2-339
SYN_END 2-434
ref
FAST_REF 2-103
LAD_REF 2-146
PART_CLR 2-201
PART_REF 2-202
REF_DNE? 2-325
REF_END 2-326
motion data group functions 1-44
motion error group functions 1-47
motion functions 1-43
motion init group functions 1-49
motion move group functions 1-50
motion move_sup group functions 1-51
motion que group functions 1-52
motion ratiomov group functions 1-53
motion ref group functions 1-54, 1-55, 1-56
MOVE function 1-30, 2-177

IND-7

moves
distance 2-82
position 2-218
ratio cam 2-225
ratio gear 2-268
ratio profile 2-237
ratio real 2-272
ratio slope 2-245
ratio synchronization 2-258
velocity start 2-478
MUL function 1-6, 2-178
MUX function 1-30, 2-179
mV range 2-23

N

NE function 1-28, 2-180
NEG function 1-6, 2-181
NETCLS function block 1-38, 2-182
NETFRE function block 1-38, 2-183
NETMON function block 1-38, 2-184
NETOPN function block 1-38, 2-185
errors 2-185
NETRCYV function block 1-38, 2-187
errors 2-188
NETSND function block 1-38, 2-189
errors 2-190
NETSTA function block 1-38, 2-191
network 1-38
group functions 1-38
status 2-184
NEW_RATE function 1-51, 2-194
NEWRATIO function 1-51, 2-192
NEXNET
function blocks 1-38
noise filter 2-28
NOT function 1-9, 2-195
NUM2STR function 1-19, 2-196
NUM2STR group function 1-19

(o)

offset
examples 2-300
offset bytes 2-392
OL_SER A.1-2
OI_SER function block A.1-2
one-shot 2-1

IND-8

OPC server B.1-2

OPC_ENET function block B.1-2
OPEN function block 1-36, 2-18, 2-197
OPENLOOP function 1-49, 2-199

OR function 1-9, 2-200

origin 2-392

P

P_ERRORS function 1-48, 2-219
P_RESET function 1-48, 2-222
part reference 2-201
part reference offset 2-313
PART_CLR function 1-54, 2-201
PART_REEF function 1-54, 1-56, 2-202
photo eye 2-333
PID
algorithms 2-208
control 2-203
equations 2-208, 2-210
example network 2-212
structure 2-205
PID code 2-316
PID command 2-315
PID function block 1-39, 2-204
equation terms 2-208
PID group function 1-39
PLS 2-43
POSITION function 1-50, 2-218
profile
back to back 2-237, 2-240
end repeat 2-339
repeat 2-237, 2-238
profile (step)
example 2-424
programming errors
bit locations 2-220, 2-221
define 1-47
hex value 2-220, 2-221
proportional 2-204
control 2-204

Q

Q_AVAIL? function 1-52, 2-223
Q_NUMBER function 1-52, 2-224
queue

abort all moves 2-2

and fast input 2-101
available 2-223

number 1-52
R

R_PERCEN function 1-51, 2-343
RAMDISK

read/write 1-36
ratio gear

characteristics 2-270

mechanical representation 2-269
ratio real

characteristics 2-273

structure members 2-37, 2-275
RATIO_GR function 1-53, 2-268
RATIO_RL function 1-53, 2-272
ratiocam

and scaling 2-243

array of structures 2-232

characteristics 2-231

master start position 2-227

profile 2-226

repeat profile end 2-339

slave start position 2-227
RATIOCAM function 1-53, 2-225
ratiopro

back to back profiles 2-240

master start position 2-238

not OK 2-237

profile number 2-237

repeat profile 2-238

repeat profile end 2-339

slave reversal 2-237, 2-239

summary 2-236
RATIOPRO function 1-53, 2-236
RATIOSCL function 1-51, 2-241
ratioslp

and scaling 2-244

array of structures 2-253

characteristics 2-247

profile 2-254

repeat profile end 2-339

slope 2-256
RATIOSLP function 1-53, 2-245
ratiosyn

characteristics 2-261

master start position 2-261
mechanical representation 2-259
rollover on position 2-266
slave start position 2-261
RATIOSYN function 1-53, 2-258
READ function block 1-36, 2-281
READ mode 2-197
READ_SV function 1-44, 2-295
READ_SYV function (see variable servo)
READ_SVF function 1-44, 2-320
READFDBK function 1-40, 2-283, 2-337
READFDBK group function 1-40
REAL2DI function 1-20, 2-321
REAL2DW function 1-20, 2-322
REAL2LR function 1-20, 2-323
REAL2UDI function 1-20, 2-324, 2-325
realconv group functions 1-20
REF_DNE? function 1-54, 2-325
REF_END function 1-54, 2-326
reference
complete 2-325
fast input
define 2-103, 2-146
function 2-103
ladder
end function 2-326
function 2-146
no motion 2-104, 2-147
part
clear function 2-201
switch setup 2-105
REGIST function 1-51, 2-327
registration
background 2-329
example 2-331
fast input 2-327
good marks 2-336
master 2-334
slave 2-335
remainder 2-176
RENAME function block 1-36, 2-337
REP_END function 1-53, 2-339
REPLACE function 1-57, 2-338
resolver
ignore null 2-104, 2-147
RIGHT function 1-57, 2-340

IND-9

ROL function 1-9, 2-341
ROR function 1-9, 2-342
RS422/485 2-58
RTD
channel read errors 2-15
initialize
channel 2-12
errors (channel) 2-13
errors (module) 2-16
module 2-16
temperature range 2-12
RTD functions 1-41
RTDtemp group functions 1-41

S

S_D_D function 1-7

S_DT_DT function 1-7, 2-435

S_DT_T function 1-7, 2-436

S_TOD_T function 1-7, 2-438

S_TOD_TO function 1-7

SC_INIT function block 1-56, 2-345, 2-404

SCA_ACKR function block 1-54, 2-346

SCA_CLOS function block 1-49, 2-347

SCA_CTRL function 1-44, 2-348

SCA_ERST function block 1-48, 2-351, 2-
352

SCA_PBIT function 1-51

SCA_RCYC function 1-45, 2-354

SCA_RECYV function block 1-45, 2-356

SCA_REF function block 1-54, 2-358

SCA_RFIT function 1-54

SCA_SEND function block 1-45, 2-362

SCA_STAT function 1-45, 2-364

SCA_WCYC function 1-45, 2-365

SCR_CONT function 1-56, 2-366

SCR_ERR function block 1-56, 2-367

SCR_PHAS function 1-56, 2-371

SCS_ACKR function block 1-55, 2-372

SCS_CTRL function 1-55, 2-373

SCS_RECYV function block 1-55, 2-376

SCS_REF function block 1-55, 2-378

SCS_SEND function block 1-55, 2-380

SCS_STAT function 1-55, 2-382

SCURVE function 1-51, 2-386

SEEK function block 1-36, 2-392

SEL function 1-30, 2-394

IND-10

SERCOS
function blocks
SC_INIT 2-345, 2-404
SCA_ACKR 2-346
SCA_CLOS 2-347
SCA_ERST 2-351, 2-352
SCA_RECYV 2-356
SCA_REF 2-358
SCA_SEND 2-362
SCR_ERR 2-367
SCS_ACKR 2-372
SCS_RECYV 2-376
SCS_REF 2-378
SCS_SEND 2-380
functions
SCA_CTRL 2-348
SCA_RCYC 2-354
SCA_WCYC 2-365
SCAS_STAT 2-364
SCR_CONT 2-366
SCR_PHAS 2-371
SCS_CTRL 2-373
SCS_STAT 2-382
SERCOS command position 2-319
SERCOS errors 2-383
serial communications 2-17
SERR errors 2-385
Servo
axes 2-225, 2-236, 2-245, 2-259, 2-269,
2-273, 2-296, 2-301, 2-303, 2-
305, 2-307, 2-311, 2-449
Servo Control Variables
background information 2-315
servo iteration command 2-315
execution sequence 2-316
servo PID command
execution sequence 2-316
SERVOCLK function 1-57, 2-395
SHL function 1-9, 2-396
SHR function 1-9, 2-397
SIN function 1-8, 2-398
SINT2BYT function 1-21, 2-399
SINT2DI function 1-21, 2-400
SINT2INT function 1-21, 2-401
SINT2LI function 1-21, 2-402
SINT2USI function 1-21, 2-403

sintconv group functions 1-21
slave axis
reversal 2-237, 2-239
slave delta overflow 2-97
SMCM
moves
interrupt 2-412
software limit
lower 2-314
upper 2-313
source identification (SID) 2-185
SQRT function 1-6
STATUS function block 1-36
status servo characteristics 1-45
STATUSSYV function 1-45, 2-408
step profile
commands 2-420
control words 2-411
continue profile 2-411
pause profile 2-411
step/direction 2-411
distance command 2-420
pause command 2-424
position command 2-420
set acc/dec rate command 2-424
set maximum velocity command 2-424
set reference command 2-424
velocity command 2-421
STEP_CMD function 1-43
STEP_POS function 1-43, 2-427
STEPCNTL function 1-43, 2-410
STEPINIT function 1-43, 2-414
errors 2-414
structure 2-414
stepper group functions 1-43
STEPSTAT function 1-43
STR2D_T function 1-23
STR2NUM function 1-23, 2-429
STR2USI function 1-23, 2-430
strconv group functions 1-23
string
CONCAT 2-57
DELETE 2-72
FIND 2-114
INSERT 2-122
LEFT 2-149

LEN 2-150

MID 2-174

REPLACE 2-338

RIGHT 2-340

UPR_CASE 2-470
string functions 1-56
STRTSERV function 1-49, 2-431

errors 2-432

initialize setup data 2-431
SUB function 1-6
SYN_END function 1-53, 2-118, 2-434

T

TAN function 1-8, 2-440
task 2-395
TCP client

setup 2-142
TCP server

setup 2-142
terminator 2-58
thermocouple

functions 1-37

J type 2-22

range 2-20
K type 2-22
range 2-20

TIM2UDIN function 1-14, 2-441
time

axes 2-225, 2-236, 2-245, 2-259, 2-269,

2-273, 2-296, 2-301, 2-303, 2-
305, 2-307, 2-311

TIME2STR function 1-14
timer function blocks 1-57
timers

TOF 2-445

TON 2-446

TP 2-447
timing error

define 1-47

inquiry 2-443
TME_ERR? function 1-48, 2-443
TOD2STR function 1-14
TOF function block 1-57, 2-445
TON function block 1-57, 2-212, 2-446
TP function block 1-57, 2-447
trig group functions 1-8

IND-11

troubleshooting

block 1/0 2-36
TrueView TCS A.1-2
TUNEREAD function 1-45, 2-448
TUNEWRIT function 1-45, 2-449

U

UDIN2DI function 1-24, 2-452
UDIN2DW function 1-24, 2-453
UDIN2RE function 1-24, 2-454
UDIN2TIM function 1-24, 2-455
UDIN2UI function 1-24
UDIN2ULI function 1-24, 2-457
UDIN2USI function 1-24
udintcnv group functions 1-24
UDP Client

setup 2-143
UDP Server

setup 2-143
UINT2INT function 1-25
UINT2UDI function 1-25
UINT2ULI function 1-25, 2-461
UINT2USI function 1-25
UINT2WO function 1-25
uintconv group functions 1-25
ULIN2LI function 1-26, 2-464
ULIN2LR function 1-26, 2-465
ULIN2LW function 1-26, 2-466
ULIN2UDI function 1-26, 2-467
ULIN2UI function 1-26, 2-468
ULIN2USI function 1-26, 2-469
ulintcnv group functions 1-26
unipolar

example 2-32

range 2-28
UPR_CASE function 1-57, 2-470
user iteration command

execution sequence 2-316
user PID command

execution sequence 2-316

user port 2 1-36, 2-54, 2-58, 2-282, 2-407, 2-

484, A.1-2
USIN2BYT function 1-27
USIN2SI function 1-27
USIN2STR function 1-27, 2-473
USIN2UDI function 1-27

IND-12

USIN2UI function 1-27
USIN2ULI function 1-27, 2-476
usintcnv group functions 1-27

\'}

variable servo

actual position 2-296
axis position (software) 2-305
backlash comp 2-309
bad marks 2-298
command

position 2-296

velocity 2-297
current segment number 2-314
fast input

direction 2-303

distance 2-303

position (HW) 2-297

position (SW) 2-305
fast queuing 2-308
feedback last 2-297
filter

error 2-296

error limit 2-311

lag 2-312

time constant 2-311
filter time constant 2-311
list 1-44, 1-46

master distance into segment 2-314

master offset

absolute 2-299

filter 2-301

incremental 2-299
move type 2-296
part reference offset 2-313
position

change 2-297, 2-313

error 2-296
reference switch position 2-310
reg/ref position change 2-297
registration switch 2-307
reversal not allowed 2-305
rollover on position 2-298

set user iteration command 2-317, 2-318
slave distance into segment 2-314

slave offset

absolute 2-299

filter 2-301

incremental 2-299
software lower limit 2-314
software upper limit 2-313
synchronized slave start 2-308
TTL feedback 2-309
velocity compensation flag 2-312

variable tune

analog output

offset 2-450
derivative

gain 2-450
feed forward

percent 2-450
integral

gain 2-449
proportional

gain 2-449
velocity

filter

slow 2-450

VEL_END function 1-50, 2-477

VEL_STRT function 1-50, 2-478
velocity end 2-3

w

WORD2BYT function 1-28, 2-479
WORD2DW function 1-28, 2-480
WORD2INT function 1-28, 2-481
WORD2LW function 1-28, 2-482
WORD2UI function 1-28, 2-483
wordconv group functions 1-28
WRIT_SVF function 1-46, 2-486
WRITE function block 1-36, 2-484
WRITE mode 2-197

WRITE_SV function 1-46, 2-485
WRITE_SYV function (see variable servo)

X

xclock
CLOCK 2-53
GETDAY 2-117
SERVOCLK 2-395
Xclock functions 1-57
XOR function 1-9, 2-487

IND-13

IND-14

	NOTE
	Table of Contents: Function/Function Block Ref.

	CHAPTER 1 PiCPro Function/Blocks Overview
	Introduction
	Arithmetic Category
	ARITH group
	DATETIME group
	TRIG group

	Binary Category
	Logic functions
	Bit shifting and rotating functions

	Counters Category
	Datatype Category
	BOOL2BYT group
	DINTCONV group
	DWORDCNV group
	D_TCONV group
	INTCONV group
	LINTCONV group
	LREALCNV group
	LWORDCNV group
	NUM2STR group
	REALCONV group
	SINTCONV group
	SIZEOF group
	STRCONV group
	UDINTCNV group
	UINTCONV group
	ULINTCNV group
	USINTCNV group
	WORDCONV group

	Evaluate Category
	Fbinter Category
	Filter Category
	I/O Category
	ANLGIN group
	ANLGOUT group
	BAT_OK? group
	BIO_PERF group
	COMM group
	JKTEMP group
	NETWORK group
	PID group
	READFDBK group
	RTDTEMP group
	SOCKETS group
	STEPPER group

	Motion Category
	DATA group
	ERRORS group
	INIT group
	MOVE group
	MOVE_SUP group
	QUE group
	RATIOMOV group
	REF group
	SERC_SLV group
	SERC_SYS group

	String Category
	Timers Category
	Xclock Category

	CHAPTER 2 Function/Block Descriptions
	ABRTALL
	ABRTMOVE
	ABS
	ACC_DEC
	ACOS
	ADD
	AND
	ANLGINIT
	Output ±10 VDC Module
	Output 4-20 mA Module

	ANLG_OUT
	Output ±10V DC Module
	MMC and Block Output ±10 VDC Module
	Output 4-20 mA Module
	For the Block 4-20 mA Output Module:
	For the 4-20 mA Module:

	ARTDCHIT
	ARTDCHRD
	ARTDMDIT
	ASIN
	ASSIGN
	ATAN
	ATMPCHIT
	ATMPCHRD
	ATMPMDIT
	A_DT_T
	A_IN_MMC
	A_INCHIT
	A_INCHRD
	Examples

	A_INMDIT
	A_TOD_T
	BAT_OK?
	BIO_PERF
	Data Structure Members

	BOOL2BYT
	Example

	BYT2BOOL
	Example

	BYTE2DW
	BYTE2LW
	BYTE2SI
	BYTE2USI
	BYTE2WO
	CAM_OUT
	CAPTINIT
	The SRCE input array of structures
	The DEST input array of structures

	CAPTSTAT
	CLOCK
	CLOSE
	CLOSLOOP
	CLSLOOP?
	CONCAT
	CONFIG
	COORD2RL
	COS
	CTD
	CTU
	CTUD
	C_ERRORS
	C_RESET
	C_STOP
	C_STOP?
	DATE2STR
	Example of DATE to STRING

	DELETE
	Example of delete function

	DELFIL
	DINT2DW
	DINT2INT
	DINT2LI
	DINT2RE
	DINT2SI
	DINT2UDI
	DIRECT
	DISTANCE
	DIV
	DT2DATE
	Example of DATE_AND_TIME to DATE

	DT2STR
	Example of DATE_AND_TIME to STRING

	DT2TOD
	Example of DATE_AND_TIME to TIME_OF_DAY

	DWOR2BYT
	DWOR2DI
	DWOR2LW
	DWOR2RE
	DWOR2UDI
	DWOR2WO
	D_TOD2DT
	Example of concatenate DATE and TIME_OF_DAY

	EQ
	EXP
	E_ERRORS
	E_RESET
	E_STOP
	E_STOP?
	FAST_QUE
	FAST_REF
	Option inputs
	Ignore the index/null
	No motion

	Setting up a machine reference switch

	FB_CLS
	FB_OPN
	FB_RCV
	FB_SND
	FB_STA
	NET_STATUS_FLAGS
	NET_STATUS_CODE
	IF_STATUS_FLAGS
	IF_STATUS_CODE

	FIND
	Example of find function

	FRESPACE
	FU2LU
	GE
	For the inputs at IN1, IN2, ...IN17

	GETDAY
	GR_END
	GT
	For the inputs at IN1, IN2, ...IN17

	HOLD
	HOLD_END
	INSERT
	Examples of insert function

	INT2DINT
	INT2LINT
	INT2SINT
	INT2UINT
	INT2WORD
	IN_POS?
	IO_CFG
	IPACCEPT
	IPCLOSE
	IPCONN
	IPHOSTID
	IPIP2NAM
	IPLISTEN
	IPNAM2IP
	IPREAD
	IPRECV
	IPSEND
	IPSOCK
	IPWRITE
	Overview of Using the Ethernet -TCP/IP Function Blocks
	Creating a TCP Server
	Creating a TCP Client
	Creating a UDP Server (Connectionless)
	Creating a UDP Client (Connectionless)
	UDP Client (Connected)
	Ethernet-TCP/IP Errors

	LAD_REF
	Option inputs

	LE
	For the inputs at IN1, IN2, ...IN17

	LEFT
	Example of left function

	LEN
	Example of length function

	LIMIT
	For the variables or constants assigned at IN, MIN, and MAX if:

	LINT2DI
	LINT2INT
	LINT2LR
	LINT2LW
	LINT2SI
	LINT2ULI
	LN
	LOG
	LREA2LI
	LREA2LW
	LREA2RE
	LREA2ULI
	LT
	For the inputs at IN1, IN2, ...IN17

	LU2FU
	LWOR2BYT
	LWOR2DW
	LWOR2LI
	LWOR2LR
	LWOR2ULI
	LWOR2WO
	LWR_CASE
	MAX
	MEASURE
	MID
	Example of MID Function

	MIN
	MOD
	MOVE
	MUL
	MUX
	NE
	NEG
	NETCLS
	NETFRE
	NETMON
	NETOPN
	NETRCV
	NETSND
	NETSTA
	NEWRATIO
	Changing the ratio in RATIO_GR and RATIOSYN
	Changing the default ratio in RATIOSLP and RATIO_RL

	NEW_RATE
	NOT
	Example of NOT function:

	NUM2STR
	OPEN
	OPENLOOP
	OR
	Example of OR function (on three inputs):

	PART_CLR
	PART_REF
	PID
	Background information on PID control
	EXOP Bit 0
	EXOP Bit 1
	EXOP Bit 2
	EXOP Bit 3

	PLS
	PLS_EDIT
	POSITION
	P_ERRORS
	P_RESET
	Q_AVAIL?
	Q_NUMBER
	RATIOCAM
	The SSTR, MSTR, and OPTN inputs
	Example 1 - Ignore SSTR and MSTR
	Example 2 - Ignore SSTR
	Example 3 - Ignore MSTR
	Example 4 - Use both SSTR and MSTR
	Creating a profile with an array of structures
	Equal Master Segments

	RATIOPRO
	Ratiopro function summary
	Profile number
	Repeating profiles
	Reversal of the slave axis allowed
	Back to back profiles

	RATIOSCL
	Ratio Cam Profile
	Ratio Slope Profile

	RATIOSLP
	RATIOSLP structure members
	Working with the FLAGS member
	Creating a profile with an array of structures
	Example

	RATIOSYN
	Master and slave axes starting points
	Example 1 - Slave axis at SSTR
	Example 2 - Slave axis below SSTR
	Example 3 - Slave/master ratio in not 1:1
	Example 4 - Rollover on position on the slave axis; the slave is past the SSTR
	Example 5 - Rollover on position on the master axis; master is past the MSTR

	RATIO_GR
	RATIO_RL
	RATIO_RL structure members for the REAL input
	Working with the FLAGS and the default ratio
	Comparison of some ratio moves

	READ
	READFDBK
	The RSCD input structure
	RSCD structure members
	The VARS input structure
	The VARS structure members

	READ_SV
	Variables available for the read/write servo functions
	Background Information on Servo Control Variables 44 through 48

	READ_SVF
	REAL2DI
	REAL2DW
	REAL2LR
	REAL2UDI
	REF_DNE?
	REF_END
	REGIST
	PROGRAMMING NOTE
	Background on registration
	Registration example

	RENAME
	REPLACE
	Example of replace function

	REP_END
	RIGHT
	Example of right function

	ROL
	Examples of rotate left:

	ROR
	Rotate right, where N = 2:
	Examples of rotate right

	R_PERCEN
	SC_INIT
	SCA_ACKR
	SCA_CLOS
	SCA_CTRL
	Application Note

	SCA_ERST
	SCA_PBIT
	SCA_RCYC
	SCA_RECV
	SCA_REF
	SCA_RFIT
	SCA_SEND
	SCA_STAT
	SCA_WCYC
	SCR_CONT
	SCR_ERR
	Background Information on Using SCR_ERR for Diagnostics
	Phase 0
	Phase 1
	Phase 2
	For each slave in numerical order:
	For each slave in numerical order:
	For each slave:
	For each slave:

	Phase 3
	For each slave:

	Phase 4

	SCR_PHAS
	SCS_ACKR
	SCS_CTRL
	SCS_RECV
	SCS_REF
	SCS_SEND
	SCS_STAT
	SERCOS Errors
	SCURVE
	Notes on Determining ACC and JERK Inputs
	Example 1
	Example 2

	SEEK
	Examples of SEEK function

	SEL
	SERVOCLK
	SHL
	Examples of shift left:

	SHR
	Examples of shift right:

	SIN
	SINT2BYT
	SINT2DI
	SINT2INT
	SINT2LI
	SINT2USI
	SIZEOF
	SQRT
	STATUS
	STATUSSV
	STEPCNTL
	Interrupting distance, position, and velocity moves

	STEPINIT
	Structure for STEPINIT function

	STEPSTAT
	STEP_CMD
	Profile example
	Programming suggestion

	STEP_POS
	STR2D_T
	Guidelines for entering strings

	STR2NUM
	STR2USI
	STRTSERV
	SUB
	SYN_END
	S_DT_DT
	S_DT_T
	S_D_D
	S_TOD_T
	S_TOD_TO
	TAN
	TIM2UDIN
	TIME2STR
	TME_ERR?
	TOD2STR
	TOF
	TON
	TP
	TUNEREAD
	TUNEWRIT
	VARIABLES AVAILABLE FOR THE TUNE READ/WRITE FUNCTIONS
	Key for the variable table

	UDIN2DI
	UDIN2DW
	UDIN2RE
	UDIN2TIM
	UDIN2UI
	UDIN2ULI
	UDIN2USI
	UINT2INT
	UINT2UDI
	UINT2ULI
	UINT2USI
	UINT2WO
	ULIN2LI
	ULIN2LR
	ULIN2LW
	ULIN2UDI
	ULIN2UI
	ULIN2USI
	UPR_CASE
	USIN2BYT
	USIN2SI
	USIN2STR
	USIN2UDI
	USIN2UI
	USIN2ULI
	VEL_END
	VEL_STRT
	WORD2BYT
	WORD2DW
	WORD2INT
	WORD2LW
	WORD2UI
	WRITE
	WRITE_SV
	WRIT_SVF
	XOR
	Example of XOR function with a value at IN1 and IN2:

	A.1 - Operator Interface ASFB
	OI_SER

	B.1 - OPC Server ASFB
	OPC_ENET

	INDEX

