
General Purpose

Application Specific Function Block Manual

Part Number M.1300.7192

Version 11.0.2
Giddings & Lewis
Controls, Measurement and Sensing

NOTE

Progress is an on-going commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change without
notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely
understood. It is the responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921–7100.

DISCLAIMER: All programs in this release (application demos, application specific function
blocks (ASFB's), etc.), are provided "AS IS, WHERE IS", WITHOUT ANY WARRANTIES,
EXPRESS OR IMPLIED. There may be technical or editorial omissions in the programs and
their specifications. These programs are provided solely for user application development and
user assumes all responsibility for their use. Programs and their content are subject to change
without notice.

M.1300.7192

Release 0201
©1993, 94, 95, 96, 97, 98, 99, 2000, 2001Giddings & Lewis, LLC
IBM is a registered trademark of International Business Machines Corporation.
Windows 95, 98, NT, Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation.
Pentium and PentiumPro are trademarks of Intel Corporation.
ARCNET is a registered trademark of Datapoint.
PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDO Merge, PiCMicroTerm and PiC Progrmming Pendant are
trademarks of Giddings & Lewis, LLC

Table of Contents:
General Purpose ASFB Manual

Chapter 1-Application Specific Function Block Guidelines 1-1

Installation ... 1-1
Revisions .. 1-1

Network 1 ... 1-1
Network 2 ... 1-1
Network 3 ... 1-2

ASFB Input/Output Descriptions .. 1-2
Network 4 ... 1-2

Using ASFBs .. 1-2

Chapter 2-General Purpose ASFBs ... 2-1

G_CONFIG ... 2-5
G_RCVSTR .. 2-7
G_SNDSTR .. 2-8
G_BN2STR ... 2-9
G_BOO2DW .. 2-10
G_BOO2WD .. 2-12
G_BY2BIT .. 2-13
G_DW2BIT .. 2-14
G_DW2BOO .. 2-15
G_HX2STR .. 2-16
G_NM2STR .. 2-17
G_WD2BIT .. 2-18
G_WD2BOO .. 2-19
G_BETWN ... 2-20
G_GE_ALL .. 2-21
G_GE_ANY .. 2-22
G_LE_ALL ... 2-23
G_LE_ANY .. 2-24
G_FILMNG .. 2-25
G_READFL .. 2-27
G_WRITFL ... 2-28
G_C2F ... 2-29
G_D2ARMP ... 2-30
G_DEG2RD .. 2-31
G_DRMSEQ ... 2-32
G_F2C ... 2-35
G_HSTGRM ... 2-36
TOC-1

G_RD2DEG .. 2-37
G_CHK_32 ... 2-37
G_CHKBIT ... 2-38
G_SHIFT .. 2-39
G_SHL_32 .. 2-40
G_SHR_32 .. 2-40
G_ELTMR .. 2-41
G_FLTMR .. 2-42

Index .. Index-1
TOC-2

CHAPTER 1 Application Specific Function Block
Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (i.e. ASFBs) from Giddings & Lewis.

The Applications CD includes the ASFB package as follows:

• .LIB file(s) containing the ASFB(s)

• source .LDO(s) from which the ASFB(s) was made

• example LDO(s) with the ASFB(s) incorporated into the ladder
which you can then use to begin programming from or merge with
an existing application ladder

When you install the Applications CD, the ASFB paths default to:

C:\Program Files\Giddings & Lewis\Applications vxx.x.r\ASFB

and

C:\Program Files\Giddings & Lewis\Applications vxx.x.r\Examples

where vxx.x is the PiCPro for Windows version number that these ASFBs and examples were built
under. The .r is the revision number of the Application software itself.

The .LIB files and source .LDO files are put in the ASFB subdirectory. The exam-
ple .LDO files are put in the Examples subdirectory.

Revisions

The first four networks of each ASFB source ladder provide the following
information:

Network 1

The first network just informs you that the ASFB is provided to assist your
application development.

Network 2

The second network is used to keep a revision history of the ASFB. Revisions can
be made by Giddings & Lewis personnel or by you.

The network identifies the ASFB, lists the requirements for using this ASFB, the
name of the library the ASFB is stored in, and the revision history.
 1-1

The revision history includes the date, ASFB version (see below), the version of
PiCPro used while making the ASFB, and comments about what the revision
involved.

When an ASFB is revised, the number of the first input (EN_ _ or
RQ_ _) to the function block is changed in the software declarations table. The
range of numbers available for Giddings & Lewis personnel is 00 to 49. The range
of numbers available for you is 50 to 99. See chart below.

Network 3

The third network describes what you should do if you want to make a revision to
the ASFB.

ASFB Input/Output Descriptions

Network 4

The fourth network describes the ASFB and defines all the inputs and outputs to
the function block.

Using ASFBs

When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.

• Create a new application LDO starting with the example LDO for the
ASFB package. The advantage is that the software declarations table for
the ASFB has been entered for you.

• If you already have an application LDO, copy and paste the example LDO
into yours. The software declaration tables for both LDOs will also merge.

Revision Giddings & Lewis
revisions

User
revisions

1st EN00 EN50
2nd EN01 EN51

. . .

. . .

. . .
50th EN49 EN99
 1-2

CHAPTER 2 General Purpose ASFBs
These are the general purpose application specific function blocks. Included in
this package are the following files.

NOTE: Every .LDO file on the CD has a corresponding .REM file. The REM
files contain all the comments found in the LDO files. If you move an .LDO file to
a different location, be sure to move its REM file to the same directory.

Communications ASFBS
G_COMM.LIB Library which contains communica-

tions application specific function
blocks

G_COMMEX.LDO Example .LDO that uses the applica-
tion specific function blocks in
G_COMM library

G_CONFIG.LDO Source file for ASFB that opens and
configures a serial port

G_RCVSTR.LDO Source file for ASFB that receives
strings from a serial port

G_SNDSTR.LDO Source file for ASFB that sends strings
out a serial port

Data Type Conversion
ASFBs

G_DATTYP.LIB Library which contains data type
conversion application specific
function blocks

G_DTYPEX.LDO Example .LDO that uses the applica-
tion specific function blocks in
G_DATTYP library

G_BN2STR.LDO Source file for ASFB that converts a
DWORD to a string, displaying the
data in a binary format

G_BOO2DW.LDO Source file for ASFB that converts 32
BOOLs to a DWORD

G_BOO2WD.LDO Source file for ASFB that converts 16
BOOLs to a WORD

G_BY2BIT.LDO Source file for ASFB that returns one
bit of a BYTE

G_DW2BIT.LDO Source file for ASFB that returns one
bit of a DWORD

G_DW2BOO.LDO Source file for ASFB that converts a
DWORD to 32 BOOLs
2-1

G_HX2STR.LDO Source file for ASFB that converts a
DWORD to a string, displaying the
data in a hex format

G_NM2STR.LDO Source file for ASFB that converts a
DINT to a string including decimal
point and sign

G_WD2BIT.LDO Source file for ASFB that returns one
bit of a WORD

G_WD2BOO.LDO Source file for ASFB that converts a
WORD to 16 BOOLs

Evaluation ASFBS
G_EVAL.LIB Library which contains evaluate appli-

cation specific function blocks

G_EVALEX.LDO Example .LDO that uses the applica-
tion specific function blocks in
G_EVAL library

G_BETWN.LDO Source file for ASFB that sets an
output if an input is in between two
other inputs

G_GE_ALL.LDO Source file for ASFB that sets an out-
put if an input is greater than or equal
to all of the other inputs

G_GE_ANY.LDO Source file for ASFB that sets an out-
put if an input is greater than or equal
to any of the other inputs

G_LE_ALL.LDO Source file for ASFB that sets an out-
put if an input is less than or equal to
all of the other inputs

G_LE_ANY.LDO Source file for ASFB that sets an out-
put if an input is less than or equal to
any of the other inputs

RAMDISK File
Manipulation ASFBS

G_FILE.LIB Library which contains RAMDISK file
manipulation application specific func-
tion blocks

G_FILEEX.LDO Example .LDO that uses the applica-
tion specific function blocks in
G_FILE library

G_FILMNG.LDO Source file for file manager ASFB for
creating and editing recipes or part pro-
grams on the RAMDISK
2-2

G_READFL.LDO Source file for ASFB that reads a file
from the RAMDISK into a structure or
array

G_WRITFL.LDO Source file for ASFB that writes a file
from a structure or array to the RAM-
DISK

Miscellaneous ASFBS
G_MISC.LIB Library which contains miscellaneous

application specific function blocks
G_MISCEX.LDO Example .LDO that uses the applica-

tion specific function blocks in
G_MISC library

G_C2F.LDO Source file for ASFB that converts
temperature from Celsius to Fahrenheit

G_D2ARMP.LDO Source file for ASFB that produces an
output command based on an input
command and the allowable rate of
change of the input

G_DEG2RD.LDO Source file for ASFB that converts an
angle in degrees to radians

G_DRMSEQ.LDO Source file for ASFB that implements a
drum or step sequencer

G_F2C.LDO Source file for ASFB that converts
temperature from Fahrenheit to Celsius

G_HSTGRM.LDO Source file for ASFB that collects a
contact histogram for up to 8 inputs

G_RD2DEG.LDO Source file for ASFB that converts an
angle in radians to degrees

Shift Register ASFBS
G_SHFTRG.LIB Library which contains shift register

application specific function blocks
G_SHFTEX.LDO Example .LDO that uses the applica-

tion specific function blocks in
G_SHFTRG library

G_CHK_32.LDO Source file for ASFB that returns num-
ber of highest or lowest bit set in array
of 32 BOOLs

G_CHKBIT.LDO Source file for ASFB that returns num-
ber of highest or lowest bit set in array
of BOOLs

G_SHIFT.LDO Source file for ASFB that shifts an
array of BOOLs right or left

G_SHL_32.LDO Source file for ASFB that performs a
shift left on an array of 32 BOOLs
2-3

G_SHR_32.LDO Source file for ASFB that performs a
shift right on an array of 32 BOOLs

Timer ASFBS
G_TIMER.LIB Library which contains timer applica-

tion specific function blocks
G_TMREX.LDO Example .LDO that uses the applica-

tion specific function blocks in
G_TIMER library

G_ELTMR.LDO Source file for ASFB that keeps track
of the total elapsed time an input has
been energized

G_FLTMR.LDO Source file for ASFB that flashes an
output on and off when an input is
energized
2-4

G_CONFIG
Configures serial port USER/G_COMM

This function block opens and configures a serial port.This function block only
needs to be called once, on the first scan of your application ladder. When it has
finished executing, the send string and receive string application specific function
blocks (G_SNDSTR and G_RCVSTR) can be used to read from and write to the
serial port.

The string at the NAMZ input must either be 'USER:$00' or the name used in the
ASSIGN function for that device. The name must be followed by $00.

The number entered at the BAUD input must be one of the following values: 110,
300, 600, 1200, 2400, 4800, 9600, or 19200.

The number entered at the PAR input must be one of the following values: 0 for
no parity, 1 for even parity, or 2 for odd parity.

The number entered at the DBTS input must be 7 or 8.

The number entered at the SBTS input must be 1 or 2.

⁄ƒƒ NAME ƒø
≥ G_CONFIG≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥NAMZ FAIL√ƒ
≥ ≥
¥BAUD HNDL√ƒ
≥ ≥
¥PAR FERR√ƒ
≥ ≥
¥DBTS OERR√ƒ
≥ ≥
¥SBTS ≥
≥ ≥
¥SYNC ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - set for one scan to enable execution

NAMZ STRING) - the name of the port to open

BAUD (INT) - defines the baud rate of the port

PAR (USINT) - defines the parity of the port

DBTS (USINT) - defines the number of data bits

SBTS (USINT) - defines the number of stop bits

SYNC (USINT) - defines the synch mode of the port

Outputs: DONE (BOOL) - set when the port has been
configured successfully

FAIL (BOOL) - set if an error occurred during
configure

HNDL (INT) - the handle assigned to the port

FERR (INT) - error code from OPEN or CONFIG
 function

OERR (INT) - error code not from OPEN or
CONFIG function
2-5

The number entered at the SYNC input must be one of the following values: 0 for
no synch mode, 1 for send only, 2 for receive only, 3 for both send and receive, or
4 for hardware synch mode.

The HNDL output variable is used as an input to the send and receive application
specific function blocks (G_SNDSTR and G_RCVSTR).

If an error occurred from the OPEN or CONFIG function, the error code will be
stored in the FERR output. See appendix B of the PiC900 software manual for a
description of these errors.

If an error occurred not from the OPEN or CONFIG function that prevented this
function block from executing, an error code will be stored in the OERR output. A
listing of these errors is shown below:

OERR Description
0 No error
1 BAUD input not an allowable value.
2 PAR input not 0, 1, or 2.
3 DBTS input not 7 or 8.
4 SBTS input not 1 or 2.
5 SYNC input greater than 4.
2-6

G_RCVSTR
Receives strings from serial port USER/G_COMM

This function block receives strings from a serial port.

The port must be opened and configured using the configure port application spe-
cific function block (G_CONFIG) before calling this function.

The HNDL input is the same as the output HNDL from the open and configure
port function block (G_CONFIG).

If an error occurred from the STATUS or READ function, that error code will be
stored in the FERR output. A complete listing of these error codes can be found in
the Appendix B of the PiC900 software manual.

⁄ƒƒ NAME ƒø
≥ G_RCVSTR≥
≥ ≥
¥EN00 RCVD√ƒ
≥ ≥
¥OUT FAIL√ƒ
≥ ≥
¥HNDL FERR√ƒ
≥ ≥
≥ ACT√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - set continuously to enable execution

OUT (STRING) - the string read from the serial port

HNDL (INT) - the handle of the port

Outputs: RCVD (BOOL) - set for one scan when string was
successfully read from the port

FAIL (BOOL) - set if an error occurred during read

FERR (INT) - error code from STATUS or READ
function

ACT (INT) - the number of bytes read
2-7

G_SNDSTR
Sends strings out serial port USER/G_COMM

This function block sends a string out a serial port.

The serial port must be opened and configured using the configure port application
specific function block (G_CONFIG) before calling this function.

The HNDL input is the same as the HNDL output from the open and configure
port function block (G_CONFIG).

If an error occurred from the WRITE function that error code will be stored in the
FERR output. A complete listing of these errors can be found in the Appendix B
of the PiC900 software manual.

If an error occurred not from the WRITE function that prevented this function
block from executing, that error code will be stored in the OERR output. A listing
of these errors is shown below:

⁄ƒƒ NAME ƒø
≥ G_RNDSTR≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥IN FAIL√ƒ
≥ ≥
¥HNDL FERR√ƒ
≥ ≥
≥ OERR√ƒ
≥ ≥
≥ ACT√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - set for one scan to initiate
string send

IN (STRING) - the string to send

HNDL (INT) - the handle of the port

Outputs: DONE (BOOL) - reset when request is made, set
 when string was successfully sent out the port

FAIL (BOOL) - reset when request is made, set if an
 error occurred during send

FERR (INT) - error code from WRITE function
block

OERR (INT) - error code for error not from WRITE
function block.

ACT (INT) - the number of bytes sent

OERR Description
0 No error
1 A request was made and the previous request was not com-

plete.
2 The length of the string at IN is zero.
2-8

G_BN2STR
Converts DWORD to binary formatted USER/G_DATTYP

This function block converts a double word to a string, displaying the double word
in binary format.

The number entered at the DIGS input must be from 1 and 32. If it is not, then the
OK will not be set.

EXAMPLES:

If IN = 16#F0F0 and DIGS = 16

then OUT = '1111000011110000'

If IN = 16#F0F0 and DIGS = 32 then

OUT = '00000000000000001111000011110000'

If IN = 16#3 and DIGS = 8

then OUT = '00000011'

⁄ƒƒ NAME ƒø
≥ G_BN2STR≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥OUT ≥
≥ ≥
¥IN ≥
≥ ≥
¥DIGS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

OUT (STRING) - output string

IN (DWORD) - the data to convert

DIGS (USINT) - the number of binary digits
to display

Outputs: OK (BOOL) -execution complete
2-9

G_BOO2DW
 Converts 32 BOOLs to DWORD USER/G_DATTYP

⁄ƒƒ NAME ƒø
≥ G_B002DW≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN0 OUT√ƒ
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¥IN6 ≥
≥ ≥
¥IN7 ≥
≥ ≥
¥IN8 ≥
≥ ≥
¥IN9 ≥
≥ ≥
¥IN10 ≥
≥ ≥
¥IN11 ≥
≥ ≥
¥IN12 ≥
≥ ≥
¥IN13 ≥
≥ ≥
¥IN14 ≥
≥ ≥
¥IN15 ≥
≥ ≥
¥IN16 ≥
≥ ≥
¥IN17 ≥
≥ ≥
¥IN18 ≥
≥ ≥
¥IN19 ≥
≥ ≥
¥IN20 ≥
≥ ≥
¥IN21 ≥
≥ ≥
¥IN22 ≥
≥ ≥
¥IN23 ≥
≥ ≥
¥IN24 ≥
≥ ≥
¥IN25 ≥
≥ ≥
¥IN26 ≥
≥ ≥
¥IN27 ≥
≥ ≥
¥IN28 ≥
≥ ≥
¥IN29 ≥
≥ ≥
¥IN30 ≥
≥ ≥
¥IN31 ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
IN0 (BOOL) - bit 0 of OUT (least significant bit)
IN1 (BOOL) - bit 1 of OUT
IN2 (BOOL) - bit 2 of OUT
IN3 (BOOL) - bit 3 of OUT
IN4 (BOOL) - bit 4 of OUT
IN5 (BOOL) - bit 5 of OUT
IN6 (BOOL) - bit 6 of OUT
IN7 (BOOL) - bit 7 of OUT
IN8 (BOOL) - bit 8 of OUT
IN9 (BOOL) - bit 9 of OUT
IN10 (BOOL) - bit 10 of OUT
IN11 (BOOL) - bit 11 of OUT
IN12 (BOOL) - bit 12 of OUT
IN13 (BOOL) - bit 13 of OUT
IN14(BOOL) - bit 14 of OUT
IN15 (BOOL) - bit 15 of OUT
IN16 (BOOL) - bit 16 of OUT
IN17 (BOOL) - bit 17 of OUT
IN18 (BOOL) - bit 18 of OUT
IN19 (BOOL) - bit 19 of OUT
IN20 (BOOL) - bit 20 of OUT
IN21 (BOOL) - bit 21 of OUT
IN22 (BOOL) - bit 22 of OUT
IN23 (BOOL) - bit 23 of OUT
IN24 (BOOL) - bit 24 of OUT
IN25 (BOOL) - bit 25 of OUT
IN26 (BOOL) - bit 26 of OUT
IN27 (BOOL) - bit 27 of OUT
IN28 (BOOL) - bit 28 of OUT
IN29 (BOOL) - bit 29 of OUT
IN30 (BOOL) - bit 30 of OUT
IN31 (BOOL) - bit 31 of OUT (most significant bit)

Outputs: OK (BOOL) - execution complete
OUT (DWORD) - packed double word from inputs
2-10

EXAMPLES:

If IN0 is OFF and IN1 through IN31 are ON, then OUT will be 16#FFFFFFFE.

If IN31 is OFF and IN0 through IN30 are ON, then OUT will be 16#7FFFFFFF.

If IN0 is ON and IN1 through IN31 are OFF, then OUT will be 16#1.

If IN31 is ON and IN0 through IN30 are OFF, then OUT will be 16#80000000.
2-11

G_BOO2WD
 Pack 16 BOOLs into WORD USER/G_DATTYP

This function block packs 16 BOOLs into a WORD.

EXAMPLES:

If IN0 is OFF and IN1 through IN15 are ON, then OUT will be 16#FFFE.

If IN15 is OFF and IN0 through IN14 are ON, then OUT will be 16#7FFF.

If IN0 is ON and IN1 through IN15 are OFF, then OUT will be 16#1.

If IN15 is ON and IN0 through IN14 are OFF, then OUT will be 16#8000.

⁄ƒƒ NAME ƒø
≥ G_B002WD≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN0 OUT√ƒ
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¥IN6 ≥
≥ ≥
¥IN7 ≥
≥ ≥
¥IN8 ≥
≥ ≥
¥IN9 ≥
≥ ≥
¥IN10 ≥
≥ ≥
¥IN11 ≥
≥ ≥
¥IN12 ≥
≥ ≥
¥IN13 ≥
≥ ≥
¥IN14 ≥
≥ ≥
¥IN15 ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
IN0 (BOOL) - bit 0 of OUT (least significant bit)
IN1 (BOOL) - bit 1 of OUT
IN2 (BOOL) - bit 2 of OUT
IN3 (BOOL) - bit 3 of OUT
IN4 (BOOL) - bit 4 of OUT
IN5 (BOOL) - bit 5 of OUT
IN6 (BOOL) - bit 6 of OUT
IN7 (BOOL) - bit 7 of OUT
IN8 (BOOL) - bit 8 of OUT
IN9 (BOOL) - bit 9 of OUT
IN10 (BOOL) - bit 10 of OUT
IN11 (BOOL) - bit 11 of OUT
IN12 (BOOL) - bit 12 of OUT
IN13 (BOOL) - bit 13 of OUT
IN14(BOOL) - bit 14 of OUT
IN15 (BOOL) - bit 15 of OUT (most significant bit)
Outputs: OK (BOOL) - execution complete
OUT (DWORD) - packed word with inputs
2-12

G_BY2BIT
Return one bit of a BYTE USER/G_DATTYP

This function block returns one bit of a BYTE variable.

The number entered at the BIT input must be between 0 and 7 or the OK output
will not be set.

EXAMPLES

If IN=16#80 and BIT=7 then OUT will be 'ON'.

If IN=16#FE and BIT=0 then OUT will be 'OFF'.

⁄ƒƒ NAME ƒø
≥ G_BY2BIT≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN OUT√ƒ
≥ ≥
¥BIT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

IN (BYTE) - input data

BIT (USINT) - the bit number to return

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - the state of bit BIT in IN
2-13

G_DW2BIT
Return bit of a DWORD USER/G_DATTYP

This function block returns one bit of a DWORD variable.

The number entered at the BIT input must be between 0 and 31 or the function will
not execute and the OK output will not be set.

EXAMPLES:

If IN = 16#80000000 and BIT = 31 then OUT will be 'ON'.

If IN = 16#FFFFFFFE and BIT = 0 then OUT will be 'OFF'.

⁄ƒƒ NAME ƒø
≥ G_DW2BIT≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN OUT√ƒ
≥ ≥
¥BIT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

IN (DWORD) - the input data

BIT (USINT) - the bit number to return

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - the state of bit BIT in IN
2-14

G_DW2BOO
Converts DWORD to 32 BOOLs USER/G_DATTYP

⁄ƒƒ NAME ƒø
≥ G_DW2B00≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN O0√ƒ
≥ ≥
≥ O1√ƒ
≥ ≥
≥ O2√ƒ
≥ ≥
≥ O3√ƒ
≥ ≥
≥ O4√ƒ
≥ ≥
≥ O5√ƒ
≥ ≥
≥ O6√ƒ
≥ ≥
≥ O7√ƒ
≥ ≥
≥ O8√ƒ
≥ ≥
≥ O9√ƒ
≥ ≥
≥ O10√ƒ
≥ ≥
≥ O11√ƒ
≥ ≥
≥ O12√ƒ
≥ ≥
≥ O13√ƒ
≥ ≥
≥ O14√ƒ
≥ ≥
≥ O15√ƒ
≥ ≥
≥ O16√ƒ
≥ ≥
≥ O17√ƒ
≥ ≥
≥ O18√ƒ
≥ ≥
≥ O19√ƒ
≥ ≥
≥ O20√ƒ
≥ ≥
≥ O21√ƒ
≥ ≥
≥ O22√ƒ
≥ ≥
≥ O23√ƒ
≥ ≥
≥ O24√ƒ
≥ ≥
≥ O25√ƒ
≥ ≥
≥ O26√ƒ
≥ ≥
≥ O27√ƒ
≥ ≥
≥ O28√ƒ
≥ ≥
≥ O29√ƒ
≥ ≥
≥ O30√ƒ
≥ ≥
≥ O31√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
IN (DWORD) - the data to convert

Outputs: OK (BOOL) - execution complete

O0 (BOOL) - bit 0 of IN (least significant bit)
O1 (BOOL) - bit 1 of IN
O2 (BOOL) - bit 2 of IN
O3 (BOOL) - bit 3 of IN
O4 (BOOL) - bit 4 of IN
O5 (BOOL) - bit 5 of IN
O6 (BOOL) - bit 6 of IN
O7 (BOOL) - bit 7 of IN
O8 (BOOL) - bit 8 of IN
O9 (BOOL) - bit 9 of IN
O10 (BOOL) - bit 10 of IN
O11 (BOOL) - bit 11 of IN
O12 (BOOL) - bit 12 of IN
O13 (BOOL) - bit 13 of IN
O14 (BOOL) - bit 14 of IN
O15 (BOOL) - bit 15 of IN
O16 (BOOL) - bit 16 of IN
O17 (BOOL) - bit 17 of IN
O18 (BOOL) - bit 18 of IN
O19 (BOOL) - bit 19 of IN
O20 (BOOL) - bit 20 of IN
O21 (BOOL) - bit 21 of IN
O22 (BOOL) - bit 22 of IN
O23 (BOOL) - bit 23 of IN
O24 (BOOL) - bit 24 of IN
O25 (BOOL) - bit 25 of IN
O26 (BOOL) - bit 26 of IN
O27 (BOOL) - bit 27 of IN
O28 (BOOL) - bit 28 of IN
O29 (BOOL) - bit 29 of IN
O30 (BOOL) - bit 30 of IN
O31 (BOOL) - bit 31 of IN (most significant bit
of IN)
2-15

This function block converts a DWORD to 32 BOOLs

EXAMPLES:

If IN = 16#FFFFFFFE then O0 will be OFF and O1 through O31 will be ON.

If IN = 16#80000000 then O31 will be ON and O0 through O30 will be OFF.
2-16

G_HX2STR
Converts DWORD to hex string USER/G_DATTYP

This function converts a DWORD to a hex formatted string.

The value at DIGS must be between 1 and 8 or this function will not execute and
the OK will not be set.

EXAMPLES:

If IN = 16#ABCDE and DIGS = 8 then OUT will be '000ABCDE'.

If IN = 16#FEDCBA and DIGS = 2 then OUT will be 'BA'.

⁄ƒƒ NAME ƒø
≥ G_HX2STR≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥OUT ≥
≥ ≥
¥IN ≥
≥ ≥
¥DIGS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

OUT (STRING) - output string

IN (DWORD) - the data to convert

DIGS (USINT) - the number of hex digits to display

Outputs: OK (BOOL) - execution complete
2-17

G_NM2STR
Converts DINT to formatted string USER/G_DATTYP

This function block converts a DINT to a formatted string.

The number entered at the DIGS input is the maximum number of digits the num-
ber can have, not including decimal point or sign. If the value of IN is too large to
fit into the number of digits at DIGS, the output string will be all @ signs.

The number entered at the SIGN input should be a 0 if no sign should be placed in
front of the number, or a 1 if a + or - sign should be placed in front of the number
in the output string. If SIGN is 0 and the number at IN is negative, then the OUT
string will be all @ signs.

The number entered at the D2RT input should be a 0 if no decimal point should be
displayed, or the number of digits desired to the right of the decimal point.

EXAMPLES:

If IN = 1234567, DIGS = 7, SIGN= 1, and D2RT = 4 then OUT will be
'+123.4567'.

If IN = -123, DIGS = 7, SIGN = 1, and D2RT = 4, then OUT will be ' -.0123'.

If IN = 567, DIGS = 5, SIGN = 0, and D2RT = 0 then OUT will be ' 567'.

⁄ƒƒ NAME ƒø
≥ G_NM2STR≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥OUT ≥
≥ ≥
¥IN ≥
≥ ≥
¥DIGS ≥
≥ ≥
¥SIGN ≥
≥ ≥
¥D2RT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

OUT (STRING) - output string

IN (DINT) - defines the data to be converted

DIGS (USINT) - defines the maximum number of

digits for the number

SIGN (USINT) - defines if a + or - sign should be
placed in front of the number

D2RT (USINT)= defines the number of digits to
the right of the decimal point

Outputs: OK (BOOL) - execution complete
2-18

G_WD2BIT
Returns one bit of a WORD USER/G_DATTYP

This function block returns one bit of a WORD variable.

The value entered at BIT must be from 0 to 15 for this function to execute.

EXAMPLES:

If IN = 16#8000 and BIT = 15, then OUT will be ON.

If IN = 16#FFFE and BIT = 0, then OUT will be OFF.

⁄ƒƒ NAME ƒø
≥ G_WD2BIT≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN OUT√ƒ
≥ ≥
¥BIT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

IN (WORD) - input data

BIT (USINT) - the bit number to return

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - the state of BIT in IN
2-19

G_WD2BOO
Converts WORD to 16 BOOLs USER/G_DATTYP

EXAMPLES:

This function block converts a WORD to 16 BOOLs.

If IN = 16#8000, then O15 will be ON and O0 through O14 will be OFF.

If IN = 16#FFFE, then O0 will be OFF and O1 through O15 will be ON.

⁄ƒƒ NAME ƒø
≥ G_WD2B00≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN O0√ƒ
≥ ≥
≥ O1√ƒ
≥ ≥
≥ O2√ƒ
≥ ≥
≥ O3√ƒ
≥ ≥
≥ O4√ƒ
≥ ≥
≥ O5√ƒ
≥ ≥
≥ O6√ƒ
≥ ≥
≥ O7√ƒ
≥ ≥
≥ O8√ƒ
≥ ≥
≥ O9√ƒ
≥ ≥
≥ O10√ƒ
≥ ≥
≥ O11√ƒ
≥ ≥
≥ O12√ƒ
≥ ≥
≥ O13√ƒ
≥ ≥
≥ O14√ƒ
≥ ≥
≥ O15√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
IN (WORD) - the data to convert

Outputs: OK (BOOL) - execution complete
O0 (BOOL) - bit 0 of IN (least significant bit)
O1 (BOOL) - bit 1 of IN
O2 (BOOL) - bit 2 of IN
O3 (BOOL) - bit 3 of IN
O4 (BOOL) - bit 4 of IN
O5 (BOOL) - bit 5 of IN
O6 (BOOL) - bit 6 of IN
O7 (BOOL) - bit 7 of IN
O8 (BOOL) - bit 8 of IN
O9 (BOOL) - bit 9 of IN
O10 (BOOL) - bit 10 of IN
O11 (BOOL) - bit 11 of IN
O12 (BOOL) - bit 12 of IN
O13 (BOOL) - bit 13 of IN
O14 (BOOL) - bit 14 of IN
O15 (BOOL) - bit 15 of IN (most significant bit)
2-20

G_BETWN
Check for in between USER/G_EVAL

This function block compares an input with two other inputs and sets an output if
the first input is in between the other two.

If LOW <= IN <= HIGH, then OUT will be set.

If IN < LOW or if IN > HIGH, then OUT will be reset.

⁄ƒƒ NAME ƒø
≥ G_BETWN ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN OUT√ƒ
≥ ≥
¥LOW ≥
≥ ≥
¥HIGH ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

IN (DINT) - defines the input to be compared to
the other inputs

LOW (DINT) - defines the lower limit for
comparison

HIGH (DINT) - defines the upper limit for
comparison

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - set if IN is in between LOW
and HIGH
2-21

G_GE_ALL
Greater than or equal to all USER/G_EVAL

This function block compares the first input with all of the other inputs and sets an
output if the first input is greater than or equal to all of the other inputs.If IN1 is
greater than or equal to IN2, IN3, IN4, and IN5, then OUT will be ON.

If IN1 is less than IN2, IN3, IN4, or IN5, then OUT will be OFF.

⁄ƒƒ NAME ƒø
≥ G_GE_ALL≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN1 OUT√ƒ
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) -enables execution

IN1 (DINT) - this input will be compared to
all the other inputs

IN2 (DINT) - first input to compare to IN1

IN3 (DINT) - second input to compare to IN1

IN4 (DINT) - third input to compare to IN1

IN5 (DINT) - fourth input to compare to IN1

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - ON or OFF depending on
result of comparison
2-22

G_GE_ANY
Greater than or equal to any USER/G_EVAL

This function block compares the first input with all of the other inputs and sets an
output if the first input is greater than or equal to any of the other inputs.

If IN1 is greater than or equal to IN2, IN3, IN4, or IN5, then OUT will be ON.

If IN1 is less than IN2, IN3, IN4 and IN5, then OUT will be OFF.

⁄ƒƒ NAME ƒø
≥ G_GE_ANY≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN1 OUT√ƒ
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) -enables execution

IN1 (DINT) - this input will be compared to
all the other inputs

IN2 (DINT) - first input to compare to IN1

IN3 (DINT) - second input to compare to IN1

IN4 (DINT) - third input to compare to IN1

IN5 (DINT) - fourth input to compare to IN1

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - ON or OFF depending on
result of comparison
2-23

G_LE_ALL
Less than or equal to all USER/G_EVAL

This function block compares the first input with all of the other inputs and sets an
output if the first input is less than or equal to all of the other inputs.

If IN1 is less than or equal to IN2, IN3, IN4, and IN5 then OUT will be ON.

If IN1 is greater than IN2, IN3, IN4 or IN5 then OUT will be OFF.

⁄ƒƒ NAME ƒø
≥ G_LE_ALL≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN1 OUT√ƒ
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) -enables execution

IN1 (DINT) - this input will be compared to
all the other inputs

IN2 (DINT) - first input to compare to IN1

IN3 (DINT) - second input to compare to IN1

IN4 (DINT) - third input to compare to IN1

IN5 (DINT) - fourth input to compare to IN1

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - ON or OFF depending on
result of comparison
2-24

G_LE_ANY
Less than or equal to any USER/G_EVAL

This function block compares the first input with all of the other inputs and sets an
output if the first input is less than or equal to any of the other inputs.

If IN1 is less than or equal to IN2, IN3, IN4, or IN5, then OUT will be ON.

If IN1 is greater than IN2, IN3, IN4, and IN5, then OUT will be OFF.

⁄ƒƒ NAME ƒø
≥ G_LE_ANY≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN1 OUT√ƒ
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

IN1 (DINT) - this input will be compared to all the
other inputs

IN2 (DINT) - first input to compare to IN1

IN3 (DINT) - second input to compare to IN1

IN4 (DINT) - third input to compare to IN1

IN5 (DINT) - fourth input to compare to IN1

Outputs: OK (BOOL) - execution complete

OUT (BOOL) - ON or OFF depending on result of
comparison
2-25

G_FILMNG
Data list file manager USER/G_FILE

The data list file manager is used for creating and editing recipes or part programs
on the PiC900 RAMDISK.

Each part program or recipe is stored as an individual file on the RAMDISK. The
file name is specified at the FILE input. The name can be up to eight characters,
with an extension of up to three characters. The last character of the FILE string
must be a $00. EXAMPLE: ’\FILENAME.EXT$00

If the file is in a subdirectory on the RAMDISK, then the SDIR input defines the
name of the subdirectory. The name can be up to eight characters, and can not have
an extension. EXAMPLE: ’SUBDIR’.

NOTE: If you want the file to be placed in the main directory, then enter a string
with no initial value at the SDIR input.

Each file consists of one or more elements.

Each element in the file must be the same size and have the same format. The for-
mat for an element is defined by creating a structure. That structure is then placed
at the DATA input of this function block.

⁄ƒƒ NAME ƒø
≥G_FILMING≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥OPER FAIL√ƒ
≥ ≥
¥FILE FERR√ƒ
≥ ≥
¥SDIR OERR√ƒ
≥ ≥
¥DATA ≥
≥ ≥
¥ESIZ ≥
≥ ≥
¥ELEM ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - one-shot to start any operation

OPER (USINT) - requested file operation

FILE (STRING) - file name to edit

SDIR (STRING) - the RAMDISK subdirectory
where the file is located

DATA (STRUCT) - data to be edited or read

ESIZ (INT) - Size of DATA structure in bytes

ELEM (INT) - element number to read, replace,
insert after, insert before or delete

Outputs: DONE (BOOL) - set if file operation completes
successfully

FAIL (BOOL) - set if file operation is terminated
due to an error condition

FERR (INT) - error code from OPEN, READ, or
CLOSE function blocks

OERR(INT) - error code not from OPEN, READ,
or CLOSE function blocks
2-26

To request an operation the RQ00 input must be one-shot and the operation desired
must be placed in the OPER input. A table of allowable operations is shown
below:

The data that is being inserted into the file, or read from the file, is always stored in
the DATA structure. The DATA structure must be of a fixed format.

The size of the DATA structure in bytes must always be present at the ESIZ input.
This tells the function block how many bytes to read or write to the file.

The ELEM input tells the function which element in the file to insert after, insert
before, read, replace, or delete. The elements of the file are numbered beginning
with element 0.

The DONE output will be cleared when RQ00 is energized, and then set if the
requested operation completed successfully.

The FAIL output will be cleared when RQ00 is energized, and then set if the
requested operation is terminated due to an error condition.

The FERR output will be cleared when RQ00 is energized. If an error occurs dur-
ing the execution of an OPEN, READ, SEEK, CLOSE, or WRITE function block
that prevented the requested operation from completing, the error code will be
stored in the FERR output. A complete listing of these errors can be found in the
Appendix B of the PiC900 Software Manual.

The OERR output will be cleared when RQ00 is energized. If an error is detected
which prevents the requested operation from being attempted, OERR is set to a
value indicating what error has been detected. A listing of these errors is shown
below:

OPER Description
1 Create new file with one element.
2 Delete existing file.
20 Read element from file into DATA structure.
21 Replace element in file with new data from DATA structure.
22 Insert new element from DATA structure into file after element in

ELEM.
23 Insert new element from DATA structure into file before element in

ELEM.
24 Delete element specified by ELEM in file.

OERR Description
0 No error.
1 OPER is not a valid number.
3 Seek past end occurred during element read.
4 File I/O error occurred during element insert operation.
10 New file operation requested and file already exists.
2-27

G_READFL
Reads file from RAMDISK USER/G_FILE

This function block reads a file from RAMDISK into a structure or array.

The RQ00 input must be one-shot to initiate the file read.

The file name can be up to eight characters with a three character extension.

EXAMPLE: FILENAME.EXT

If the file is in a subdirectory on the RAMDISK, then the SDIR input defines the
name of the subdirectory. The name can be up to eight characters, and can not
have an extension. EXAMPLE: ’SUBDIR’

NOTE: If you want the file to be placed in the main directory, then enter a string
with no initial value at the SDIR input.

If an error occurs in reading the file, an error code will be stored in the ERR out-
put. A complete listing of error codes can be found in the Appendix B of the
PiC900 software manual.

⁄ƒƒ NAME ƒø
≥ G_READFL≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥FILE FAIL√ƒ
≥ ≥
¥SDIR ERR√ƒ
≥ ≥
¥DATA ACT√ƒ
≥ ≥
¥SIZE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests file read

FILE (STRING) - the file name

SDIR (STRING) - the RAMDISK subdirectory
where the file is located

DATA (STRUCTURE OR ARRAY) - defines
where the data read from the file will be placed

SIZE (INT) - defines the number of bytes to read

Outputs: DONE (BOOL) - reset when file read requested,
set when read file is complete with no error

FAIL (BOOL) - reset when file read requested,
set instead of the DONE output if file read failed

ERR (INT) - error number that occurred during
file read

ACT (INT) - the number of bytes read
2-28

G_WRITFL
Writes file to RAMDISK USER/G_FILE

This function block writes a file to the RAMDISK from a structure or array.

The RQ00 input must be one-shot to initiate the file write.

The file name can be up to eight characters with a three character extension.

EXAMPLE: FILENAME.EXT

If the file is in a subdirectory on the RAMDISK, then the SDIR input defines the
name of the subdirectory. The name can be up to eight characters, and can not
have an extension.

EXAMPLE: SUBDIR

NOTE: If you want the file to be placed in the main directory, then enter a string
with no initial value at the SDIR input.

If an error occurs in reading the file, an error code will be stored in the ERR out-
put. A complete listing of error codes can be found in the Appendix B of the
PiC900 software manual.

⁄ƒƒ NAME ƒø
≥ G_WRITFL≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥FILE FAIL√ƒ
≥ ≥
¥SDIR ERR√ƒ
≥ ≥
¥DATA ACT√ƒ
≥ ≥
¥SIZE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests file write

FILE (STRING) - the file name

SDIR (STRING) - defines the subdirectory on the
RAMDISK where the file is located

DATA (STRUCT or ARRAY) - the data to write
to the RAMDISK

SIZE (INT) - defines the number of bytes to write
to the file

Outputs: DONE (BOOL) -reset when file write is requested,
set if file write completed successfully

FAIL (BOOL) - reset when file write is requested,
set if an error occurred during file write

ERR (INT) - the error number that occurred

ACT (INT) - the number of bytes written to the file
2-29

G_C2F
Celsius to Fahrenheit USER/G_MISC

This function converts temperature from Celsius to Fahrenheit.

⁄ƒƒ NAME ƒø
≥ G_C2F ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥DEGC DEGF√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

DEGC (DINT) - the temperature in Celsius

Outputs: OK (BOOL) - execution complete

DEGF (DINT) - the temperature in degrees
Fahrenheit
2-30

G_D2ARMP
D/A with ramping USER/G_MISC

This function block produces an output command based on the input command
and the allowable rate of change of the input. The output of this function block
would be tied directly to the input of the analog output function.

The EN00 input of this function block should be set every scan.

This function will not execute and the OK output will not be set if any of the fol-
lowing error conditions are present: MAX is less than or equal to MIN, RATE is
less than or equal to zero, TIC is equal to zero, or if an error occurs in the calcula-
tions for OUT.

If the OK is not set, the ERR output will hold a code describing the error that
occurred. A table of these errors is listed below:

EXAMPLES:

If OUT = 0 , RATE = 1000, TIC = 1 sec, MIN = -32767, and MAX = 32767 and IN is
changed to 10000, then the value of OUT will be 1000 after 1 sec, 2000 after 2 sec,
3000 after 3 sec, and 10000 after 10 seconds have elapsed.

If OUT = 10000, RATE = 1000, TIC = 1 sec, MIN = -32767, and MAX = 32767, and
IN is changed to 5600, then the value of OUT will be 9000 after 1 sec, 8000 after 2
sec, 7000 after 3 sec, 6000 after 4 sec,and then 5600 after 5 seconds have elapsed.

⁄ƒƒ NAME ƒø
≥ G_D2ARMP≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥IN ERR√ƒ
≥ ≥
¥RATE OUT√ƒ
≥ ≥
¥TIC ≥
≥ ≥
¥MIN ≥
≥ ≥
¥MAX ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
IN (INT) - the input command
RATE (INT) - the maximum number of counts that
OUT can change by every time tick
TIC (TIME) - the time tick
MIN (INT) - the OUT value will never be allowed
to be less than MIN
MAX (INT) - the OUT value will never be allowed
to be greater than MAX

Outputs: OK (BOOL) - execution complete
ERR (INT) - error number
OUT (INT) -the output command

ERR Description
0 No error.
1 MAX is less than or equal to MIN.
2 Rate is less than or equal to zero.
3 TIC is zero.
4 An error occurred in calculating OUT.
2-31

G_DEG2RD
Converts degrees to radians USER/G_MISC

This function converts an angle in degrees to radians.

⁄ƒƒ NAME ƒø
≥ G_DEG2RD≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥DEG RAD√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

DEG (REAL) - the angle in degrees

Outputs: OK (BOOL) - execution complete

RAD (REAL) - the angle in radians
2-32

G_DRMSEQ
Drum/Step Sequencer USER/G_MISC

This function block sequences through an array of output patterns. Sequencing is
accomplished by matching a user-defined input pattern and by a user-defined step
timer.

This function block operates like a drum sequencer. A simple example of a drum
sequencer is a rotary drum music box. A music box uses raised portions of the
drum to play the notes of the song as the drum turns. The musical notes are the
outputs of the sequence. The song is comprised of many steps. Each step of the
song requires different output notes. Sequencing through the notes is accom-
plished by having the listener turn the crank on the side of the music box. The
crank is an input to the sequence. It determines when the music box advances to
the next step of notes.

This function block operates in a similar fashion. The sequence is defined by the
programmer. The programmer defines how many steps are in the sequence, the
output for each step, and the input and/or time delay required to advance to the
next step.

⁄ƒƒ NAME ƒø
≥ G_DRMSEQ≥
≥ ≥
¥EN00 DONE√ƒ
≥ ≥
¥STRT OUT√ƒ
≥ ≥
¥SNUM STEP√ƒ
≥ ≥
¥IN WTNG√ƒ
≥ ≥
¥DRUM WTPT√ƒ
≥ ≥
¥LAST WTET√ƒ
≥ ≥
¥TOUT CKNG√ƒ
≥ ≥
≥ TOPT√ƒ
≥ ≥
≥ TOET√ƒ
≥ ≥
≥ TOER√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

STRT (BOOL) - start sequence

SNUM (UINT)) - starting step number

IN (DWORD) - user defined inputs

DRUM (ARRAY of STRUCT) - structure to define
sequence pattern

LAST (UINT) - number of steps in sequence

TOUT (BOOL) - enables/disables timeout option

Outputs: DONE (BOOL) - sequence complete

OUT (DWORD) - user defined outputs

STEP (UINT) - active step number

WTNG (BOOL) - set while wait time elapses

WTPT (TIME) - preset wait time for this step

WTET (TIME) - elapsed wait time for this step

CKNG (BOOL) - set while checking input states

TOPT (TIME) - preset timeout time for this step

TOET (TIME) - elapsed timeout time for this step

TOER (BOOL) - timeout error occurred
2-33

The function block input which defines each step is the DRUM input. The
DRUM input is an array of structures. The DRUM structure has five members. It
must be declared as follows:

The number of elements in the DRUM array should match the number of steps in
the sequence. For example, if the sequence has 35 steps, the DRUM array should
have 35 elements.

The output for each step is defined in the .OUTPUTS member of the DRUM struc-
ture. For example, the output for step #2 would be defined in DRUM(2).OUT-
PUTS. The DRUM(2).OUTPUTS value will appear at OUT when step #2 is
active.

The conditions required to advance to the next step in the sequence are defined in
the .INPUTS, .MASK, .WAITTIME and .TIMEOUT members of the DRUM
structure.

In order to advance to the next step of the sequence, two conditions must be met.
First, the wait timer must elapse (the duration of the wait timer is defined by the
.WAITTIME member of the DRUM structure). Second, the value at IN must sat-
isfy the input conditions for the current step. NOTE: The input conditions will not
be checked until the wait timer has elapsed.

After the wait time has elapsed, the inputs will be checked. If the TOUT input is
energized, then the inputs will only be checked for the amount of time specified in
the .TIMEOUT member of the DRUM structure. After this timeout time has
elapsed, if the inputs are not in the correct state, then a timeout error will be set. If
the TOUT input is not energized, then the inputs will be checked forever until the
input conditions are satisfied.

The input conditions are defined by the .INPUTS and the .MASK members of the
DRUM structure. The .MASK member defines which of the 32 bits of IN and the
.INPUTS member must match. The .INPUTS member defines what the state of
these bits should be.

DRUM STRUCT(0..???)
.OUTPUTS DWORD
.WAITTIME TIME
.INPUTS DWORD
.MASK DWORD
.TIMEOUT TIME
2-34

For example, if step #1 of the sequence is active and the data for step #1 is...

The DRUM(1).MASK value of 16#0000 000F indicates that the four least signifi-
cant bits of DRUM(1).INPUTS must match the four least significant bits of IN.
When these bits match the next step will be enabled.

the four least significant bits match, and the next step will be enabled.

The STRT input is used to start or reset the sequence. The sequence will begin at
the step number specified at the SNUM input.

The number of steps in the sequence is specified at the LAST input. When the last
step of the sequence is completed the DONE output will be energized.

The 32-bit input DWORD is specified at IN.

The step number active is present at the STEP output.

The 32-bit output for the active step is present at the OUT output.

When a new step is begun, the outputs will be set to their new state and the WTNG
output will be set until the wait time has elapsed. The preset wait time is present
at the WTPT output, and the elapsed wait time is present at the WTET output.

After the wait timer has elapsed, the CKNG output will be set .

If the TOUT input is energized, the inputs will be checked for the amount of time
in TOPT. If the inputs are not in the correct state by the time TOPT elapses, then
the TOER (timeout error) output will be set. If the inputs are in the correct state
before TOPT elapses, then the sequence will advance to the next step.

If the TOUT input is not energized, then the CKNG output will remain on until the
inputs have satisfied the input condition specified for the active step. When the
inputs are in the correct state, then the sequence will advance to the next step.

DRUM(1)
.OUTPUTS = 16#FF00 0000 = 2#1111 1111 0000 0000 0000 0000 0000 0000
.WAITTIME = T#3s
.INPUTS = 16#0000 0009 = 2#0000 0000 0000 0000 0000 0000 0000 1001
.MASK = 16#0000 000F = 2#0000 0000 0000 0000 0000 0000 0000 1111
.TIMEOUT = T#5s

So, when IN =16#0000 0029 =2#0000 0000 0000 0000 0000 0000 0010
1001
2-35

G_F2C
Fahrenheit to Celsius USER/G_MISC

This function converts temperature in degrees Fahrenheit to Celsius.

⁄ƒƒ NAME ƒø
≥ G_F2C ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥DEGF DEGC√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

DEGF (DINT) - the temperature in degrees
Fahrenheit

Outputs: OK(BOOL) - execution complete

DEGC (DINT) - the temperature in Celsius
2-36

G_HSTGRM
Contact histogram USER/G_MISC

This function collects a contact histogram for up to eight BOOL variables.

The EN00 input of this function block should be set every scan.

This function block can collect histogram data two different ways.

When the CLCT input is ON, data will be collected every scan for each of the eight
inputs. The collected data is stored in the outputs COL1 to COL8. When this
input is OFF, the values of COL1 through COL8 will remain unchanged. The least
significant bit of each COL output is the most recent value.

When the SNAP input makes an OFF to ON transition, the state of all eight inputs
will be saved for that scan and the next 31 scans in the outputs SNP1 to SNP8.
The least significant bit of each SNP output is the value of the input on the 32nd
scan.

⁄ƒƒ NAME ƒø
≥ G_HSTGRM≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥CLCT COL1√ƒ
≥ ≥
¥SNAP SNP1√ƒ
≥ ≥
¥IN1 COL2√ƒ
≥ ≥
¥IN2 SNP2√ƒ
≥ ≥
¥IN3 COL3√ƒ
≥ ≥
¥IN4 SNP3√ƒ
≥ ≥
¥IN5 SNP3√ƒ
≥ ≥
¥IN5 COL4√ƒ
≥ ≥
¥IN6 SNP4√ƒ
≥ ≥
¥IN7 COL5√ƒ
≥ ≥
¥IN8 SNP5√ƒ
≥ ≥
≥ COL6√ƒ
≥ ≥
≥ SNP6√ƒ
≥ ≥
≥ COL7√ƒ
≥ ≥
≥ SNP7√ƒ
≥ ≥
≥ COL8√ƒ
≥ ≥
≥ SNP8√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
CLCT (BOOL) - data collection input
SNAP (BOOL) - data snapshot input
IN1 (BOOL) - first input to collect data for
IN2 (BOOL) - second input to collect data for
IN3 (BOOL) - third input to collect data for
IN4 (BOOL) - fourth input to collect data for
IN5 (BOOL) - fifth input to collect data for
IN6 (BOOL) - sixth input to collect data for
IN7 (BOOL) - seventh input to collect data for
IN8 (BOOL) - eighth input to collect data for

Outputs: OK (BOOL) - execution complete
COL1 (DWORD) - collected data for IN1
SNP1 (DWORD) - snapshot data for IN1
COL2 (DWORD) - collected data for IN2
SNP2 (DWORD) - snapshot data for IN2
COL3 (DWORD) - collected data for IN3
SNP3 (DWORD) - snapshot data for IN3
COL4 (DWORD) - collected data for IN4
SNP4 (DWORD)- snapshot data for IN4
COL5 (DWORD) - collected data for IN5
SNP5 (DWORD) - snapshot data for IN5
COL6 (DWORD) - collected data for IN6
SNP6 (DWORD) - snapshot data for IN6
COL7 (DWORD) - collected data for IN7
SNP7 (DWORD) - snapshot data for IN7
COL8 (DWORD) - collected data for IN8
SNP8 (DWORD) - snapshot data for IN8
2-37

G_RD2DEG
Converts radians to degrees USER/G_MISC

This function converts an angle in radians to degrees.

⁄ƒƒ NAME ƒø
≥ G_RD2DEG≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥RAD DEG√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

RAD (REAL) - the angle in radians

Outputs: OK (BOOL) - execution complete

DEG (REAL) - the angle in degrees
2-38

G_CHK_32
Return bit set in BOOL array, size=32 USER/G_SHFTRG

This function block returns the number of the highest or lowest bit set in an array
of 32 BOOLs.

The array of BOOLs at the BOOL input must be dimensioned to a size of 32.

If the HIGH input is OFF, then BIT will be the number of the lowest BOOL set in
the array.

If the HIGH input is ON, then BIT will be the number of the highest BOOL set in
the array.

For example, if BOOL(0) and BOOL(31) are ON and BOOL(1) through
BOOL(30) are all OFF, then if HIGH is OFF, BIT will be 0, but if HIGH is ON,
BIT will be 31. In both cases, the ANY output will also be ON indicating that at
least one BOOL in the array is ON.

If the ANY output is OFF, then none of the BOOLs in the array are ON.

⁄ƒƒ NAME ƒø
≥ G_CHK_32≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥BOOL ANY√ƒ
≥ ≥
¥HIGH BIT√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

BOOL (BOOL (0..31)) - array of BOOLs to check

HIGH (BOOL) - defines whether to return highest or
lowest bit set

Outputs: OK (BOOL) - execution complete

ANY (BOOL) - set if any BOOL is ON

BIT (UINT) - the number of the BOOL which was
found ON
2-39

G_CHKBIT
Returns bit set in BOOL array USER/G_SHFTRG

This function block determines the highest or lowest numbered energized BOOL
in an array of BOOLs.

The size of the array at the BOOL input must be a multiple of 32. This size is
entered at the SIZE input.

If the HIGH input is OFF, then BIT will be the lowest numbered BOOL set in the
array. If the HIGH input is ON, then BIT will be the highest numbered BOOL set
in the array. BIT will be a number from 0 to SIZE - 1.

This function block will not execute and the OK will not be set if SIZE is not a
multiple of 32.

The ANY output will be set if at least one of the BOOLs in the array is ON.

EXAMPLE:

If SIZE is 64, and BOOL(0) and BOOL(63) are ON, and BOOL(1) through
BOOL(62) are all OFF, then if HIGH is OFF, BIT will be 0, but if HIGH is ON,
BIT will be 63. In both cases, the ANY output will be ON.

⁄ƒƒ NAME ƒø
≥G_CHKBIT ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥BOOL ANY√ƒ
≥ ≥
¥SIZE BIT√ƒ
≥ ≥
¥HIGH ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

BOOL (BOOL (0..?)) - array of BOOLs to check

SIZE (UINT) - size of array at BOOL input

HIGH (BOOL) - defines whether to return highest or
 lowest numbered bit set

Outputs: OK (BOOL) - execution complete

ANY (BOOL) - set if any BOOL is ON

BIT (UINT) - number of highest or lowest
BOOL energized
2-40

G_SHIFT
Shift array of BOOLs left or right USER/G_SHFTRG

This function block performs a shift left or shift right on an array of BOOLs.The
size of the array at the BOOL input must be a multiple of 32. This size is entered
at the SIZE input.

If the LEFT input is ON, then the array will be shifted to the left. The value that
was in BOOL(0) will be moved to BOOL(1), the value that was in BOOL(1) will
be moved to BOOL(2), etc.. The value that was in BOOL(SIZE - 1) will be moved
into the SO output and the value from SI will be moved into BOOL(0).

If the LEFT input is OFF, then the array will be shifted to the right. The value that
was in BOOL(1) will be moved to BOOL(0), the value that was in BOOL(2) will
be moved to BOOL(1), etc.. The value that was in BOOL(0) will be moved into
the SO output and the value from SI will be moved into BOOL(SIZE - 1).

This function block will not execute and the OK will not be set if SIZE is not a
multiple of 32.

IMPORTANT: Do not use a positive or negative transitional contact in your
LDO with the BOOL array for the shift register ASFBs.
If it is necessary to set up a transitional contact with a
Boolean in the BOOL array, use subsequent Boolean for the
transitional contact as shown in the example below.

⁄ƒƒ NAME ƒø
≥ G_SHIFT ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥BOOL SO√ƒ
≥ ≥
¥SIZE ≥
≥ ≥
¥LEFT ≥
≥ ≥
¥SI ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

BOOL (BOOL (0..?)) - array of BOOLs to shift

SIZE (UINT) - size of array at BOOL input

LEFT (BOOL) - defines direction to shift

SI (BOOL) - defines the new value to shift into
the array

Outputs: OK (BOOL) - execution complete

SO (BOOL) - value shifted out of the array

BOOL(X)
()

BOOL_X

BOOL_X
 . . .P

BOOL_X
 . . .N
2-41

G_SHL_32
Shifts array of 32 BOOLs left USER/G_SHFTRG

This function block performs a shift left on an array of 32 BOOLs.

The value that was in BOOL(0) will be moved to BOOL(1), the value that is in
BOOL(1) will be moved to BOOL(2), etc.. The value that was in BOOL(31) will
be moved into the SO output and the value from SI will be moved into BOOL(0).

IMPORTANT: Do not use a positive or negative transitional contact in your
LDO with the BOOL array for the shift register ASFBs.
If it is necessary to set up a transitional contact with a
Boolean in the BOOL array, use subsequent Boolean for the
transitional contact as shown in the example below.

⁄ƒƒ NAME ƒø
≥ G_SHL_32≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥BOOL SO√ƒ
≥ ≥
¥SI ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

BOOL (BOOL (0..31)) - array of BOOLs to shift.

SI (BOOL) - 'ON' or 'OFF' to shift into BOOL (0)

Outputs: OK (BOOL) - execution complete

SO (BOOL) - 'ON' or 'OFF' shifted out of
BOOL (31)

BOOL(X)
()

BOOL_X

BOOL_X
 . . .P

BOOL_X
 . . .N
2-42

G_SHR_32
Shifts array of 32 BOOLs right USER/G_SHFTRG

This function block performs a shift right on an array of 32 BOOLs.

The value that was in BOOL(1) will be moved to BOOL(0), the value that is in
BOOL(2) will be moved to BOOL(1), etc.. The value that was in BOOL(0) will be
moved into the SO output and the value from SI will be moved into BOOL(31).

IMPORTANT: Do not use a positive or negative transitional contact in your
LDO with the BOOL array for the shift register ASFBs.
If it is necessary to set up a transitional contact with a
Boolean in the BOOL array, use subsequent Boolean for the
transitional contact as shown in the example below.

⁄ƒƒ NAME ƒø
≥G_SHR_32 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥BOOL SO√ƒ
≥ ≥
¥SI ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

BOOL (BOOL (0..31)) - array of BOOLs to shift.

SI (BOOL) - 'ON' or 'OFF' to shift into BOOL (31)

Outputs: OK (BOOL) - execution complete

SO (BOOL) - 'ON' or 'OFF' shifted out of
BOOL (0)

BOOL(X)
()

BOOL_X

BOOL_X
 . . .P

BOOL_X
 . . .N
2-43

G_ELTMR
Elapse time timer USER/G_TIMER

This function block energizes an output after an input has been energized for a
period of time. If the input goes off and then on, the timer will resume timing
where it left off. There is a clear input that will reset the elapsed time, and start
timing over again.

The EN00 input of this function should be set every scan.

This function block will keep track of the total time that IN has been energized.
The elapsed time will be stored in the ET output. If IN goes off and then comes
back on, the elapsed time (ET) will continue counting where it left off.

When ET equals PT, then the Q output will be energized.

To reset the elapsed time, energize the CLR input.

⁄ƒƒ NAME ƒø
≥ G_ELTMR ≥
≥ ≥
¥EN00 Q√ƒ
≥ ≥
¥IN ET√ƒ
≥ ≥
¥PT ≥
≥ ≥
¥CLR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

IN (BOOL) - the input to time

PT (TIME) - defines the preset time

CLR (BOOL) - clear input

Outputs: Q (BOOL) - timer output

ET (TIME) - elapsed time
2-44

G_FLTMR
Flash timer USER/G_TIMER

This function block pulses an output on and off when an input is energized.

When IN00 is ON, Q will be ON for the amount of time in TON, then OFF for the
amount of time in TOFF, then ON for the amount of time in TON, etc.. The
ETON output shows the amount of time that Q has been ON. The ETOFF output
shows the amount of time that Q has been OFF.

If IN00 is OFF, Q will be OFF.

⁄ƒƒ NAME ƒø
≥ G_FLTMR ≥
≥ ≥
¥IN00 Q√ƒ
≥ ≥
¥TON ETON√ƒ
≥ ≥
¥TOFF ETOF√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: IN00 (BOOL) - when set, the output will pulse
according to the duty cycle entered

TON (TIME) - defines the time that the Q output will
remain on

TOFF (TIME) - defines the time that the Q output
will remain off

Outputs: Q (BOOL) - timer output

ETON (TIME) - the elapsed time that Q has been on

ETOF (TIME) - the elapsed time that Q has been off
2-45

NOTES
2-46

Index
A

angle
degrees to radians 2-31
radians to degrees 2-37

ASFB 1-1
using 1-2

B

BOOL
pack to WORD 2-12
return bit set 2-38
shift array 2-39
shift left 2-40
shift right 2-40
to DWORD 2-10
to WORD 2-10

BYTE
return one bit 2-13

C

Celcius
to Fahrenheit 2-29

Communications ASFBS 2-1
contact histogram 2-36

D

data list file manager 2-25
Data Type Conversion ASFBs 2-1
degrees

to radians 2-31
DINT

greater than or equal 2-21, 2-22
in between 2-20
less than or equal 2-23, 2-24
to string 2-17

drum sequencer 2-32
DWORD

return one bit 2-14
to binary formatted 2-9
to BOOLs 2-15
to hex string 2-16

E

Evaluation ASFBS 2-2

F

Fahrenheit
to Celsius 2-35

G

G_BETWN 2-20
G_BN2STR 2-9
G_BOO2DW 2-10
G_BOO2WD 2-12
G_BY2BIT 2-13
G_C2F 2-29
G_CHK_32 2-37
G_CHKBIT 2-38
G_COMM.LIB 2-1
G_COMMEX.LDO 2-1
G_CONFIG 2-5, 2-7, 2-8
G_D2ARMP 2-30
G_DATTYP.LIB 2-1
G_DEG2RD 2-31
G_DRMSEQ 2-32
G_DTYPEX.LDO 2-1
G_DW2BIT 2-14
G_DW2BOO 2-15
G_ELTMR 2-41
G_EVAL.LIB 2-2
G_EVALEX.LDO 2-2
G_F2C 2-35
G_FILE.LIB 2-2
G_FILEEX.LDO 2-2
G_FILMNG 2-25
G_FLTMR 2-42
G_GE_ALL 2-21
G_GE_ANY 2-22
G_HSTGRM 2-36
G_HX2STR 2-16
G_LE_ALL 2-23
G_LE_ANY 2-24
G_MISC.LIB 2-3
G_MISCEX.LDO 2-3
G_NM2STR 2-17
G_RCVSTR 2-5, 2-7
G_RD2DEG 2-37
G_READFL 2-27
G_SHFTEX.LDO 2-3
G_SHFTRG.LIB 2-3
G_SHIFT 2-39
Index-1

G_SHL_32 2-40
G_SHR_32 2-40
G_SNDSTR 2-5, 2-8
G_TIMER.LIB 2-4
G_TMREX.LDO 2-4
G_WD2BIT 2-18
G_WD2BOO 2-19
G_WRITFL 2-28

I

Installation 1-1

M

Miscellaneous ASFBS 2-3

R

radians
to degrees 2-37

RAMDISK 2-25
read file 2-27
write file 2-28

RAMDISK File Manipulation ASFBS 2-2
revision

history 1-1
range 1-2

S

serial port
configure 2-5
receive string 2-7
send string 2-8

Shift Register ASFBS 2-3

T

temperature
Celcius to Fahrenheit 2-29
Fahrenheit to Celsius 2-35

timer
elapse time 2-41
flash 2-42

Timer ASFBS 2-4

W

WORD
return one bit 2-18
to BOOLs 2-19
Index-2

	General Purpose
	Table of Contents: General Purpose ASFB Manual
	CHAPTER 1 Application Specific Function Block Guidelines
	Installation
	Revisions
	Network 1
	Network 2
	Network 3

	ASFB Input/Output Descriptions
	Network 4

	Using ASFBs

	CHAPTER 2 General Purpose ASFBs
	Communications ASFBS
	Data Type Conversion ASFBs
	Evaluation ASFBS
	RAMDISK File Manipulation ASFBS
	Miscellaneous ASFBS
	Shift Register ASFBS
	Timer ASFBS
	G_CONFIG
	Description

	G_RCVSTR
	G_SNDSTR
	Description

	G_BN2STR
	G_BOO2DW
	G_BOO2WD
	G_BY2BIT
	G_DW2BIT
	G_DW2BOO
	G_HX2STR
	G_NM2STR
	G_WD2BIT
	G_WD2BOO
	G_BETWN
	G_GE_ALL
	G_GE_ANY
	G_LE_ALL
	G_LE_ANY
	G_FILMNG
	Description
	Description

	G_READFL
	G_WRITFL
	G_C2F
	G_D2ARMP
	Description

	G_DEG2RD
	G_DRMSEQ
	DRUM
	STRUCT(0..???)
	.OUTPUTS
	DWORD
	.WAITTIME
	TIME
	.INPUTS
	DWORD
	.MASK
	DWORD
	.TIMEOUT
	TIME

	G_F2C
	G_HSTGRM
	G_RD2DEG
	G_CHK_32
	G_CHKBIT
	G_SHIFT
	G_SHL_32
	G_SHR_32
	G_ELTMR
	G_FLTMR

	Index

