PiCPro

Function/Function Block
Reference Guide

Part Number 108-31005-00
Version 10.2

Giddings & Lewis

Giddings & Lewis Controls, Measurement and Sensing

NOTE

Progressis an on going commitment at Giddings & Lewis. We continually strive to offer the most
advanced productsin the industry; therefore, information in this document is subject to change without
notice. Theillustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product iscompletely
understood. It isthe responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921-7100.

108-31005-00
Version 2599

© 1995, 1996, 1997, 1998, 1999 Giddings & Lewis.

IBM is aregistered trademark of International Business Machines Corp.

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.

ARCNET® is aregistered trademanrk of Datapoint

PiC900, PiCPro, PiCServoPro, PiCTune, PiCProfile, LDOMerge, PICMicroTerm, and PiC Programming Pendant are regis-
tered trademarks of Giddings & Lewis, Inc.

Table of Contents

CHAPTER 1- PiCPro Function/BlOCKS OVEIVIEWcccuvvvvviiiiiiiiiiieneennn. 1-1
a8 0o (1 T o o DRSSPSR 1-1
ATTITNMELIC CAtBJONY ..eieeiieeieee e sre e 1-5
ARITH QIOUD oot nre e 1-5
DATETIME QIOUDP oottt 1-5
TRIG QIOUD ettt sttt sttt e s se e e sbe e sateenbeesnneenseesnseens 1-6
BIiNAry Cal@QOIY oottt 1-7
COUNLEN S CALEOONY ...veiieeieieeeieeestee et et e seeesbeesseeesseesseeeseesseeeseesaeessaesaeesseesnnesnneans 1-8
D E2 1= 14 0L O 1= o (o] o SRR 1-9
(21010 Mp2d =) o {01 | o PSR 1-9
BYTECONY QrOUD oottt sttt s sn e e e 1-9
DINTCONY QIOUD oveeeeiieeiieeeeseeste e sre e sn e sre e ne e sneenneennens 1-9
DWORDCNY grOUP ettt sne e 1-10
D_TCONV QIOUD .ooeeiiiieeieeeiee e esieeseeesseeseeesseeseessse e sseeesaeassseessessaneesseesnseesnnas 1-10
INTCONY QIOUP oottt n e 1-10
LINTCONY QIOUD coeeeiiiieiiiie it siee s sies st sse e s s sse e sse e e snnnessseeesnnes 1-11
LREALCNY QrOUP eeooiieiiieiee ettt sae e s s smn e e sneesnneenneas 1-11
LWORDCNY QIOUD coeeeiieeieeiesieesie st sne s sne e snee e snnens 1-11
NUMZSTR QIOUD .ottt sttt st s sneeesnnes 1-12
REALCONY QIOUD cooeeieiiieiee e iee sttt s sse s sseesne e sseesseesaneesneesnnesnneas 1-12
SINTCONY GrOUP .eoeeeiieiieiiesieeie et n e nneenns 1-12
STRCONY GIOUP .eveiiutiieiiitesieeesresesssesasssesssseessssesssssesssssesssssesssssesssssesssssessssenssns 1-12
UDINTCNY QIOUP eeoeieiiiieeeiee ettt sse s ss e sae e sseesse s snseesneesnneesneas 1-13
UINTCONY QIOUD oeeeeeiieeieeieseesre e s sn s e n e e e nne e 1-13
ULINTCNY QIOUD oooiciiie ettt sseeesnnes 1-14
USINTCNY GIOUP ..ceeietieaieeeiee ettt se e ssseesaeesseessessaneesseesnneasnnas 1-14
WORDGCONY QFOUD ceteiieeieeieseesiee st ee e sse e n s sne s sneenessne e 1-15
EVAlUBLE CALOJONY ..ottt ettt 1-15
[o1 1= G OF= 11 o (o] Y TSR 1-17
Filter Category ... 1-17
L@ 0= 1 (=0 o USRS 1-18
ANLGIN group e 1-18
ANLGOUT QIOUPD -.cuveeeeeaieeeieesieeesseeseeesseesseeesseesseesseesseesseesseesseessessssesssessnseens 1-18
BAT _OK 2 GIOUP...cteeteeeeiteeie ettt n e nneenne s 1-18
BIO_PERF QrOUP....cueiiiiiie ittt st 1-19
(0@ 1Y/ 11V, o {0 o SRR 1-19
JKTEMP QrOUD e 1-20
NETWORK QFOUDP eeeiiiiieiiiie ettt s 1-21
(1 2 {0 o L RS 1-22
READFDBK gIrOUD ..ottt 1-22

RTDTEMP QIrOUD oottt st st s 1-22

SOCKETS GIOUP ..ttt sttt sttt ss e e e s e sne e s e e e sneennes 1-23

STEPPER QrOUD ittt sttt s snae e 1-24
MOLION CALEJONY ...vevirieriieieie ettt bbbttt et bbb ne e 1-24
DATA GFOUD ettt sne e nn e nneennneenneas 1-25
ERRORS GIrOUD ...coeiiiie ittt sttt st s 1-28
INTT QIOUD et 1-30
MOV E GFOUD ettt sr e s nn e nn e n e nne e e enne s 1-30
MOVE_SUP QIOUP ...ooeiiiieiiiie sttt s sneeesnnes 1-31
QU GIOUP ..ttt ettt sttt be e e e e e sbe e sas e e sbe e e nseesne e saneesneeenns 1-32
RATIOMOV QIOUP...utiiueirieeieeiesieesteeresiee e ssse s s s e e sne s e sseesnesnesneennesnnens 1-33
[o (01 o PSR 1-34
SERC_SLV gIOUP ..eeeeiieetietieeieesiee sttt sse e st sse e seesseessseesaeesnseesseesaneesneeenns 1-35
SERC _SY S OIOUPD ettt sttt n e nne s 1-36
SIFING CABLEGOIY .ottt b ettt e e b e ens 1-37
LA LS RS OF= 0= o o] Y PSPPSR 1-38
XCIOCK CABLBJONY eeeeeieiieeie ettt sttt st b e sbe et saeenne e 1-38
CHAPTER 2-Function/Block DeSCriptioNS........ccoouveiiiiiiiiiiiiiiiiiiiiveeeee 2-1
ABRTALL ettt b e r e 2-2
ABRTMOVE ...t ettt st st 2-2
N = 1 TP 2-3
ACC DEC ...ttt b e r e 2-4
ACOS. .ttt b e bt bbb e nae e 2-5
N I PP 2-5
AND L E e e b e b r e e 2-6
ANLGINIT ettt e b e b ae e b b sae e 2-7
ANLG _OUT ettt n e ne e 2-9
ARTDCHIT et b e r e 2-12
ARTDCHRD.......ci it sb e e b et 2-14
N L1115 P 2-16
ASIN e r e r e 2-17
ASSIGN L. bbbt e 2-17
N I 2 1 S 2-19
ATMPCHIT Lot b e e e 2-20
ATMPCHRD ...ttt ettt b e e e 2-22
ATMPMDIT ettt sre e e e e sreeeeenee e 2-24
N D I OSSP PORPPRPP 2-25
A_TN_MMC ... e ettt b et 2-26
1 (1 o | RSP 2-27
A_TNCHRD ...ttt e e e 2-30
A _TNIMDIT Lottt b et b e e e 2-33
1 | ST 2-34
B A T O 2 e ene s 2-35
BIO PERF ...ttt sttt nne e 2-36
BOOLZBY T ...ttt nenb e nneene e 2-39

BY T2BOOL ..ottt n e sneenneenne s 2-40

2N =710 T T 2-40
BY TE2LW c.coooeveeeeeeeeeeeeeseeeseeeseseseesssssesssssssseessssesesesssesssessesssesssssesesssssssaees 2-41
N1 =722 DO 2-41
SN =70 D 2-42
SN =721 © Y 2-42
07X Y 1 LU 1 Y 2-43
7Y =4 E1 N1 OO 2-46
07 = o1 - LY 2-50
01002 <Y 2-51
01101 =Y 2-52
CLOSLOOP....ovceoeeeeeeeeeeeeeeeeeeseseesesseessessssseessesssesessssssssesssesessessssssesesseesasesees 2-52
CLSLOOP?. .o eeeeeeeeeeseseesesesessesessesesseseseeeeessssesesssesesessessesesseesesesees 2-53
070N 107N LTS 2-54
010N = [T TS 2-55
(07010210 . = IR 2-57
010 LTS 2-61
CTD e eeeeeeeeeeeeeeeeseeeeeseseseeeeeseseeeessees e s s eeees e eeee s e st ee s s e eees e eeeseeeeeenees 2-61
o 11 TSSO 2-62
o1 10 5 TS 2-62
C ERRORSo.cooeeveeeeeeeeeeeeeeeeseeeesesseessesssssesessessseseessssssesesssesesessesesesesseesseesees 2-63
O =2 3 Y 2-65
OIS1 =TSO 2-65
OTS1) =TS 2-66
DY =251 1 = O 2-67
DELETE wvvveeeevvveeeeeesseeseesssseeseeseseseesssesesessessssessssessessssesessessesssesseseesesssssssees 2-68
)1 = OO 2-69
DINTZDW .ooooeeeeeoeeeeeeeseeeeeeeeeeeseseeeeeseeseseesesseeessssssesesssssessessesesesessseessessssesees 2-70
DINT2INT covooeeveeeeeeeeeeeseeeeseeeseeseseseessessesessseseesessssesesesssesessessessessssseesssseseeaees 2-70
DINT2L1 covvveoeeeveeeeeeeeeeeeeeesseeeeeseseeeessseseeeessesesesssessesessseseesessesssesessseessesssseeees 2-70
DINT2RE ...co e eeveeoeeeeeeeeeeeeeeeeeeeeseseeeeesseseseesesseeeesssesseeessseseesessesseeessseessessseeeees 2-71
DINT2S] ovvveoeeeeeeeeeeeseeeeeeeseeeeseeseseeeesssesesessesseesessseeseeessseeeeses s seesseseeseeseseeeees 2-71
DINT2UDI coooooeevveeeeeeeeseeeeeeeeseesesessesssssssesssssssessssesssssssesessessessesessseessesssssanes 2-71
5= E O 2-72
DISTANCE ... evveeeeeeeveeeeeeeeeeeeeeeseseeeesseeeeesessesseeeesseeseeessseeesses s seeeseseeseeseseeeees 2-73
DIV oveeeeeeeeeeeeeeeeee e eseesseeessseeeeeseseeeee e e eee s e e s s e e e e s e eeeseeeeees e eeseee e 2-73
D220) 1 =35 2-74
DT2STR evveeoeeeeeeeeeeeeeseesesesssssseesssessessessesessesssssssesesesessessessessessesessseessssesesaees 2-74
51172 1) OO 2-75
DWORZBY T evvooeeeeeeeeeeeeeeeeeseseeeeessssssesssssssessssssasesssessssessesssesesssssssessssesees 2-75
DWORZD! .o eeeeeeeeeseeseseseesseessesessessssesssessesssssseessessesseesseseessssesseaees 2-76
DWORZLW ... eeeeeeeeseseseeesseseaesssesesesssesseeesssesessessesssessssseessesssseanes 2-76
DWORZRE ..o eeeeeeeeeeseseeeesssssesessssseeessssssesessses e sessessesessssessesssseanes 2-76
DWORZUDI «.ecvvveeeeveeeeeeeeeseeeseseseesseesesessessesssssssessessssseessessessesssesesssssessesees 2-77
DWORZWOeeveoeeeveeeeeeeeeeeeeseseeeesssesesesssesesessssssesesssesssessesssessssseessesssssaees 2-77

5 K] 0Y10) LSOO 2-78

[ST 2-79
E ERRORSoouiteeeeeeeeseeseesee s s ees e sse s s s sse s esn s sse s st ssassses s sasnesnes 2-79
S o S 2-81
B STOP e ettt b e re e 2-81
S] 1 7SSO 2-81
N U | S 2-82
FAST _REF ...t sttt be e 2-84
[= T2 I TSSO 2-88
[= T 0 S 2-89
FB_RCV et b ettt b e e ne e 2-90
== JES N] 0 JSN 2-91
[= TS 1 2-92
FIND Lttt b ettt b et nr e ne e 2-95
L S N 1 SR 2-96
USSR 2-97
GETDAYY ettt bbb bbbttt ettt re b nneas 2-97
(€1 = N 5 RSSO 2-98
) USSR 2-98
[(I 5 TSSO 2-99
=[0I D I = | o OO 2-99
N S S 2-100
LN I 24 1 N RSSO 2-101
NV 2 I 1 S 2-101
AV 1225 1) S 2-101
INT2UINT Lo sttt sttt ettt b ne e 2-102
INT2WORD ...ttt e e e e nsa e e enae e sneeeennes 2-102
N T O 5 2O 2-102
IPACCERT ...ttt sttt bbb bt bt et et e ae st sreene e 2-103
s O 1 SR 2-104
O\ | S 2-105
IPHOSTID ..ottt sttt st bbbttt b ne e 2-106
24 N SR 2-107
I B I = S 2-108
L NN 1Y 2 PSSP 2-109
SR 2-110
= A RS 2-111
IPSEND. ..ottt sttt st st b ettt et e et nrenne e 2-112
S 1 SR 2-113
YA o I S 2-114

Overview of Using the Ethernet -TCP/IP Function Blocks...........ccccceeueenee. 2-115

EtherNet-TCP/IP EITOIS....cui et 2-117
I 1D = R SE 2-118
L et E e E bRttt e e e b nreene e 2-120
e PP 2-121

LINTZD covveeeeeeeeeeeeeeeeeeseeeeseeeeeeseseeeessesesesesseeseseesseeesesessseeesses s seeeseeeesseseeaesees 2-122
LENT2INT coveooeeeeeeeeeeeeesseeeessesseeeseseseeeessesesessssseesssssssesesssesssessesesessssseessesssseaees 2-123
LINT2LR covveooeeeeeoeeeeeeesseeesesseeeesessseeessssseesssessssessssssesesssesessessesssesessssessesssssanes 2-123
LINT2LW oo eeeeeeeeeeeeeeeeesese e seee s seesseeseesesesessseeesses s seseseeeeseeseeeesees 2-123
LINT2S] coevvveeeeeeeeeeeeeeeeeseeeeesseeseeseseeeessseseeeesessesessssssesessseseasessesssessseseessessseseees 2-124
22 O 2-124
LN oo eeee e e e e e se st et e et e ee et ee s se e 2-124
LOG 1oveeeeeeeeeeeeeeeeeeseesseesseeessseseseeseseeeesseeseaesseeseeesseeeeeessees s sseeeeseseeeeeeeseseeees 2-125
LIREAZL covvooeeeeeeeeeeeeeeeeeeeee e seseseeessseseeeesessseesssesseeesssesasessesesesessneessessseesees 2-125
LIREAZLW ..o eeee e seeeeeesseeeeses e ssesseeesesesseeeesses s seesseeeesesseseesees 2-125
LREAZREoovvveeeeeeveesseeeesseeseeseseesesssssssesssssseessssssesssssesasessessessssseessssssssaees 2-126
LREAZULL oo eeeeee e eeeeeeeeeeseseeeeeseesesessessssessssssesesssssssessessesessssessesssseaees 2-126
LT e eeeeeeeeesee e e et e et ettt s e e e 2-127
LWORZBY T evvveeeeseeeoseeeeseeseeeseseseeesssssssssssssssessssesesesssesssessesssesssssesessesssssanes 2-127
LWORZDW ..o eeeeeeeeeesese e ssesesessessseessssesesessseseesessesesesessssessesssseaees 2-128
LWORZL oo seeseeeeseeeseseeeessseeesessessseessssesesesssesessessessessseseesseseseeaees 2-128
LWORZLR ...eevveeeeeeeesseeeseseeeeessseeeessssssessssssssessssssssesssesssessssssesessseessssesseaees 2-128
LMWORZULI <o eeeeeeeeeeseseeeeesseseseessssessessssssesesssessasessessesessseessessssesnes 2-129
LWORZWO ... eeeeeeeeeeeeseseeeesseesesessessessessssesssessssesasessessesssssesssssessesees 2-129
VY =3 07X IO 2-129
IMAAX oo eeeeeeseeeeees e e s se s e e e e e e e e s e e s s eeeseeeeees e eeneee e 2-130
IMEASURE ..oovvveeeeeeeeeeeeeeeeeseeeseseeeessessesessessessessssesesesssesssses s seesseseessesesesaees 2-130
IMID oo eeeeeeeeeeeee e s e e se s e e e e e s s e eeee e eee s seees e e eeseneeees 2-131
1 T O 2-132
Y L) OO 2-132
Y T Y4 =3O 2-133
IMUL coveooeeeeeeeeeee e eees e esss e se s s s ese e s e s e ees e sessesseeeseeneeseseeeeees 2-133
IMUX oo eeeee e sees e sses e seseeees e asssess e s s eeessses e ses s seeessseeseesesseaees 2-134
N v vveeoeeeeeeeeeeeeeee e e sees e esseeeeeseseeeee e e ee e e e e e e s e e et eees e eeseee e 2-135
=S 2-135
NETCLS ovvvvoeeeeeeeeee e e seeeseeeseseseesssesesessessesesssseseeesssesessessesseseseseesseseseseees 2-135
NETFRE w.ovvcooeeeeveoeeeeeeeseesesseeeeeseseeseessssesesssssesesssessesesssesessessssssesessseessesssesanes 2-136
=21V OO 2-137
NETOPN .o.vcoeeeveeee e eeeeeeeeseeeseseseessseseeessesseessseseseeesseeeesses s seeessseeeeeseseeaees 2-138
NETRCV oo eeeesseeeesseeeeeseseesesssssesssssesesessssssesesssssssessesesesssssesssessseeaees 2-140
T2 55 o O 2-142
NETSTA covvveoeeeeeeeeeeeseeeeeesssseesseseseseesseseesessessessssseeseeesssesessessesseseseseeseeseseeeees 2-144
NEWRATIO ¢.eovveoeeeeeeeeeeeeeeeeseseeeesssesssesssesesessssesesesssesessessessessssseessesesssanes 2-145
LTV =N 1 =3O 2-147
L0 1 ST 2-147
NUM2STR c.ooooeevveoeeeeeeeeseeeeeessesessseeeesssesesesssssesessssssesesssesssessesssassssseessesssssaees 2-148
o T = = OO Al-1
o] ToR = N[=3 TS B1-1
0] = = SO 2-149

T = o =SOSR 2-153
T = == =SS 2-153
= o O 2-154
POSITION ..o eeeeeseseeeeseeseseesesssseeeessesssssssessessseseesssesssssesessesssseesessesssees 2-163
P UERRORS. ..o1vvccoeeeseveesseeseesessesesessesssssssesssessssssssessessssssseesseessssssessessssessesssesssees 2-164
P RESET «oooeeveeeeoeseeeeeeessesseeeesessesesseessesssesesesssesseesseessessesseeessesseessessssenesssesssees 2-167
Q UAVAIL? coveeeeeeeeeeeeeseeeeeeeeseseeseseeeeessesessesesssesssseseessesssseesessesssseesesssssssees 2-168
o XN ULV =1 == 2-168
RATIOCAM oo eeeeeeoeeeeeeeeeeeseesseeesees e sesssess s eesseesesseeessesseessessssenesseesssees 2-169
2 HTe!= =T YOS 2-182
RATIOSCL 1 vvvveeoeeeeeeeeeseeseeeeseessseesessssessseesesssssssessesssessseessessssssseessessssessessesssees 2-187
2 T T =T 2-191
RATIOSY N 1. ovvveeoeeeeeeeeeseeeesessesesessessssesseeesesssssssessssssssssesssesssssssessessssesssessesssees 2-203
2 AT Y= SO 2-213
2 T Y=Y 2-216
27 o YOS 2-225
READFDBK ..vvvccooeeseeeeeeeeeeeeseesesessesssssssssesessssssssessssssssssesssesssssssessessssesssssesssees 2-226
Yo N Y 2 2-235
7Y o YV =Y 2-258
REAL 2D ..o eeeeeeeeeeeeeeeseesesessesesseseseesessssssesessessssssseessessseessessessssessesssesssees 2-259
REALZDW +.eeveoooeeeeeeeeoeseeeeeeesesesseesesessesssesssesseesseessessesssesssesseessessssesesssesssees 2-259
REALZLR ..o ovvveeoe e eeeeeoeseesessesssessessssssseesessssssssessssssessssessesssssssessessssesssessesssees 2-260
REAL2UDI .o eeeeeeesesessessesessessesssssssessessssesseessessssssseessessssesssssesssees 2-260
Y 0 N Y 2-261
REF_END ..o vvveeoeeeeeeeeessseesesssssessessssssssessessssssssesssssssssssssesssssssessessssessessesssees 2-262
REGIST c.voooeeeeveeeeeeeeeeeeeeseeeeessssesesesseesssesseeesesssssssseeseesseesseesseesssssessessssesseseesssees 2-263
RENAME o eveeee e eeeeee e eeeseeseeeeseessesseseseeseses s seessesseesseeessesseessessssesesssesssees 2-272
REPLACE ... vvveeoe e eeeeeseseesessesseesesssssssessessssssssesssssssssssssesssssssessessssesssessesssees 2-273
Y= = N0 J Y 2-274
2 Y 2-275
ROL v vveeee e eeeeese e eseeeseseeesssese e sesees e s sesss s sseseeeseesesee s sesssseeessesseees 2-276
20)= OO 2-277
SR == = o: = N SO 2-278
OR8N 2-279
SCA_ACKR ..o eeeeveeereseeeeeeee s sesssessseessesessessesssesssseseessesssseseesseesseeesessessssees 2-280
107N ol @ ST 2-281
07N o = Y 2-282
107N = 1 [2-284
510N (0 4 o3 2-285
SCA_RECV wvvveeoeeeeeeeeeeeseessseseessessssssesssesssssssassessesssssessessessssessesssssssessesssseee 2-287
107N = = 2-288
107N = V{5 SO 2-290
SO N1 Y 2-291
10N T2 4 O 2-292

S O 1 TSRS 2-298
SCS ACKR e rae s 2-299
105 T O I S 2-300
SCS RECV ..ttt et be e b e reenneas 2-302
B O T ! RS 2-304
SCS SEND .t e e e e e e e e eaaeeeneeas 2-306
S O T I N RSP S 2-308
S R (OO I Y = (0] £ T 2-309
S O 1Y 2-312
SEEK oottt e e e e e e e — et e e ae—reeeeaaabrreeeaareeeeaanrreeeaanns 2-317
S ! 2-318
VO I 2-319
RS | OSSR 2-320
S | 2-321
I 2-322
S AV 122 =) 2 USROS 2-322
S N 124 5] 2-323
N I 11 N 2-323
I AV 2 OSSPSR 2-324
SN 240 1 2-324
ST | I 2-325
ST A TUS et e e s e e s s b e e e e s e bt e e e e e sabbeeessanraeeesanns 2-326
STATUSSY e e e e e s s e s bbb a e e e e e e e eas 2-327
RS 1 =1 O I I 2-329
Y I = 1 1 [OOSR 2-333
Y I = S 12NN 2-335
S I = 1/ 5 2-337
Y I = 5 TSRS 2-344
IS I 22 5 1 S 2-345
Y I 24 1 1 2-346
STR2USI ...t e e e e s b e e e s ba e e e e s e bt e e e s e sabreeessnraeeesanns 2-346
STRTSERY e e s bbb r e e e e 2-347
1 2-349
SYN_END ettt nnes 2-350
ST 1 O S 2-351
1S T 1 I S 2-351
ST B 2 5 TSROSO 2-352
ST 1L S 2-352
S T 1L N I T 2-353
I 3 OO 2-353
TIMZ2UDIN Lottt e e s s s s s e s bbb b e e e e e e s s s s e snabannees 2-354
TIMERZSTR ..ottt e e e e e e e e s s s e s bbb a e e e e e s s s s sesnbbaneees 2-354
TME_ERR?.....cee ettt sttt snae b e e s ae e nneesnre e 2-355
IO s I = S 2-355

TP ettt s e eeeee 2-358
TUNEREAD ..o eeeeeesseeeseesseeesseeess e eesssessessseessseesessseseseseessessse e e 2-358
TUNEWRIT oo eeeeseseeeeesseseessssessssseessssseessseessssessesseseseeesssseeesees 2-359
UDINZDI <ot seeeee s eee s ees s sees e ess s sees e eses e seesea e 2-362
UDINZDW ..ot see e seeseeeses e essssesees s eses s sees e eses s seeseeeees 2-362
UDINZRE w..vvcooeeveoeeeeeoeeeseeeeeseeseseseeeeseseesssseeeseseesssssseessssesssssssesssssesesssssesssneees 2-362
UDINZTIM wovoooeeeoeeeeeeeeeeeeseeeeee e eeeseeese s eee s ses e eesseeeses s sees s ses s seesee e 2-363
UDIN2UL ¢ seeseeesessee e e seeseesses e e esssseseessseesss s sees e eses s seeseseees 2-363
UDIN2ULI ovveooeeeoeeeeeeeeeeeeeeseesseeseeeesessesssseeesessssssesesssssessessssesssssesesssssessesnnes 2-364
UDINZ2US! oo eee s sees e ese e sees s eses s sees s eses s sesseeeees 2-364
UINT2INT oot see e eseeeesee e e eee e ess s eesseeeeee s sess s sees s seeseseees 2-364
UINT2UD vvcooveeoeeeeeeeeeeeseeseesseeseeseseseessesseesessssssssesssssesssssesesssssesesssssessesnees 2-365
UINT2ULI vt seesses e seseeeseesseeeses s sees e ses e sesseaeees 2-365
UINT2USI oo esesessesesss e s ess s eesssaeess s sess s ses s sessenees 2-365
UINT2WO oo see e eseeeeseseesssseeesesesessseesssseesessssess s esesssesesseenees 2-366
ULTINZLI oo s sees e ssseseseessseeses s sees s eses e see s 2-366
ULINZLR vt see e e e e ses e e e essssesees s esesssesees s eses s sesseeeees 2-366
ULTINZLW et ese e seseesseeeessesssessseesssseseesseseessssesessssseeseseees 2-367
ULINZ2UDI e ses e seeessseeeseessseessssesess s eses s sesseeeees 2-367
ULINZ2UL e sesseeeses e ess s eess s ess s sees s eees s sesseneees 2-367
ULINZ2UST oo see e eseesesessessseeeesesesssssesssssssessesess s sesssssessennee 2-368
8= =3 07X = 2-368
USERDAT wvvoooeeeseeeeeseeseesesseeses s eesseseses e ees e ssssseseessseeessssesess s eses s seeseaeees 2-368
USER PROFILE ...oovveoeeeeeeseeesesesesseesesssesssesssssssesssssssesssssesssssssssssssesesssssesesnees 2-370
USER SETUPoeooeeeoeeeeeeseeeeeeses e e seeesssseeseee s sss s seesssaesss s sses s eses s ses s 2-370
USINZBY T ovoooeeeeeeeeeeseeseesesseesessseeessesses e e esssseseessseeeesssesess s eses s sesseseees 2-371
USINZSI ..o eeeeseeeseeeesseeseseseeeeseseesseseeesesessssseesssseseessesese s esessseseeseseees 2-371
USINZSTR .o.cooeeeeeeeeeeeeeeeeeeeeeseeeseseeeeeeeseseses e eeeseeesssseeseessseesessesess s sses s sessee e 2-372
USINZ2UDI oo seeeeeeessee e s e seeeses s eee s sssssesees s sssssesees s eses s seeseseees 2-372
USINZUL oo eeeeeeeeeseeses s seesessessseseesesesssssessssseessssesess s esessseneesesenes 2-373
USINZ2UL e seeeeeeeeesee e eee s sees e ssseeeseesseaeessseesees s ses s sesseeeee 2-373
VEL_END ..o oveeeeeeeeeeeeesesseesessseeessessesssssessssssesessessessssesssessesssessssessssssesesees 2-374
VEL _STRT tvooeeeveeeeeeeeeeseeesessesseessesseesseseseseseessseesssssesssssesssseasssssssssneeesseens 2-374
VY= T0 1= 2 O 2-375
WORDZDW.....coovveoeeeeeseeseesseseesesseesesseesssseeesesseeesssssseesssseessssesaessssessssneseesseenn 2-375
LYY= Y| N T 2-376
WORDZLW ..o eeeeeeseeeeeeesee e esseeesessseesees e sesseeeesseesesseeeseseenesseeeeneees 2-376
WORDZ2UI «.oveooeeveeeeeeeeeeseeeseseeses s sesseeesesseessssessessssesssssesssseaesssssesssnesessseenn 2-376
WRITE oot eeeeeeeeeesee s s e ee s eesees s s e eees e eeesseeessseeeeseeeessseeessneeesseenn 2-377
WRITE_ SV coooeeoeeeeeeeseeeseeeeeeessseeesseseeeesseesess e eessseesessseeeesseesesseesese s nesseeseneees 2-378
WRIT SV oo s e see s s e sesseeess s ees e eess s ees e eess e ees s ees s 2-378
(O] =TT 2-379
Ol _SER ..o eeeeesees e ses s s s s e e eee s ees s e se e sees s eee s eeeseeeeeees Al-1

CHAPTER 1

PiICPro Function/Blocks Overview

Introduction

Function and function blocks are the programming tools used to perform opera-
tions on data in PiCPro ladder diagram programs. They are similar to the subrou-
tines of other programming languages.

The difference between functions and function blocksis that a function completes
an operation in one scan whereas a function block may take more than one scan to
complete an operation. Therefore, function blocks must have internal storage for
their variables from scan to scan until their operation is complete. You must
declare and assign a name to function blocks in the software declaration table so
that PiCPro can reserve memory for them.

Chapter 1 of this reference manual presents a summary of all the standard func-
tions and function blocks available within PiCPro. This summary will familiarize
you with what is available for programming.

Chapter 2 presents descriptions of al the function/function blocks in al phabetical
order.

NOTE

You must have a math coprocessor installed on your PiC900 CPU
module to perform any functions involving logarithmic, exponential,
trigonometric, and floating point mathematical operations.

All functions and function blocks for PiCPro are stored in libraries according to
the category of operations they perform.The list of the libraries appears under the
L adder/Functions menu.

Arith
Binary
Counters
Datatype
Evaluate
Fbinter
Filter
To
Motion
String
Timers
Xclock

Chapter 1 Function/Function Block Overview 1-1

Introduction

NOTE

When you usethe UDFB or TASK featureto create your own function
blocks, another category appears called USER as shown below. This
isnot alibrary, but selecting it will bring up alist of any library you
have created to store UDFBs or TASKS.

Arith
Binary
Counters
Datatype
Evaluate
Fbinter
Filter
To
Motion
String
Timers
USER
Xclock

When you access alibrary one of two things happens.

You are given alist of al the function/blocks available in that library. You select the
function/block you want to insert into a network of your module from this|ist.

or

You are given alist of groups into which all the function/blocks have been divided.
You select the group that holds the function/block you want. This brings up the list
of function/blocks in that group and now you can select the one you want to insert
into the network of your module.

1-2

Chapter 1 Function/Function Block Overview

Introduction

The table below shows all the lists that appear when alibrary is selected. Whether
the list represents groups or function/blocks is indicated.

Table 1-1. Library Lists

Arith Binary Counters Datatype Evaluate Filter
Groups Functions Function blocks Groups Functions Functions
BOOL2BYT
ARITH AND CTD BYTECONV EQ LIMIT
DATETIME NOT CTU DINTCONV GE MAX
TRIG OR CTUD DWORDCNV GT MIN
ROL D_TCONV LE MOVE
ROR INTCONV LT MUX
SHL LINTCONV NE SEL
SHR LREALCNV
XOR LWORDCNV
NUM2STR
REALCONV
SINTCONV
STRCONV
UDINTCNV
UINTCONV
ULINTCNV
USINTCNV
WORDCONV
Fbinter lo Motion String Timers (USER)
Function Blocks Groups Groups Functions Function (Libraries)
blocks
ANLGIN DATA CONCAT TOF (Contains
an AT ok? e A 7 Wibrary lis
FB_RCV BIO_PERF MOVE INSERT when you use
o ey e i the UDFS or
NETHORK RATIOMOV LWR_CASE TASK fear
PID REF MID tures.)
READFDBK SERC-SLV REPLACE
RTDTEMP SERC_SYS RIGHT
SOCKETS UPR_CASE
STEPPER
Xclock
Functions
CLOCK
GETDAY
SERVOCLK

When you create SERCOS and/or Servo Setup files, anew library named by youis
added alphabetically to thelist of libraries.

In Table 1- 2 the function/blocks found under the groups are shown. When thereis
no list of function/blocks shown, there is only one function in that group. Access-
ing that name inserts the function in your network. One exampleisthe
BOOL2BYT function in the datatype group.skewed

Chapter 1 Function/Function Block Overview 1-3

Introduction

Arith groups

Table 1-2. Groups of function/blocks

ARITH DATETIME TRIG
ABS ADT T ACOS
ADD A TOD_T ASIN
DIV S DT DT ATAN
MOD SDTT C0S
MUL S DD EXP
NEG S_T0D_T LN
SQRT S_TOD_TO L0G
SUB SIN
TAN
Datatype groups
BOOL2BYT BYTECONV DINTCONV DWORDCNV D_TCONV INTCONV LINTCONV LREALCNV LWORDCNV
BYT2B0OL DINT2DW DWOR2BYT DATE2STR INT2DINT LINT2DI LREA2LI LWOR2BYT
BYTE2DW DINT2INT DWOR2DI DT2DATE INTLINT LINT2INT LREA2LW LWOR2DW
BYTE2LW DINT2LI DWOR2LW DT2STR INT2SINT LINT2LR LREA2RE LWOR2L I
BYTE2SI DINT2RE DWOR2RE DT2T0D INT2UINT LINT2LW LREA2ULT LWOR2LR
BYTE2USI DINT2SI DWOR2UDI D_TOD2DT INTOWORD| |LINT2SI LWOR2ULI
BYTE2WO DINT2UDI DWOR2WO TIM2UDIN LINT2ULI LWOR2WO
TIME2STR
TOD25TR
NUM2STR REALCONV SINTCONV STRCONV UDINTCNV UINTCONV ULINTCNV USINTCNV WORDCONV
REAL2DI SINT2BYT STR2D T UDIN2DI UINT2INT| |ULIN2LI USIN2BYT| |WORD2BYT
REAL2DW SINT2DI STR2NUM UDIN2DW UINT2UDI ULIN2LR USIN2SI WORD2DW
REAL2LR SINT2INT STR2USI UDIN2RE UINT2ULI ULINZLW USIN2STR WORD2INT
REAL2UDI SINT2LI UDIN2TIM| |UINT2USI ULIN2UDI USIN2UDI WORD2LW
SINT2USI UDIN2UI UINT2WO ULIN2UI USIN2UI WORD2UI
UDIN2ULI ULIN2UST USIN2ULT
UDIN2UST
lo groups
ANLGIN ANLGOUT I3O/T<T; COMM JKTHERM NETWORK PID ESQE RTDTEMP SOCKETS STEPPER
A_INCHIT| |ANLGINIT ASSIEN ATMPCHIT NETCLS ARTDCHIT| | IPACCEPT| |STEPCNTL
A_INCHRD| | ANLG_OUT CLOSE ATMPCHRD NETFRE ARTDCHRD| | IPCLOSE STEPINIT
A_INMDIT CONFIG ATMPMDIT NETMON ARTDMDIT [TPCONN STEPSTAT
A_IN_MMC DELFIL NETOPN IPHOSTID| |STEP_CMD
DIRECT NETRCV IPIP2NAM| | STEP_POS
FRESPACE NETSND [PLISTEN
OPEN NETSTA IPNAM2IP
READ IPREAD
RENAME [PRECV
SEEK IPSEND
STATUS IPSOCK
WRITE IPWRITE
Motion groups
DATA ERRORS INIT MOVE MOVE_SUP QUE RATIOMOV REF SERC_SLV SERC_SYS
CAPTINIT| |C_ERRORS| [CLOSLOOP| |DISTANCE| |ACC_DEC ABRTALL GR_END SCS_ACKR SCR_CONT
CAPTSTAT| |C_RESET CLSLOOP?| [POSITION| |CAVM_OUT ABRTMOVE| |RATIOCAM SCS_CTRL SCR_ERR
COORD2RL| |CSTOP OPENLOOP| [VEL_END HOLD FAST_QUE| |RATIOPRO SCS_RECV SCR_PHAS
READ_SV C_STOP? SCA CLOS| |VEL_STRT| [HOLD END| |Q_AVAIL?| |RATIOSLP SCS_REF SC_INIT
READ_SVF| |E_ERRORS| |STRTSERV IN_P0S? Q_NUMBER| [RATIOSYN SCS_SEND
SCACTRL| |E_RESET MEASURE RATIO_GR SCS_STAT
SCA_RCYC| |E_STOP NEWRATO RATIO_RL
SCA_RECV| |E_STOP? NEW_RATE REP_END
SCA_SEND| |P_ERRORS RATIOSCL SYN_END
SCAWCYC| |P_RESET REGIST
STATUSSV| |SCA_ERST R_PERCEN
TUNEREAD| | TME_ERR? SCURVE
TUNEWRI T
WRITE_SV
WRIT_SVF
1-4 Chapter 1 Function/Function Block Overview

Arithmetic Category

Arithmetic Category

ARITH group

The functionsin the ARITH group perform the familiar operations of addition,
subtraction, multiplication, division, modulo (remainder), absolute value, square
root, and negate (opposite) value.

CAUTION

If an underflow or overflow error occurs when one of these arithmetic
functions executes, the output at OK will not energize. The value at
OUT will be unpredictable.

Function |Description Page
ABS Gives the absolute value of a number. 2-3
ADD Adds from 2 to 17 numbers. 2-5
DIV Performs the division operation and returns the quotient. 2-73
MOD Performs the division operation and returns the remainder. 2-132
MUL Multipliesfrom 2 to 17 numbers. 2-133
NEG Returns the opposite value of a number. 2-135
SQRT Determines the square root of a number. 2-325
SUB Performs the subtraction operation on 2 numbers. 2-349

DATETIME group

The functionsin the DATETIME group are used to add or subtract TIME duration
and/or TIME_OF_DAY type variables or constants. The D#, T#, TOD#, and DT#
characters are part of the result in the output variables, except for STRINGS.

When one of these functions executes, if an error occurs, the output at OK does not
energize, and the value of the variable at OUT will be:

TIME duration: THO TIME_OF_DAY: TOD#0:0:0 DATE: D#1988-01-01
DATE_AND_TIME: DT#1988-01-01-00:00:00STRING: null (length 0)

For every output variable, its value cannot exceed the largest value allowed for the
largest time increment, and it cannot be less than zero for the smallest time incre-
ment. Other values "roll over".

For example, if the largest increment is days, the output value must not exceed 49.
If the smallest increment is seconds, the output value must not be less than 0 sec-
onds. However, 24 hours becomes 1 day for aDATE_AND_TIME variable (whose
largest increment is years).

Chapter 1 Function/Function Block Overview 1-5

Arithmetic Category

TIME duration value.

Function Description Page

ADTT Adds DATE_AND_TIME to TIME and outputs a 2-25
DATE_AND_TIME sum.

A TOD T |AddsTIME_OF DAY to TIME and outputsaTIME_OF DAY 2-34
sum.

S DT _DT |SubtractsaDATE_AND_TIME from aDATE_AND_TIME and 2-351
outputs a TIME duration value.

SDT T Subtracts TIME from a DATE_AND_TIME and outputs a 2-351
DATE_AND_TIME.

SDD SubtractsaDATE fromaDATE and outputsaTIME duration value. 2-352

STOD T Subtracts TIME from TIME_OF_DAY and outputs 2-352
TIME_OF _DAY.

S TOD TO |SubtractsTIME_OF DAY from TIME_OF DAY and outputs a 2-353

TRIG group
'I_'he functionsin the TRIG group perform trigonometric or transcendental func-
tions.
Function |Description Page
ACOS |Caculatesthe arc cosine. 2-5
ASIN Calculates the arc sine. 2-17
ATAN Calculates the arc tangent. 2-19
COS Calculates the cosine. 2-61
EXP Calculates the exponent. 2-79
LN Calculates the natural og. 2-124
LOG Calculates the log. 2-125
SIN Calculates the sine. 2-322
TAN Calculates the tangent. 2-353
1-6 Chapter 1 Function/Function Block Overview

Binary Category

Binary Category

The functions in the Binary library perform two types of operations:

1 Logical or Boolean operations

2. Bit shifting and rotating operations

Logic functions

Thelogic functions evaluate the input values on abit by bit basis, and place results
for each bit into the corresponding bit of the output variable. In general, bit x of
every input variableis evaluated and aresult is put into bit x of the output variable.

Bit shifting and rotating functions

The bit shifting and rotating functions “move’ the values of bits. The values are

shifted or rotated to the left or right.

Function |Description Page
AND Performs the boolean AND operation on from 2 to 17 numbers. 2-6
NOT Complements the bits of a number. 2-147
OR Performs the boolean inclusive OR operation on from 2 to 17 num- 2-152
bers.
ROL Rotates n bits from left to right (most significant to least significant 2-276
positions).
ROR Rotates n bits from right to left (least significant to most significant 2-277
positions).
SHL Shiftsall bits of anumber n positions to the left, discarding n bits on 2-320
the left (most significant), and inserting n Os on the right (least signifi-
cant).
SHR Shifts all bits of anumber n positions to the right, discarding n bitson 2-321
the right (least significant), and inserting n Os on the left (most signifi-
cant).
XOR Performs the boolean exclusive OR operation on from 2 to 17 num- 2-379
bers.
Chapter 1 Function/Function Block Overview 1-7

Counters Category

Counters Category

The function blocks in the Counter library serve as counters.

Function
Block Description Page
CTD Counts down from a specified value and then energizes an output. 2-61
CTU Counts up to a specified value and then energizes an output. 2-62
CTUD Counts up or down from a specified value and then energizes the 2-62
appropriate output.
1-8 Chapter 1 Function/Function Block Overview

Datatype Category

Datatype Category

The Datatype library contains all the functions that convert one data type to

another.
BOOL2BYT group
The BOOL2BY T group converts a boolean data type.
Function Description Page
BOOL2BYT |Changes the datatype from boolean to byte. 2-39
BYTECONYV group
The BY TECONV group converts byte data types.
Function Description Page
BYT2BOOL |Changes the data type from byte to boolean 2-40
BYTE2DW | Changes the data type from byte to double word. 2-40
BYTE2LW | Changes the data type from byte to long word. 2-41
BYTE2S| Changes the data type from byte to short integer. 2-41
BYTE2USI |Changes the datatype from byte to unsigned short integer. 2-42
BYTE2WO | Changes the data type from byte to word. 2-42
DINTCONV group
The DINTCONV group converts double integer data types.
Function Description Page
DINT2DW | Changes the data type from double integer to double word. 2-70
DINT2INT |Changes the datatype from double integer to integer. 2-70
DINT2LI Changes the data type from double integer to long integer. 2-70
DINT2RE | Changes the datatype from double integer to real. 2-71
DINT2SI Changes the data type from double integer to short integer. 2-71
DINT2UDI phangas the data type from double integer to unsigned double 2-71
integer.
Chapter 1 Function/Function Block Overview 1-9

Datatype Category

DWORDCNYV group
The DWORDCNYV group converts double word data types.
Function Description Page
DWOR2BYT | Changes the data type from double word to byte. 2-75
DWOR2DI Changes the data type from double word to double integer. 2-76
DWOR2LW | Changes the data type from double word to long word. 2-76
DWOR2RE Changes the data type from double word to real. 2-76
DWOR2UDI _Changes the data type from double word to unsigned double 2-77
integer.
DWOR2WO | Changes the data type from double word to word. 2-77
D_TCONV group
The D_TCONV group converts date and time data types.
Function Description Page
DATE2STR |Changesthe DATE valueto a STRING value. 2-67
DT2DATE |Outputsthe DATE from a DATE_AND_TIME value. 2-74
DT2STR Changesthe DATE_AND_TIME valueto a STRING value. 2-74
DT2TOD Outputsthe TIME_OF_DAY from aDATE_AND_TIME value. 2-75
D_TOD2DT |Concatenates DATE and TIME_OF_DAY values and outputs a 2-75
DATE_AND_TIME value.
TIM2UDIN | Changes the data type from TIME to unsigned double integer. 2-354
TIME2STR |ChangesaTIME duration value to a STRING value. 2-354
TOD2STR |ChangesaTIME_OF DAY vaueto a STRING value. 2-355
INTCONV group
The INTCONYV group convertsinteger data types.
Function Description Page
INT2DINT | Changes the data type from integer to double integer. 2-101
INT2LINT | Changes the data type from integer to long integer. 2-101
INT2SINT | Changes the data type from integer to short integer. 2-101
INT2UINT | Changes the data type from integer to unsigned integer. 2-102
INT2WORD | Changes the data type from integer to word. 2-102
1-10 Chapter 1 Function/Function Block Overview

Datatype Category

LINTCONV group

The LINTCONV group converts long integer data types.

Function Description Page
LINT2DI Changes the data type from long integer to double integer. 2-122
LINT2INT |Changes the data type from long integer to integer. 2-123
LINT2LR Changes the data type from long integer to long real. 2-123
LINT2LW | Changes the data type from long integer to long word. 2-123
LINT2SI Changes the data type from long integer to short integer. 2-124
LINT2ULI | Changes the data type from long integer to unsigned long integer. 2-124
LREALCNYV group
The LREALCNYV group converts long real datatypes.
Function Description Page
LREAZ2LI Changes the data type from long real to long integer. 2-125
LREA2LW Changes the data type from long real to long word. 2-125
LREAZ2RE Changes the data type from long real to real. 2-126
LREA2ULI Changes the data type from long real to unsigned long integer. 2-126
LWORDCNV group
The LWORDCNYV group converts long word data types.
Function Description Page
LWOR2BYT | Changes the datatype from long word to byte. 2-127
LWOR2DW | Changes the data type from long word to double word. 2-128
LWOR2LI Changes the data type from long word to long integer. 2-128
LWOR2LR Changes the data type from long word to long real. 2-128
LWOR2ULI Changesthe data type from long word to unsigned long integer. 2-129
LWOR2WO | Changes the data type from long word to word. 2-129
Chapter 1 Function/Function Block Overview 1-11

Datatype Category

NUM2STR group
The NUM2STR group converts a numeric data type.

Function |Description Page
NUMZ2STR | Changes the data type from numeric to STRING. 2-148
REALCONV group
The REALCONYV group converts real datatypes.
Function Description Page
REAL2DI Changes the data type from real to double integer. 2-259
REAL2DW | Changes the data type from real to double word. 2-259
REAL2LR |Changes the datatype from real to long real. 2-260
REAL2UDI |Changes the datatype from real to unsigned double integer. 2-260
SINTCONV group
The SINTCONV group converts short integer data types.
Function Description Page
SINT2BYT | Changes the data type from short integer to byte. 2-322
SINT2DI Changes the data type from short integer to double integer. 2-323
SINT2INT | Changes the data type from short integer to integer. 2-323
SINT2LI Changes the data type from short integer to long integer. 2-324
SINT2US Changes the data type from short integer to unsigned short inte- 2-324
ger.
STRCONV group
The STRCONYV group converts string data types.
Function Description Page
STR2D T Changes the data type from STRING to date and time. 2-345
STR2NUM | Changes the data type from STRING to numeric. 2-346
STR2US Changes the first character of STRING to unsigned short integer 2-346
(ASCII code).
1-12 Chapter 1 Function/Function Block Overview

Datatype Category

UDINTCNYV group
The UDINTCNYV group converts unsigned double integer data types.

Function Description Page
UDINZ2DI Changes the data type from unsigned double integer to double 2-362
integer.
UDIN2DW | Changes the data type from unsigned double integer to double 2-362
word.
UDIN2RE | Changes the data type from unsigned double integer to real. 2-362
UDIN2TIM | Changes the data type from unsigned double integer to time. 2-363
UDIN2UI Changes the data type from unsigned double integer to unsigned 2-363
integer.
UDIN2ULI | Changes the data type from unsigned double integer to unsigned 2-364
long integer.
UDIN2USI | Changes the data type from unsigned double integer to unsigned 2-364
short integer.
UINTCONV group
The UINTCONYV group converts unsigned integer data types.
Function Description Page
UINT2INT | Changes the data type from unsigned integer to integer. 2-364
UINT2UDI | Changes the data type from unsigned integer to unsigned double 2-365
integer.
UINT2ULI Changes the data type from unsigned integer to unsigned long 2-365
integer.
UINT2USI Changes the data type from unsigned integer to unsigned short 2-365
integer.
UINT2WO | Changes the data type from unsigned integer to word. 2-366
Chapter 1 Function/Function Block Overview 1-13

Datatype Category

ULINTCNV group
The ULINTCONV group converts unsigned long integer data types.

Function Description Page
ULIN2LI Changes the data type from unsigned long integer to long integer. 2-366
ULIN2LR | Changesthe datatype from unsigned long integer to long real. 2-366
ULIN2LW | Changes the data type from unsigned long integer to long word. 2-367
ULIN2UDI | Changes the data type from unsigned long integer to unsigned 2-367
double integer
ULIN2UI Changes the data type from unsigned long integer to unsigned 2-367
integer
ULIN2USI | Changes the data type from unsigned long integer to unsigned 2-368
short integer
USINTCNV group
The USINTCNV group converts unsigned short integer data types.
Function Description Page
USIN2BYT | Changes the data type from unsigned short integer to byte. 2-371
USIN2S| Changes the data type from unsigned short integer to short integer. | 2-371
USIN2STR | Changesthe datatype from unsigned short integer (ASCII code) to | 2-372
the first character in STRING.
USIN2UDI | Changes the data type from unsigned short integer to unsigned 2-372
double integer.
USIN2UI Changes the data type from unsigned short integer to unsigned 2-373
integer.
USIN2ULI Changes the data type from unsigned short integer to unsigned 2-373
long integer.
1-14 Chapter 1 Function/Function Block Overview

Evaluate Category

WORDCONYV group
The WORDCONYV group converts word data types.

Function Description Page
WORD2BYT |Changes the data type from word to byte. 2-375
WORD2DW | Changes the data type from word to double word. 2-375
WORD2INT | Changes the data type from word to integer. 2-376
WORD2LW | Changes the data type from word to long word. 2-376
WORD2UI Changes the data type from word to unsigned integer. 2-376

Evaluate Category

The functions in the Evaluate library compare numbers. The comparisons are;

equal to = greater than > greater than or equal to >
not equal to# lessthan < less than or equal to <
Function |Description Page
EQ Compares from 2 to 17 numbers and energizes an output if al num- 2-78
bers are equal to each other.
GE Compares from 2 to 17 numbers and energizes an output if all num- 2-97
bers are greater than or equal to successive numbers.
GT Compares from 2 to 17 numbers and energizes an output if all num- 2-98
bers are greater than successive numbers.
LE Compares from 2 to 17 numbers and energizes an output if al num- 2-120
bers are less than or equal to successive numbers.
LT Compares from 2 to 17 numbers and energizes an output if all num- 2-127
bers are less than successive numbers.
NE Compares 2 numbers and energizes an output if they are not equal to 2-135
each other.
Chapter 1 Function/Function Block Overview 1-15

Evaluate Category

NOTE ON STRING EVALUATIONS

Strings are compared character by character based on the ASCI 1 value
of the characters. Therefore, String 1 below would be greater than
String 2 because 9 > 3.

If String1=129

and String2=1234

then String 1 > String 2
If two strings have different lengths and the characters in the shorter
string match the charactersin the longer string, then the shorter string
is less than the longer one.

If String1=123

and String2=1234

then String 1 < String 2
Another example is shown below. String 1 is less than String 2 be-
cause the ASCII value of upper case lettersis less than the value of
lower case |etters.

If String 1 =TIME

and String2=Time

then String 1 < String 2

1-16

Chapter 1 Function/Function Block Overview

Fbinter Category

Fbinter Category

The function/function blocks in the Fbinter library alow you to interface with field

bus communications via the DeviceNet hardware module.

Function |Description Page

FB_CLS |Closes communicationswith the field bus. 2-88

FB_OPN | Opens communications with the field bus placing the DeviceNet 2-89
module in the RUN mode.

FB_RCV |Receivesal datafrom the configurator file indicated by Tag names. 2-90

FB_SND |Sendsdataindicated by Tag names in the configurator file. 2-91

FB_STA |Allowsyou to check if the DeviceNet moduleis communicating with 2-92
the nodes and to check field bus information.

Filter Category

The functions in the Filter library act asfilters or sorters. They move the value of

one of theinputsinto an output variable.

Function |Description Page
LIMIT Evaluates a number and outputs the number if it is within specified 2-122
limits, or outputs the upper or lower limit if the number is greater
than or less than the limit, respectively.
MAX Compares from 2 to 17 numbers and outputs the largest number. 2-130
MIN Compares from 2 to 17 numbers and outputs the smallest number. 2-132
MOVE Places from 1 to 17 numbers into output variables of the same 2-133
type(s).
MUX Evaluates from 2 to 17 numbers and outputs one of the numbers 2-134
based on the value of an independent number.
SEL Evaluates 2 numbers and outputs one of them based on the stateof a | 2-318
boolean input.
Chapter 1 Function/Function Block Overview 1-17

I/0 Category

I/0O Category

The functionsin the I/O library initialize and send/receive data to/from:

Analog input module

Anaog and 4-20mA output modules

Controls, ports, files, devices, serial communications module
JK thermocouple module

PID loops

Encoder module (background read)

RTD module

Sockets

Stepper module

ANLGIN group

The ANLGIN group contains functions that work with the analog input module.

Function Description Page
A_INCHIT Initializes a channel on an analog input module. 2-27
A_INCHRD |Reads or samples the voltage or current occurring at a channel 2-30
on an analog input module.
A_INMDIT Initializes an analog input module. 2-33
A_IN_MMC |Outputsthedigital value of an analog input for the MMC. 2-26
ANLGOUT group

The ANLGOUT group contains functions that work with the analog or 4-20mA
output module.

Function Description Page
ANLGINIT Initializes an analog or 4-20mA output module. 2-7
ANLG_OUT |Sendsavalue (to be converted to voltage or current) to a channel 2-9

on an analog or 4-20mA output module.

BAT_OK? group

The BAT_OK? group has one function that allows you to check the battery of the
control from the ladder.

Function Description Page
BAT_OK? Checks the battery from the ladder. 2-35
1-18 Chapter 1 Function/Function Block Overview

I/0O Category

BIO_PERF group

The BIO_PERF group has one function that allows you to check the performance
of the block 1/0 modulesin your system.

Function Description Page
BIO_PERF Checks the performance of block I/O modules. 2-36
COMM group

The function blocks in the COMM group are used to transfer (read/write) data
between any of the following:

User Port on the PiC900

PiC RAMDISK Files

PiIC FLASHDISK Files Strings, Arrays, Structures
DOS Workstation Files

Serial Communications Module

Function
Block Description Page
ASSIGN Sets up the channels on the serial communications module to work 2-17
like the User Port for communications.
CLOSE Closes the communication channel between the LDO and aDOSfile, 2-52
RAMDISK file, FLASHDISK file, User Port, or a serial communica-
tions channdl.
CONFIG |Establishes protocol between the LDO and User Port or aserial com- 2-55
munications channel. Must execute after OPEN and before READ,
WRITE, or STATUS.
DELFIL Deletes files from the PIC900 RAMDISK or PiCPro. 2-69
DIRECT Reads PIC RAMDISK or FLASHDISK directory information. 2-72
FRESPACE | Checks amount of available disk space thereison the PIC RAMDISK 2-96
or FLASHDISK.
OPEN Opens the communication channel between the LDO and aDOSfile, 2-149
RAMDISK file, FLASHDISK file, User Port, or a serial communica-
tions channel. Must execute before CONFIGURE, READ, WRITE,
STATUS, or SEEK.
READ Reads datafrom aDOS, RAMDISK, or FLASHDISK file, User Port, 2-225
or aserial communications channel and placesit into a STRING,
Array, Structure, Array Element, or Structure member.
Chapter 1 Function/Function Block Overview 1-19

I/0 Category

RENAME |Renamesafile on the PiC RAMDISK or PiCPro. 2-272

SEEK Positions a pointer in aRAMDISK or FLASHDISK file before a 2-317
read/write is performed.

STATUS | Outputs the number of bytesin the input buffer of User Port or a 2-326
serial communications channel.

WRITE Writes data from amemory areato aDOS file, RAMDISK file, User | 2-377

Port, or a serial communications channel.

OPEN

USER
PORT 2?

CONFIG
|

STATUS

no (

READ /
WRITE

CLOSE

JKTEMP group
The JKTEMP group contains functions that work with the JK thermocouple mod-

ule.
Function Description Page
ATMPCHIT Initializes a channel on a J-K thermocouple module. 2-20
ATMPCHRD | Reads or senses the temperature or voltage occurring at a chan- 2-22
nel on a JK thermocouple module.
ATMPMDIT |Initializes aJK thermocouple module. 2-24
1-20 Chapter 1 Function/Function Block Overview

NETWORK group

I/0O Category

The function blocks in the NETWORK group are used to perform communication
operations among NEXNET networked PiC900s.

Function Description Page
NETCLS Closes the communication channel between the PiC900 in which 2-135
it is executed and all other networked PiC900s.
NETFRE Used after data from atransaction has been received (NETRCV) 2-136
to clear the input buffer.
NETMON Monitors network activity for diagnostic purposes. 2-137
NETOPN Opens the communication channel between the PiC900 in which 2-138
it is executed and all other networked PiC900s.
NETRCV Receives or reads data that was sent by another PiC900. 2-140
NETSND Sends data to another PiC900 or all PiC900s in the network. 2-142
NETSTA Tells how many bytes are in the input buffer to bereceived by one | 2-144
or more NETRCVs.
PiC1 PiC2
PiC1 added to network PiC2 added to network
NETOPN NETOPN
PiC1 looks for - datasent | PiC2 sends data
received data data accented
NETSTA R NETSND
I I
PiC1 reads data Scan LDO
NETRCV
| L
PiC1 gets ready to
accept more data
NETFRE
I
Scan LDO & use
received data
Chapter 1 Function/Function Block Overview 1-21

I/0 Category

PID group
The PID group has one function block that performs PID control.
Function Description Page
PID Performs proportional, integral, and derivative control. 2-154

READFDBK group

The READFDBK group has one function that reads an encoder or 12 channel
resolver module on a scan time basis (background).

Function Description Page
READFDBK | Performs background read on encoder or 12 channel resolver 2-226
module.

RTDTEMP group
The RTDTEMP group contains functions that work with the RTD module.

Function Description Page

ARTDCHIT |Initializes achannel on a RTD module. 2-12

ARTDCHRD | Reads or senses the temperature occurring at a channel on aRTD 2-14
module.

ARTDMDIT |Initializesa RTD module. 2-16

1-22 Chapter 1 Function/Function Block Overview

I/0O Category

SOCKETS group

The socket function blocks are used to communicate from application to application using
Giddings & Lewis'simplementation of the BSD socket interface.

Function Description Page

IPACCEPT |Used by the TCP server to accept incoming connect requests. 2-103

IPCLOSE Used by an application to terminate a communication session for 2-104
the socket specified at HNDL.

IPCONN Used by a client application to connect to aremote server by spec-| 2-105
ifying the remote endpoint address for a socket.

IPHOSTID |Optional and not required to be used. 2-106

IPIP2NAM | Allows the application to obtain the host name when you supply 2-107
the IP address.

IPLISTEN Used to make a socket passive. 2-108

IPNAM2IP [Allows the application to obtain an | P address when you supply 2-109
the host name.

IPREAD Allowsyou to read input data sent between aclient functionanda| 2-110
remote server.

IPRECV Used to get a packet of data sent between a client function and a 2-111
remote server.

IPSEND Used to send data between client function and remote servers. 2-112

IPSOCK Used to obtain a data structure and assign it to a specific commu- | 2-113
nication resource.

IPWRITE Used to send data between client function and remote servers. 2-114

Chapter 1 Function/Function Block Overview 1-23

Motion Category

STEPPER group
The STEPPER group contains functions that work with the stepper module.

Function Description Page

STEPCNTL | Sendsa control word to the stepper motion control module 2-329
(SMCM).

STEPINIT Initializes an axis as a stepper axis. 2-333

STEPSTAT |Reads the data on the status of the stepper axis. 2-335

STEP_CMD | Sends aprofile command and its related data to the command 2-337
gueue of the SMCM to run a step profile.

STEP_POS |Readsthe position of a stepper axis. 2-344

Motion Category

The motion functions are available with PiCServoPro. They allow you to perform
motion control tasks.

In addition to the standard motion functions, there are two servo functions made by
you with the Servo setup program and the PiC Profile program. Refer to those
chapters for additional information.

IMPORTANT

For parametersin these functions such as feedrates, accelerations, de-
celerations, position, distance, etc., you must enter ladder units (LU).
Ladder units were defined by you for your application in the scaling
data section of setup.

When you have ladder units equal to feedback units (FU) in setup,
then you are entering feedback unitsin the ladder.

Often arange of valuesin FU islisted with function inputs. (See in-
dividual functions in Chapter 2.) If ladder units # to feedback units,
be sure to convert LU to FU to check that you are in range.

1-24 Chapter 1 Function/Function Block Overview

DATA group

Motion Category

The datafunctions allow you to read, write, or check the status of certain variables
and characteristics.

Function

Description

Page

CAPTINIT

Initializes what data is to be captured each servo interrupt and
whereit isto be stored.

2-46

CAPTSTAT

Provides the ability to start and stop the capturing of data from
the ladder.

2-50

COORDZ2RL

Calculates profile segments used for circular/linear interpol ation.

Used with the RATIO_RL function.

2-57

READ SV
(read servo)

Allows you to read the following variables in your ladder:

actual position 28
move type 29
command position 30
position error 31
filter error 32
command velocity 33
position change 34
feedback last 35
fast input position 36
regist/ref position change37
consecutive bad marks 38
rollover on position
slave offset incremental 39
master offset incremental40
save offset absolute 41
master offset absolute 42
fast input distance 43
reversal not allowed 44
fast input position (SW) 45
position (SW) w fastin 46
registration switch 47
fast queuing 48
synchronized slave start 50
backlash compensation 51
55

TTL feedback

reference switch position
filter time constant

filter error limit

velocity compensation flag
filter lag

position change (sev intrpts)
part reference offset
software upper limit
software lower limit
commanded position
(before slow speed filter is applied)
following error limit
in-position band

current segment number
slave distance into segment
master distance into segment

set iteration command

user iteration command

set PID command

user PID command

disable servo software
override endlimit check
SERCOS command position
Queued move type

2-235

READ_SVF
(read servo
fast)

Allows you to read any of the READ_SV variables faster. All
values that involve velocity or distance are in feedback units and
updates rather than ladder units and minutes.

2-258

Chapter 1 Function/Function Block Overview

1-25

Motion Category

SCA_CTRL

Writes control bitsto the MDT for a servo axis.

2-282

SCA_RCYC

SCA_RECV

Reads cyclic datafrom the AT for a servo axis.

Allows you to receive information from the service channel sec-
tion of SERCOS communication for a servo axis.

2-285

2-287

SCA_SEND

Allows you to send information to the service channel section of
SERCOS communication for a servo axis.

2-290

SCA_STAT

Monitors the ready-to-operate drive mode, diagnostic trouble-
shooting, or two real-time status bits returned from the drive.

2-291

SCA_WCYC

Writes cyclic datato the MDT for a servo axis.

2-292

STATUSSV
(status servo)

Allows you to check the status of the following characteristics
from the word output of the STATUSSV function:

move started

fast input occurred

fast input on

good mark detected

bad mark detected

DIST + TOLR exceeded
fast input rising

2-327

TUNEREAD

Provides the ability to read tuning parameters from the ladder.
(See TUNEWRIT for list of parameters.)

2-358

TUNEWRIT

Provides the ability to write the following tuning parameters
from the ladder.

Proportional Gain
Integral Gain
Derivative Gain
Offset

Slow Speed Filter
Feed Forward Percent

2-359

1-26

Chapter 1 Function/Function Block Overview

Motion Category

WRITE_SV |Allowsyou to write the following variables from your ladder: 2-378
(write servo) 1 actual position (Time axis only)
6 command velocity (Time axis only)

11 consecutive bad marks

12 rollover on position

13 daveoffset incremental

14 master offset incremental

15 dave offset absolute

16 master offset absolute

17 daveoffset filter

18 master offset filter

19 fastinput direction

21 reversa not alowed

23 position (SW) w fast in

24 registration switch

25 fast queuing

26 synchronized slave start

27 backlash compensation

28 TTL feedback

30 filter time constant

31 filter error limit

32 velocity compensation flag

34 position change over several interrupts

36 software upper limit

37 software lower limit

39 following error limit

40 in-position band

44 setiteration command

45 user iteration command

46 set PID command

47 user PID command

48 Disable servo software

50 Override endlimit check
WRIT_SVF |Allowsyou to write any of the WRITE_SV variables faster. All 2-378
(writeservo |valuesthat involve velocity or distance are in feedback units and
fast) updates rather than ladder units and minutes.

Chapter 1 Function/Function Block Overview

1-27

Motion Category

ERRORS group

There are three types of errors that affect an axis as described bel ow.

1. C-stop (controlled-stop) errors
When a C-stop occurs, the following happens:

« Theaxisremainsin servo lock and the axisis brought to a controlled stop at
the rate specified by the controlled stop ramp in setup.

« The active and next queues are cleared.

« The FAST_QUE modeis canceled when the C-stop is reset.
2. E-stop (Emergency-stop) errors

When an E-stop occurs, the following happens:

« Thesystem isout of servo lock.

« zero voltageis sent to the analog outputs.

« The active and next queues are cleared.

e The FAST_QUE modeis canceled when the E-stop is reset.

« Ifitisalossof feedback E-stop error, then the machine reference must be
redone.

In most respects, you are in a condition immediately following initialization with
the exception of the queue number. The queue number does not start over but con-
tinues from where it left off when the E-stop occurred.

Remember that the queue number is assigned by the software from 1 to 255.
When 255 is reached, it rolls over to 1.

3. Programming errors

These errors occur during master/slave moves or aFAST _QUE call. They may
prevent the move from being placed in the queue (or if the moveisin the queue,
abort the move) or they may prevent the OK on the function from being set.

Thereisafourth type of error connected to the entire system called atiming error.
It is monitored by the TME_ERR? function.

4. Timing error

All the servo calculations for one interrupt must be completed in the time frame
selected by you in setup before the next interrupt can perform its calculations. If
they are not, thistiming error occurs and the ERR output of the TME_ERR? func-
tionis set.

IMPORTANT

Always set an E-stop on all axes when atiming error occurs.

1-28 Chapter 1 Function/Function Block Overview

Motion Category

NOTE

The C-stop, E-stop, and Programming errors can all be viewed in the
tune section of the Servo setup program. See Appendix C in the Soft-
ware Manual for more information.

Function Description Page
C STOP Sets a controlled stop on the axis. 2-65
(controlled stop)

C_ERRORS Indicates what C-errors have occurred at the word output. 2-63
(controlled stop errors)

C RESET Resets a C-stop error. 2-65
(controlled stop reset)

C _STOP? Asksif thereisa C-stop in effect for designated axis. 2-66
(controlled stop?)

E STOP Sets an emergency stop on the axis. 2-81
(emergency stop)

E ERRORS Indicates what E_errors have occurred at the word output. 2-79
(emergency stop errors)

E RESET Resets an E-stop error. 2-81
(emergency stop reset)

E_STOP? Asksif thereis an E-stop in effect for designated axis. 2-81
(emergency stop?)

P_ERRORS Indicates what programming errors have occurred at the 2-164
(programming errors) | word output.

P_RESET Resets a programming error. 2-167
(programming error

reset)

SCA_ERST Resetsinternal E-errorsfor a SERCOS system. 2-284
TME_ERR? Asksif the timerequired to carry out the servo calculations | 2-355
(timing error) exceeds the allotted interrupt time.

Chapter 1 Function/Function Block Overview 1-29

Motion Category

INIT group

The functionsin the INIT group alow you to initialize the servos and be ready for
motion commands from the ladder.

Function Description Page

User-defined | Made by you with the Servo setup program to hold all setup data| 2-370
setup data for the application.
(non-standard

function)

CLOSLOOP | Closesthe position loop for the designated axis. 2-52
(close loop)

CLSLOOP? |Asksif the position loop for the designated axis is closed. 2-53
(closeloop?)

OPENLOOP | Opensthe position loop for the designated axis. 2-151
(open loop)

SCA_CLOS |Closesthe position loop in a SERCOS system. 2-281

STRTSERV | Used with the user-defined setup function to initialize setup data. | 2-347
(start servo)

MOVE group

The functions in the MOV E group cause motion to begin or end. The moves are
not master/slave moves.

The other functions that can cause motion are found in the RATIOMOV and REF
groups. They are the master/slave moves and the fast input (FAST_REF) and lad-
der (LAD_REF) reference functions used to perform a machine reference.

Function Description Page
POSITION Moves an axis at a specified feedrate to an endpoint. 2-163
(position)

DISTANCE Moves an axis a specified distance at a specified feedrate. 2-73
(distance)

VEL_STRT Moves an axis at a specified feedrate and direction. 2-374
(velocity start)

VEL_END Ends avelocity start move. 2-374
(velocity end)

1-30 Chapter 1 Function/Function Block Overview

Motion Category

MOVE_SUP group

The functionsin the MOVE_SUP group allow you to make adjustments to the

MOVEeS.
Function Description Page
ACC DEC Allows you to change the acc/dec rates entered in setup from 2-4
(acceleration/ the ladder.
deceleration)
CAM_OUT Allows you to turn on discrete 1/O points for a specified dis- 2-43
(cam output) tance during the rollover on position cycle.
HOLD Stops the iteration of the current move. 2-99
(feedhold)
HOLD_END Resumes the move that was halted with the HOLD function. 2-99
(feedhold end)
IN_POS? Asks the question “Is the active move in position?’ 2-102
(in position?)
MEASURE Enables the fast input response when not using registration or | 2-130
(measure) referencing.
NEWRATIO Allows you to change the ratio of aRATIO_GR or RATIO- 2-145
SYN move or the default ratio of the RATIOSLP move.
NEW_RATE Allows you to change the feedrate of the movesin the queue. | 2-147
(new feedrate)
RATIOSCL Allows you to scale the slave and/or master axisin RATIO- 2-187
CAM, RATIOSLP, and the master axisin RATIO_RL moves.
REGIST Sets the axis position to a defined value when a fast input 2-263
(registration) OCCUrs.
R_PERCEN Allows you to change the feedrate by a percentage for all 2-278
(feedrate per- moves connected to an axis.
cent)
SCURVE Allows amaster time axis to follow an s-curve velocity profile | 2-312
minimizing the amount of jerk that can occur in a trapezoidal
velocity profile.
Chapter 1 Function/Function Block Overview 1-31

Motion Category

QUE group

There are two queues used by the servo software to manage moves for an axis. One
is the active queue which holds the move that is currently active. The other isthe
next queue which isthe move that is ready and waiting to proceed when the active
gueue move is completed. The functionsin this group affect the movesin the
queues.

The servo software assigns a gueue number to any motion function which has a
QUE output. The numbers are assigned sequentially from 1 to 255. When 255 is
reached, the number rolls over to 1.

Function Description Page

ABRTMOVE | Aborts the move identified by the number entered in its QUE 2-2
(abort move) |inpuit.

ABRTALL Aborts the moves in both queues. 2-2
(abort all)

FAST_QUE |Manages the queues based on the occurrence of afast input. 2-82
(fast input

queue)

Q_NUMBER | Givesthe number of the move that isin the active queue. 2-168
(queue num-

ber)

Q_AVAIL? |Asksthe question “Isaqueue available for the specified axis?’ 2-168
(queue avail-

able?)

1-32 Chapter 1 Function/Function Block Overview

Motion Category

RATIOMOV group

The functions in this group cause motion to begin or end. They involve master/
dlave ratio moves. The RATIOPRO function requires another function (or func-
tions) made by you with the PiC Profile program that defines the ratio profile you
want to use.

NOTE: The RATIOPRO function can be used in PiCPro for Windows but it can
only be edited in PiICPro for DOS. The profile editor is not included in PiCPro for
Windows.

The other functions that can cause motion are found in the MOV E and REF group.

Function Description Page
GR_END Ends aratio gear (or ratio syn) move. 2-98
(gear end)

RATIOCAM | A master/slave move where each segment of the profilehasacon-| 2-169
(ratiocam |stant ratio.

profile)

RATIOPRO | A master/slave move where the slave axis will follow the master 2-182
(ratio profile) |axis at avaried ratio and a positional relationship is established.

RATIOSLP |A master/slave move where the ratio in each segment of the pro- 2-191
(ratio slope) |file can vary linearly.

RATIOSYN | A master/slave move where the slave axis will follow the master 2-203
(ratio syn- axis at aconstant ratio and a positional relationship between the
chronization) | master and slave axes is established.

RATIO_GR | A master/slave move where the slave axis will follow the master 2-213
(ratio gear) |axisat aconstant ratio.

RATIO_RL |A master/slave move where the slave axis will follow the master 2-216
(ratioreal) |axisinaprofilethat can be atrigonometric function or a polyno-

mial using floating point variables.

REP_END |Ends profiles set up to repeat in the RATIOPRO function. 2-274
(repeat end)

SYN_END |Endsaratio syn (or ratio gear) move by specifying a drop point 2-350
(synchroni- |for the dlave axis.

zation end)

User-defined | Defines the ratio profile for the RATIOPRO move. 2-370
profiles

(non-stan-

dard func-

tion)

Chapter 1 Function/Function Block Overview 1-33

Motion Category

REF group

The functionsin the reference group allow you to do machine or part referencing.
A machine reference provides position information to the PiC900 with respect to
the machine. It isafixed dimensional reference used to establish arepeatable point
of reference between servo initializations. The PIC900 bases its position calcula-
tions on this position information. Motion may occur when performing a machine
reference.

A part referenceis afloating dimensional reference. It establishes a position based
on the location of a part, not the machine. No motion occurs when performing a
part reference. The axis has been moved into position before the reference occurs.

Function Description Page
FAST_REF Performs a machine reference based on a fast input. 2-84

(fast input refer-

ence)

LAD_REF Performs a machine reference from the ladder. 2-118

(ladder refer-

ence)

PART _CLR Cancels the part reference dimension supplied by the 2-153
(part reference | PART_REF function.

clear)

PART_REF Performs a part reference on the designated axis. 2-153

(part reference)

REF_DNE? Asks the question “Is the machine reference cycle complete?’ 2-261
(reference

done?)

REF_END Ends the ladder machine reference. 2-262

(ladder refer-

ence end)

SCA_ACKR Acknowledges the reference cycle for a servo SERCOS axis. 2-280

SCA_REF Runs areference cycle on a servo SERCOS axis. 2-288

1-34 Chapter 1 Function/Function Block Overview

Motion Category

SERC_SLV group

The functions in the SERCOS slave group allow you to work with the SERCOS
slave function/function blocks.

Function Description Page
SCS ACKR Acknowledges the SERCOS reference cycle. 2-304
(SERCOS dave
acknowledge
reference)
SCS _CTRL Controls the bitsin the MDT control word. 2-300
(SERCOS dave
control)
SCS RECV Receives information from the service channel section of the 2-302
(SERCOS dave | SERCOS communication.
receive)
SCS REF Runs areference cycle on the SERCOS save axis. 2-304
(SERCOS dlave
reference)
SCS SEND Sends information to the service channel section of the SER- 2-306
(SERCOS slave | COS communication.
send)
SCS STAT Monitors the ready-to-operate drive mode, diagnostic trouble- 2-308
(SERCOS dlave | shooting, or two real-time data bits returned from the drive.
status)

Chapter 1 Function/Function Block Overview 1-35

Motion Category

SERC_SYS group

The functions in the SERCOS system group allow you to work with SERCOS
rings and to start the SERCOS system.

Function Description Page

SCR_CONT Allows you to continue through SERCOS phases if you have 2-293
(SERCOSring |halted after phase 2 to send additional IDNs.

continue)

SCR_ERR Identifiesring errorsthat can occur during thetransfer of IDNs. 2-294
(SERCOS ring

error)

SCR_PHAS | dentifies the current SERCOS phase. 2-298
(SERCOSring

phase)

SC_INIT Copiestheinitiaization datainto al interface boards. 2-279
(SERCOS start)

1-36 Chapter 1 Function/Function Block Overview

String Category

String Category

The functions in this group operate on variables which have a STRING data type.
Most of these functions return a STRING as an output. The variable assigned to
receive this output STRING must be specified as an input variable - on the | eft
side. Assigning the variable on the right side is optional, but if used, it must be the
same variable as the input variable. This characteristic is unique to al functions

which have a STRING as an output, including functions not in this group.

The output at OK will not energize and the output STRING will be null (have
length zero) if an error occurs. A list of errorsisin Appendix B of the software

manual .
Function Description Page
CONCAT Concatenates 2 STRINGs. 2-54
DELETE Deletes characters from a STRING. 2-68
FIND Searches for a STRING within another STRING and if found, 2-95
outputsits location.
INSERT Inserts a STRING into another STRING. 2-100
LEFT Places a specified number of characters from the left side of a 2-121
STRING into avariable.
LEN Returns the length of a STRING. 2-121
LWR_CASE |Convertsal the charactersin astring to lower case characters. 2-129
MID Places a specified number of characters from the middle of a 2-131
STRING into avariable.
REPLACE Places a STRING within another STRING, replacing one or 2-273
more characters.
RIGHT Places a specified number of charactersfrom theright sideof a | 2-275
STRING into avariable.
UPR_CASE |Convertsall the charactersin astring to upper case characters. 2-368
Chapter 1 Function/Function Block Overview 1-37

Timers Category

Timers Category

The function blocks in the Timer library are used to energize and de-energize out-
puts (coils and control relays) after a duration of time. Thetime, asit elapses, can
be viewed on the monitor with real time animation. The elapsed time value can be

used (elsewhere) in the module but its value cannot be reset.

Function

Block Description Page
TOF De-energizes an output after a duration of time. 2-356
TON Energizes an output after a duration of time. 2-357
TP Energizes an output for aduration of time. 2-358

Xclock Category

The two functionsin the Xclock library are used for clock or calendar functions.

Function Description Page

CLOCK Outputs from the PiC900 the current time and date, or setsthe 2-51
PiC900s time and date.

GETDAY Outputs the number of the day of the week or day of the year. 2-97

SERVOCLK |Allows atask to run on the servo clock when no servos are run- 2-319

ning.

1-38

Chapter 1 Function/Function Block Overview

CHAPTER 2

Function/Block Descriptions

Chapter 2 describes all the functions available with PiCPro/PiCServoPro in alpha-
betical order. Each heading contains:
« The name of the function as it appearsin PiCPro
« Thetitle of the function (underneath the name)
« The name of the function menu group (in right-hand corner) to which each
function belongs.

Below the heading is an illustration of each function. To theright are listed the
inputs and outputs for the function with datatypesin parentheses. The description
of each function is beneath this information.

PROGRAMMING NOTE

Functionswith an EN input are usually enabled either by atransitional
(one-shot) contact if the function should execute onetime or by logic
that will hold the function on if it should execute every scan.
Typically, one-shot any function in the Motion library that affects or
causes motion.

Also, one-shot any function that has arequest (REQ) instead of an en-
able (EN) input. REQ inputsare found on function blocks. A function
block may not complete its operation in one scan.

The EN or REQ inputs that are typically transitioned are labeled Typi-
cally one-shot and those that should always be transitioned are |abeled
One-shot in the descriptions that follow.

NOTE

Y ou must have amath coprocessor installed on your PiC900//90 CPU
module to perform any functions involving any 64 bit registers, loga-
rithmic, exponential, trigonometric, and floating point mathematical
operations.

NOTE ON ALPHABETICAL ORDER

When an underscore character (_) occurs within the name of a func-
tion, that function is placed after those without an underscore. For ex-
ample, RATIO_GR will be found after RATIOSY N.

Chapter 1 Function/Function Block Description 2-1

ABRTALL

ABRTALL
Abort All Motion/QUE
ABRTALL Inputs:. EN (BOOL) - enables execution (Typically one-shot)
1N 0Ky AXIS (USINT) - identifies axis (servo)
1 Outputs: OK (BOOL) - execution completed without error

TheABRTALL function abortsthe movesin both queuesfor the specified axis.

It isalso used to ensure that no move can begin unexpectedly when a program-
ming error occurs with the FAST_QUE function. See also the FAST_QUE

entry.
ABRTMOVE
Abort Move Motion/QUE
ABRTMOVE Inputs:. EN (BOOL) - enables execution (Typically one-shot)
1N 0Ky AXIS (USINT) - identifies axis (servo)
{AXIS

QUE (USINT) - number of move to abort from queue
Outputs: OK (BOOL) - execution completed without error

1QUE

The ABRTMOVE function aborts the move identified by the number at QUE.

If the move to be aborted isin the active queue, it will be removed freeing that
gueue for another move. If there isamovein the next queue, it will begin exe-
cuting immediately. If thereisno move in the next queue, the axiswill decel to
astop at the rate specified in servo setup.

If the move to be aborted isin the next queue, it will be removed freeing that
queue for another move.

If the moveis not in either queue, it cannot be aborted.

IMPORTANT

When aborting a move, it isimportant to note that the aborted move
is abandoned at the point it is at and the next move is entered imme-
diately. Thisis different than ending a move such as velocity start
(VEL_STRT) withavelocity end (VEL_END) asillustrated in Figure
2-1.

2-2 Chapter 2 Function/Function Block Description

ABS

Figure 2-1. Comparing velocity end and abort move functions

A = A velocity start move in the active queue.
B = A position move in the next queue.

Example 1 - Sequencing moves with a
velocity end function

Time
\/elocity end

function
active

Velocity
> |
j

In example 1, a velocity start move
(A) is in the active queue. When the
velocity end function is called in the
ladder, move A will decel at the
specified rate. The position move
(B) waiting in the next queue

Velocity

Example 2 - Sequencing moves with
an abort move function

.\

Time
\Abort move
function

active

In example 2, a velocity start move
(A) is again in the active queue.
When the abort move function is
called in the ladder, move A will be
aborted. The position move (B)
waiting in the next queue begins

begins. immediately.
N N
AA580-2190
ABS
Absolute Value Arith/ARITH
ABS Inputs. EN (BOOL) - enables execution
BN Ok IN (NUMERIC) - number to find absolute value of
{IN - oUTH

Outputs. OK (BOOL) - execution completed without error

OUT (sametype as IN) - absolute value of number

The ABS function places the absolute value (non-negative value) of the variable or
constant at IN into the variable at OUT. For example,

If IN =-5,then OUT =5
If IN = 10, then OUT = 10

The absolute value |x| of anumber, X, is:

X| = x ifx =0
X = -x ifx <0

Chapter 2 Function/Function Block Description 2-3

ACC_DEC

ACC_DEC
Acceleration/Deceleration Motion/MOVE_SUP
ACC_DEC Inputs:. EN (BOOL) - enables execution (Typically one-shot)
1N 0Ky AXIS (USINT) - identifies axis (servo)
{AXIS

JACCL

{DECL
N DECL (UDINT) - deceleration rate for axis (entered in

ACCL (UDINT) - acceleration rate for axis (entered in
LU/MIN/SEC)

LU/MIN/SEC)
Outputs: OK (BOOL) - execution complete

The ACC_DEC function allows the acc/dec rates for the specified axis to be
changed. When used in your ladder program, the acc/dec values in this function
override those entered in setup. If the STRTSERV function is called again reini-
tializing the servo data, then the system will default to the setup values.

This function does not affect the move in progress. It only applies to moves that
have not been queued.

IMPORTANT

If you are only changing one of the rates (accel eration or deceleration)
and want to maintain the setup rate for the other, you must enter the
setup value for the rate you do not want to change at the ACCL or
DECL input of the function.

There are some limits on setting the acc/dec rates so that invalid datais not entered.

The acc/dec rateis limited to 32,000 FU/iteration/iteration. If alarger num-
ber is entered, the default is 32,000 FU/iteration/iteration.

The acc/dec rate cannot be set to 0. If a0 isentered, the default isto 1 FU/
iteration/iteration.
The acc rate cannot be more than 10 times the dec rate. If thisis attempted,

the dec rate isincreased to Ild the acc rate.

The resolution of the internal conversion of LU/MIN/SEC is 1 FU/ITER/
ITER. Thisresolution is adequate for most applications. However, if your
application requires long accel or decel rates, you may notice some inaccu-
racies in the rates due to this resolution.

2-4

Chapter 2 Function/Function Block Description

ADD

Arc Cosine Arith/TRIG
ACOS Inputs:. EN (BOOL) - enables execution
1N 0Ky COS (REAL/LREAL) - cosine value
41COS ANGL - . .
Outputs: OK (BOOL) - execution completed without error

ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The datatypes entered at COS and ANGL must match,
i.e. if COSisREAL, then ANGL must be REAL.

The ACOS function calcul ates the arc cosine of the cosine entered at COS. The
result isthe angle at ANGL.

ADD

Addition ArithZ/ARITH

Inputs. EN (BOOL) - enables execution

EN 0K IN1 (NUMERIC or TIME duration) - addend

INT S IN2 (same type as IN1) - addend

- Outputs. OK (BOOL) - execution completed without error
SUM (same type as IN1) - sum of addends

The ADD function adds the value of the variable or constant at IN2 to the value of
the variable or constant at IN1, and places the result in the variable at SUM. This
is an extensible function that can add up to 17 numbers.

X IN1
+Y +IN2
z SUM

Chapter 2 Function/Function Block Description 2-5

AND

AND
And

Binary

Inputs: EN (BOOL) - enables execution
IN1 (BITWISE) - number to be ANDed
IN2 (same type as IN1) - number to be ANDed
Outputs: OK (BOOL) - execution completed without error
OUT (sametype asIN1) - ANDed number

The AND function ands the variable or constant at IN1 with the variable or con-
stant at IN2, and places the resultsin the variable at OUT. Thisis an extensible
function which can AND up to 17 inputs.

The AND function placesaonein bit x of the output variable when bit x of all
input variables (first variable and second variable and, etc.) equals 1. In all other
cases (bit x of one or more operands equals 0), a0 is placed in bit x of the output
variable.

Example of AND function (on three inputs):

11000011 valueat IN1
11111111 valueat IN2
10001111 valueat IN3
10000011 valueat OUT

2-6

Chapter 2 Function/Function Block Description

ANLGINIT

ANLGINIT

Analog Initialization lo/ANLGOUT

mieiniT] Inputs: EN (BOOL) - enables execution (One-shot)

1N 0K RACK (USINT) - identifies rack where the module resides

lor L SLOT (USINT) - identifies ot where the module resides
Outputs: OK (BOOL) - execution completed without error

ERR (USINT) - # 0if and only if error occurs

The ANLGINIT functionisused toinitialize either a+10VDC output module, a4-
20 mA output module, ablock 4-20 mA output module, or ablock +10VDC out-
put module.

The input value at RACK specifies the rack in which the module resides. For a
standard anal og output module, the master or CPU rack is#0. Expansion racks are
numbered consecutively from one where# 1 isthe rack connected to the master, #2
isthe rack connected to # 1, etc.

For ablock analog output module, RACK must be set to 100.
For the MMC, RACK must be set to 0.

For the standard anal og output module, the input value at SLOT (3 up to 13) speci-
fiesin which sot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 isreserved for the CSM module. Slot 2 is reserved for either the
CPU or 1/O driver module.

For block analog output modules, the input value at SLOT (1 - 77) isset to 1 for
the modul e connected to the PiC CPU, 2 for the modul e connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

If an error occurs the output at OK is not energized and the output at ERR equals
1-4:

ERR Description
1 Theinput at RACK isout of range.
2 Theinput at SLOT isout of range.
3 Not Used

4 Themodule at the location specified is not an analog output module.

Chapter 2 Function/Function Block Description 2-7

ANLGINIT

Output £10 VDC Module

If the channels on the output +10 VDC module will be used for open loop control
only, then it is necessary to initialize the module with the ANLGINIT function. It
IS not necessary to enter a user-defined setup function containing all the setup data
needed for closed loop control or input only axes.

If some of the channels are used for closed loop control or input only and some for
output only, then the servo initialization procedure is followed and the ANLGINIT
function is not used.

Output 4-20 mA Module

The ANLGINIT function must aways be called to initialize the 4-20mA module
and the block 4-20 mA output module.

2-8

Chapter 2 Function/Function Block Description

ANLG_OUT

ANLG_OUT

Analog Output lo/ANLGOUT

ANLG._OUT Inputs:. EN (BOOL) - enables execution
1N 0K RACK (USINT) - identifies rack where the module
1RACK OPEN|— resides
loon SLOT (USINT) - identifies siot where the module
LvaL resides
CHAN (USINT) - identifies channel

VALU (INT) - output value (entered in output units as
defined below)

Outputs. OK (BOOL) - execution completed without error

OPEN (BOOL) - set if the current loop is opened
(applies to 4-20mA module only)

The ANLG_OUT function identifies the rack and dot locations of the+10VDC
output module and the channel (1 - 8), the 4-20 mA output module and the channel
(1 - 6), the block 4-20 mA output module and the channel (1 - 4), or the£10VDC
output block module to be used.

The input value at RACK specifies the rack in which the module resides. For a
standard anal og output module, the master or CPU rack is#0. Expansion racks are
numbered consecutively from one where# 1 isthe rack connected to the master, #2
isthe rack connected to # 1, etc.

For ablock analog output module, RACK must be set to 100.
For the MMC, RACK must be set to 0.

For the standard anal og output module, the input value at SLOT (3 up to 13) speci-
fiesin which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 isreserved for the CSM module. Slot 2 is reserved for either the
CPU or 1/O driver module.

For block analog output modules, the input value at SLOT (1 - 77) isset to 1 for
the modul e connected to the PiC CPU, 2 for the modul e connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

Theinput value at CHAN (1 - 8 for the output +10 VDC module, 1 - 6 for the 4-
20 mA module, and 1 - 4 for the block 4-20 mA module and for the MMC) speci-
fies the number of the channel to read.

Chapter 2 Function/Function Block Description 2-9

ANLG_OUT

Output £10V DC Module

The analog output value at VALU isentered in 10V DC output units according to
the chart below:

Enter +10V DC output units to get Output volts

+32767 +11V
+29790 +10V
+14894 +5V

0 ov
-14894 -5V
-29790 -10V
-32767 -11v

There are 2979 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between £11 volts.

The OPEN output is never set with an analog output module.

MMC and Block Output £10 VDC Module
The analog output value at VALU is entered in £10 VDC output units according to

the chart below:

Enter +10 VDC output units to get Output volts
+32767 +10V
+16384 +5V

0 ov
-16384 -5V
-32767 -10vV

There are 3276.7 output units per volt. Use this number to calcul ate the number of
analog output units you need for any voltage not listed above between £10 volts.

The OPEN output is never set with an analog output module.

Output 4-20 mA Module
The analog output value at VALU is entered in 4-20mA output units according to

the chart below:

Enter 4-20mA output units to get Output mA
+32767 +20mA
+22527 +15mA
+12288 +10mA

0to-32768 4mA

There are 2048 output units per mA. Use this number to calculate the number of
output units you need for any current not listed above between 4 and 20 mA.

2-10 Chapter 2 Function/Function Block Description

ANLG_OUT

The OPEN output is set with a4-20mA module whenever the current loop is

opened. Thiswill occur when the load impedance exceeds the resistance cal cu-
lated as follows:

For the Block 4-20 mA Output Module:

T 20mA = R oap

For the 4-20 mA Module:

T 20mA - LoAD

Chapter 2 Function/Function Block Description 2-11

ARTDCHIT

ARTDCHIT
Analog RTD Channel Initialization lo/RTDTEMP
aprociit] Inputs: EN (BOOL) - enables execution (One-shot)
1N 0K RACK (USINT) - rack where module resides
gég: ailn SLOT (USINT) - slot where module resides
{CHAN CHAN (USINT) - channel toinitialize
RNGE RNGE (USINT) - temperature range

Outputs:OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - # 0if and only if error occurs

The ARTDCHIT functioninitializes achannel on the analog input RTD (resistance
temperature detector) module. It establishes the sensitivity of the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is#0. Expansion racks are numbered consecutively from one
where # 1 isthe rack connected to the master, # 2 isthe rack connected to # 1, etc.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered | eft to right when facing the PiC. Slot 1 isreserved for the
CSM module. Slot 2 isreserved for either the CPU or I/O driver module.

Theinput value at CHAN (1 - 6) specifies the number of the channel to read.
Theinput at RNGE (1 - 3) specifies the temperature range at this channel.

Value to 50Q RTD 100Q RTD
enter at
RNGE
1 N/A -200°C to 850°C
(-328°F to 1562°F)
2 -200°C to 850°C -200°C to 266°C
(-328°F to 1562°F) |(-328°F to 510.85°F)
3 -200°C to 266°C 200°C to O°C
(-328°F to 510.8°F) |[(-328°F to 32°F)

2-12

Chapter 2 Function/Function Block Description

ARTDCHIT

The output at OK is not energized and the value at ERR equals 1- 6, or 9if an error
ocCurs. A

ERR Description
1 Theinput at RACK isout of range.
A rack hardware fault occurred.
Theinput at SLOT is out of range.
The module at the location specified is not an RTD module.
Theinput at CHAN is out of range.
There is amodule hardware fault.
Theinput at RNGE isinvalid.

NOTE: This function worksin conjunction with the ARTDMDIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once (the input at EN should be aone-
shot) after the ARTDMDIT function is executed, and before the ARTDCHRD
function is executed.

© o o M~ W N

Chapter 2 Function/Function Block Description 2-13

ARTDCHRD

ARTDCHRD
Analog RTD Channel Read lo/RTDTEMP
W) Inputs; EN (BOOL) - enables execution
1N 0K RACK (USINT) - rack where module resides
gég: vé;g: SLOT (USINT) - slot where module resides
{CHAN CHAN (USINT) - channel to read
m FAHR (BOOL) - Fahrenheit or Celsius

TYPE (USINT) - 50 Q or 100 Q RTD
Outputs:OK (BOOL) -energized if and only if ERR=0

VALU (INT) - temperature

ERR (USINT) - # 0 if and only if error occurs

The ARTDCHRD function block must be declared in the software declaration
table. You assign aname (NAME) to it at that time. This function block outputs
the temperature sensed at a channel of the RTD module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is#0. Expansion racks are numbered consecutively from one
where # 1 isthe rack connected to the master, # 2 isthe rack connected to # 1, etc.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 isreserved for the
CSM module. Slot 2 isreserved for either the CPU or /O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.

Theinput at FAHR specifies degrees Fahrenheit if it isenabled. If itisnot enabled
then the output will be in degrees Celsius. (F =1.8C + 32)

Theinput at TYPE (0 - 1) specifiesthe type of RTD you are using.
0 = 50QRTD
1 = 100QRTD
The output at VALU holds the temperature in the degrees * 10 specified.

2-14 Chapter 2 Function/Function Block Description

ARTDCHRD

The output at OK is not energized, the value at VALU is unpredictable, and the

output at ERR equals 1 - 8, 11, or 12 if an error occurs. A
NOTE: Values outside the temperature limits (defined by ARTDCHIT) may be

read but should not be used for control purposes.

ERR Description
1 Theinput at RACK isout of range.
A rack hardware fault occurred.

Theinput at SLOT is out of range.

2
3
4 Themodule at the location specified is not an RTD module.
5 Theinput at CHAN isout of range.

6 Thereisamodule hardware fault.

;

The channel isbeing initialized. Try again later. NOTE: Thiserror
can occur if you continually initialize a channel.

8 A linearization error occurred.
11 A temperature underflow occurred.

12 A temperature overflow occurred.
NOTE: Thisfunction worksin conjunction withthe ARTDCHIT and ARTDMDIT
functions,

The ARTDCHIT function must be executed once after the ARTDMDIT functionis
executed, and before the ARTDCHRD function block is executed.

Chapter 2 Function/Function Block Description 2-15

ARTDMDIT

ARTDMDIT
Analog RTD Module Initialization lo/RTDTEMP

armowprT] Inputs: EN (BOOL) - enables execution (One-shot)
A RACK (USINT) - rack where module resides
gég: s SLOT (USINT) - slot where module resides
{uSEC MSEC (UINT) - frequency of read

— Outputs: OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - 2 0if and only if an error occurs

The ARTDMDIT function initializesan RTD module. It establishes the frequency
at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is#0. Expansion racks are numbered consecutively from one
where # 1 isthe rack connected to the master, # 2 isthe rack connected to # 1, etc.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered | eft to right when facing the PiC. Slot 1 isreserved for the
CSM module. Slot 2 isreserved for either the CPU or I/O driver module.

The input at uSEC (2000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 106/uSEC.)

If an error occursthe output at OK is not energized and the value at ERR equals 1 -
4, or 10.

ERR Description
1 Theinput at RACK isout of range.
2 A rack hardware fault occurred.
3 Theinput a SLOT isout of range.
4 Themodule at the location specified is not an RTD module.
10 Theinput at uSEC is out of range.

NOTE: Thisfunction worksin conjunction with the ARTDCHIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once after the ARTDMDIT functionis
executed, and before the ARTDCHRD function block is executed.

2-16

Chapter 2 Function/Function Block Description

ASSIGN

Arc Sine Arith/TRIG

ASIN Inputs:. EN (BOOL) - enables execution
1BV OKE SIN (REAL/LREAL) - sinevalue
41SIN ANGLF . .
Outputs. OK (BOOL) - execution completed without error

ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: Thedatatypesentered at SIN and ANGL must match, i.e.
if SIN isREAL, then ANGL must be REAL.

The ASIN function calculates the arc sine of the sine entered at SIN. Theresultis
the angle at ANGL.

ASSIGN
Assignment lo/COMM

Inputs: EN (BOOL) - enables execution (Typically one-shot)

i | COMN (STRUCT) - common to the ASSIGN function
blocks. Used by the software to count the number of

A assignments made by the function block. The structure
JCOMN FAIL - has one member with data type INT (the default).
ANAMZ ERRF

RACK NAMZ (STRING) - name of device

lsor RACK (USINT) - master rack where serial communi-
cation module resides (0)

SLOT (USINT) - slot where module resides (3-13)
CHAN (USINT) - channel on the module (1-4)
Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - energized if ERR= 1-7; deenergized if
ERR=0

ERR (INT) - O if no errors occur; 1-7 if an error occurs

4 CHAN

The ASSIGN function block is designed to work with the two or four channel
serial communications module. It assigns the name at the NAMZ input to a serial
communication device at the location designated at RACK, SLOT, and CHAN.

Chapter 2 Function/Function Block Description 2-17

ASSIGN

The name you place in the string at NAMZ can have up to eight charactersand is
entered in the following format. For the example, the device is called Channel 1.

CHANNEL1:$00

This nameisthen used at the NAMZ input of the OPEN function block to assign a
handle to the device. The remaining I/O communication function blocks use this
handle to identify the device.

The important note below provides alist of names that cannot be used at NAMZ
input.

IMPORTANT

The following device names are reserved and may not be used in the
ASSIGN function block at the NAMZ input.

USER RAMDISK ERR AUXCOM CO PRN
PICPRO FMSDISK AUX MONCON Cl

Theinput value at RACK (0) specifies the rack in which the module resides. The
master or CPU rack is#0. The serial communications module is alwayslocated in
the master rack.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 isreserved for either the CPU or I/O driver module.

Theinput value at CHAN (1 - 4) specifies the number of the channel on the mod-
uleto read.

After the ASSIGN function block is called, each channel on the serial communica-
tions module functions like the USER port on the CPU module.

The COMN input isastructure declared in the software declarations table with one
member (INT datatype). Thisis used by the software to count the occurrences of
the ASSIGN function block. If you exceed the number allowed by the serial com-
munications module, an error will occur.

The errors that can occur at the ERR output are listed below.

ERR Description
0 Noeror
1 Attempted to assign more than four devices

2 Name length either equals zero characters or has more than
10 characters including the two characters":" and "$00"

3 Devicecreation error, operating system could not create this
device

2-18

Chapter 2 Function/Function Block Description

ATAN

4 Vector not initialized:; A
the system EPROM does not support the ASSIGN function.

5 Hardware already assigned

6 Not enough channels;
attempted to assign channel 3 or 4 to atwo channel module.

7 Nomodule at assigned location

ATAN

Arc Tangent Arith/TRIG

Inputs: EN (BOOL) - enables execution
ATAN TAN (REAL/LREAL) - tangent value
1 % Outputs: OK (BOOL) - execution completed without error

| AL ANGL (REAL/LREAL) - angle calculated (in radians)

AAL004-3391 NOTE: Thedatatypesentered at TAN and ANGL must
match, i.e. if TAN isREAL, then ANGL must be
REAL.

The ATAN function calculates the arc tangent of the tangent entered at TAN. The
result isthe angle at ANGL. Therange of ANGL is:

NP
IN
>
Z
®
[
IN

NI

Chapter 2 Function/Function Block Description 2-19

ATMPCHIT

ATMPCHIT

Analog Temperature Channel Initialization

lo/JKTHERM

atvpcHIT| Inputs:
JeN okl
JRACK ERRI—
JsLoT
JcHAN

4RNGE

Outputs:

EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

CHAN (USINT) - channel on the module

RNGE (USINT) - range of temperatures or channel sensi-

tivity

OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - # 0if and only if an error occurs

The ATMPCHIT function initializes a channel on a JK Thermocouple module. 1t
establishes the sensitivity for the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is#0. Expansion racks are numbered consecutively from one
where # 1 isthe rack connected to the master, # 2 isthe rack connected to # 1, etc.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered | eft to right when facing the PiC. Slot 1 isreserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

Theinput value at CHAN (1 -12) specifies the number of the channel to read.
Theinput at RNGE (1 - 4) specifies the temperature or voltage range that can be

read, where:

Value to
enter

1

4

Range of values for J Range of values for K type
thermocouple*

type thermocouple*

-10°C to
14°F to
-35°C to
-31°F to
-150° C to
-238° F to
+ 100 mV

280° C
536° F
620° C
1148° F
1200° C
2192° F

-35°C to
-31°F to
-80°C to
-112° F to
-200° C to
-328° F to

415° C
779° F
820° C
1508° F
1300° C
2372° F

*The temperature ranges apply over the temperature rating of the module. Tem-
perature val ues outside the specified range should not be used for control purposes.

2-20

Chapter 2 Function/Function Block Description

OCCurs.

ATMPCHIT

The output at OK is not energized and the value at ERR equals 1- 6, or 9if an error

ERR Description

1

2

3

Theinput at RACK isout of range.

A rack hardware fault occurred.

Theinput at SLOT is out of range.

The module at the location specified is not an anal og temperature modul e.
Theinput at CHAN is out of range.

There isamodule hardware faullt.

The input at RNGE is out of range.

NOTE: Thisfunction worksin conjunction with the ATMPMDIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once (the input at EN should be aone-
shot) after the ATMPMDIT function is executed, and before the ATMPCHRD
function block is executed.

Chapter 2 Function/Function Block Description 2-21

ATMPCHRD

ATMPCHRD
Analog Temperature Channel Read lo/JKTHERM
AR Inputs; EN (BOOL) - enables execution
1N 0K RACK (USINT) - rack where module resides
gég: vé;g: SLOT (USINT) - slot where module resides
{CHAN CHAN (USINT) - channel on the module
m FAHR (BOOL) - Fahrenheit or Celsius

TYPE (USINT) - type of thermocouple or mV
Outputs: OK (BOOL) - energized if and only if ERR =0

VALU (INT) - temperature or digital value of
mV

ERR (USINT) - #0if and only if an error
occurs

The ATMPCHRD function block must be declared in the software declaration
table. You assign aname (NAME) to it at that time. Thisfunction block outputs the
temperature or the voltage range sensed at a channel of the J-K Thermocouple
module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is#0. Expansion racks are numbered consecutively from one
where # 1 isthe rack connected to the master, # 2 isthe rack connected to # 1, etc.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 isreserved for the
CSM module. Slot 2 isreserved for either the CPU or /O driver module.

The input value at CHAN (1 - 12) specifies the channel to be sampled or read.

Theinput at FAHR specifies degrees Fahrenheit if it isenabled. If itisnot enabled
then the output will be in degrees Celsius. (F =1.8C + 32)

Theinput at TY PE (0 - 2) specifiesthe type of thermocouple or specifiesmillivolts.

0 = Jtype
1 = Ktype
2 = mVv

If Jor K type has been selected, then the VALU output holds the temperature (in
tenth of degrees) in either F or C.

2-22

Chapter 2 Function/Function Block Description

If mV i

ATMPCHRD

s selected, the VAL U output holds the interpolated digital value (-2048 to

2047) of the analog signal (-100 to +100mV).

Counts mVv | Thefollowing formula can be used to calculate the mV (n) value from
at the counts at the VALU output.

et n = [VALU —(—2048)] x LLO=(=100)] | ;)
-2048 -100 2047 — (—2048)

For example, if the value at VALU was 1023 counts, then the mV are

calculated as follows:

n _ 200
n = [1023 + 2048] x 1005 100
or

+2047 | +100 n = +49.98 mv

The output at OK is not energized, the value at VALU is unpredictable, and the
output at ERR equals 1 - 8, 11, or 12 if an error occurs.

NOTE: Valuesoutside the temperature limits (defined by ATMPCHIT) can beread

but sho

ERR

1
2

3

11

12

NOTE: Thisfunction worksin conjunction withthe ATMPCHIT and ATMPMDIT

uld not be used for control purposes.

Description

Theinput at RACK is out of range.

A rack hardware fault occurred.

Theinput at SLOT is out of range.

The module at the location specified is not an analog temperature module.
Theinput at CHAN is out of range.

There is amodule hardware fault.

The channel isbeinginitialized. Try again later.
NOTE: Thiserror can occur if you continualy initialize a channel.

A linearization error occurred.

A temperature underflow occurred. Indicates an open thermocouple.
NOTE: Thereis no open indication for grounded thermocouples.

A temperature overflow occurred.

functions.

The ATMPCHIT function must be executed once after the ATMPMDIT functionis

executed, and before the ATMPCHRD function block is executed.

Chapter 2 Function/Function Block Description 2-23

ATMPMDIT

ATMPMDIT
Analog Temperature Module Initialization lo/JKTHERM

amverprT] Inputs: EN (BOOL) - enables execution (One-shot)
1N 0K RACK (USINT) - rack where module resides
gég: s SLOT (USINT) - slot where module resides
{uSEC uSEC (UINT) - frequency of read

Outputs: OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - #0if and only if an error occurs

The ATMPDIT function initializes a J-K Thermocouple module. It establishesthe
frequency at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is#0. Expansion racks are numbered consecutively from one
where # 1 isthe rack connected to the master, # 2 isthe rack connected to # 1, etc.

Theinput value at SLOT (3 up to 13) specifiesin which slot the module resides.
Slots are numbered | eft to right when facing the PiC. Slot 1 isreserved for the
CSM module. Slot 2 isreserved for either the CPU or I/O driver module.

The input at uSEC (5000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 106/uSEC.

If an error occursthe output at OK is not energized and the value at ERR equals 1 -
4, or 10.

ERR Description
1 Theinput at RACK isout of range.
2 A rack hardware fault occurred.
3 Theinput at SLOT isout of range.
4 Themodule at the location specified is not an analog temperature module.
10 Theinput at uSEC isout of range.

NOTE: Thisfunction worksin conjunction with the ATMPCHIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once after the ATMPMDIT functionis
executed, and before the ATMPCHRD function block is executed.

2-24 Chapter 2 Function/Function Block Description

A_DT_T

Add date and time to time Arith/DATETIME

ADT T Inputs: EN (BOOL) - enables execution
B K- IN1 (DATE_AND_TIME) - addend
1INt OUT .
e IN2 (TIME duration) - addend

Outputs: OK (BOOL) - execution completed without error
OUT (DATE_AND_TIME) - result of add

TheA_DT_T function adds the value of the constant or variable at IN1 to the value
of the constant or variable at IN2. TheresultisaDATE_AND_TIME vauethat is
put in the variable at OUT.

Examples of add DATE_AND_TIME to TIME
Value at IN1 Value at IN2 ~ Value at OUT
DT#1990-09-25-00:00:00 T#239s DT#1990-09-25-00:03:59
DT#1991-07-04-14:14:23 T#23d10h22m DT#1991-07-28-00:36:23

Chapter 2 Function/Function Block Description 2-25

A_IN_MMC

A_IN_MMC
Analog input for the MMC lo/ANLGIN
aInme] Inputs: EN (BOOL) - enables execution

1BV 0K= Qutputs: OK (BOOL) - execution completed
o VALU (INT) - digital value of analog input

NOTE: Thisfunction can only be used withthe MMC, not aPiC CPU. The OK
will not be set if aPiC CPU is selected.

TheA_IN_MMC function outputs the digital value of an analog input for the
MMC. The VALU output contains the counts of the analog input. You can con-
vert these counts to a voltage value using the formula shown below.

Counts \Y
at
VALU

+2047 +10 | Thefollowing formula can be used to calcu-
late the voltage value from the counts at the
VALU output.

+1024 +5

0 0
_ o 10V g
) . Voltage = VALU (P048Counts]
-1024 +5
-2048 -10

2-26 Chapter 2 Function/Function Block Description

A_INCHIT

A_INCHIT

Analog Input Channel Initialize lo/ANLGIN

A INcHIT] Inputs: EN (BOOL) - enables execution (One-shot)
1N 0K RACK (USINT) - rack where module resides
gég: ailn SLOT (USINT) - slot where module resides
{CHAN CHAN (USINT) - channél toinitialize
RNGE RNGE (USINT) - voltage range
jﬂizg BIPO (BOOL) - bipolar or unipolar
{10ms 4mAO (BOOL) - 4/20 mA offset
|100ms 10ms (BOOL) - noise filter

100ms (BOOL) - noise filter
Outputs: OK (BOOL) - energized if and only if ERR =0
ERR (USINT) - £ 0if and only if error occurs

The A_INCHIT function initializes a channel on an analog input module. It estab-
lishes the range of voltage or current to be sampled and the amount of hardware fil-
ter to be applied.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is#0. Expansion racks are
numbered consecutively from one where# 1 isthe rack connected to the master, #2
isthe rack connected to # 1, etc.

For ablock analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered |€ft to right when facing the
PiC. Slot 1 isreserved for the CSM module. Slot 2 isreserved for either the CPU
or I/O driver module.

For block analog input modules, theinput valueat SLOT (1 - 77) isset to 1 for the
module connected to the PiC CPU, 2 for the modul e connected to module #1, 3 for
the module connected to module #2, etc.

Theinput valueat CHAN (1 - 8 for the standard analog input moduleand 1 - 4 for
the block analog input module) specifies the number of the channel to read.

Chapter 2 Function/Function Block Description 2-27

A_INCHIT

Theinput at RNGE (1 - 8 for the standard analog input module and 1 - 2 for the
block analog input module) specifies the input voltage range at this channel as

shown below.
Enter Unipolar Range Bipolar Range
1 0- 10V -10 - 10V
2 0- 5V -5-5V
3 0- 25V -25- 25V
4 0-1.25v -1.25-1.25V
5 0-1v -1- 1V
6 0-.5v -5-.5V
7 0-.25V -.25-.25V
8 0-.125v -.125 - 125V

The input at BIPO specifies bipolar if enabled. It specifies unipolar if it is not
enabled.

Theinput at 4mAO specifies that current isto be sampled. To read current (instead
of voltage) it isrequired that:

1. A jumper be connected from the (-) input to the 250 ohm resistor input,
as described in the Hardware Manual.

2. Theinput at RNGE equal 2 and the input at BIPO be anormally open
contact that is never set.

Theinput at 4mAQO should have awire or short connected to it for 4 to 20mA. The
input at 4mAQ should not be enabled for 0to 20 mA. These inputs are pictured

below.
4 -20mA 0-20 mA
o) ANGE o) RNGE
NEVERSET NEVERSET
— 1 ——1sIP0 — []—1BIPO
NEVERSET
4nA0 T ——{4m0

Theinputs at 10ms and 100ms specify the amount of noisefilter. If neither inputis
enabled then the default filter of 1 millisecond is applied. If theinput at 10msis
enabled then a 10msfilter isapplied. If theinput at 100msis enabled then a100ms
filter isapplied. If both inputs are enabled then a 110msfilter is applied.

NOTE: The 10, 100, and 110 msfilters are not avail able for the block analog input
modules.

2-28 Chapter 2 Function/Function Block Description

A_INCHIT

If an error occurs the output at OK isnot energized and the output at ERR equals 1
-7

ERR Description
1 Theinput at RACK isout of range.
2 A rack hardware fault occurred.
3 Theinput at SLOT isout of range.
4 Themodule at the location specified is not an analog input module.
5 Theinput at CHAN is out of range.
6 Thereisachannel hardware fault.
7 Theinput at RANG is out of range.

NOTE: Thisfunction worksin conjunction with the A_INMDIT (moduleinitial-
ize) and A_INCHRD (channel read) functions.

TheA_INMDIT and the A_INCHIT functions must execute one time (the input at
EN should be a one-shot), in either order, before the A_INCHRD function block
executes.

Chapter 2 Function/Function Block Description 2-29

A_INCHRD

A _INCHRD
Analog Input Channel Read lo/ANLGIN
Wl Inputss EN (BOOL) - enables execution
1N 0K RACK (USINT) - rack where module resides
gég: vé;:: SLOT (USINT) - slot where module resides
{CHAN CHAN (USINT) - channel to read

— Outputs. OK (BOOL) -energized if and only if ERR=0
VALU (INT) - digital value of analog input
ERR (USINT) - # 0if and only if error occurs

The A_INCHRD function block outputs the digital value of an analog input to a
channel on the analog input module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is#0. Expansion racks are
numbered consecutively from one where# 1 isthe rack connected to the master, #2
isthe rack connected to # 1, etc.

For ablock analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered |€eft to right when facing the
PiC. Slot 1 isreserved for the CSM module. Slot 2 isreserved for either the CPU
or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) isset to 1 for the
module connected to the PiC CPU, 2 for the modul e connected to module #1, 3 for
the module connected to module #2, etc.

Theinput value at CHAN (1 - 8 for astandard analog input moduleand 1 - 4 for a
block analog input module) specifies the number of the channel to read.

The output at VALU holds the digital value of the signal occurring when this func-
tion block isenabled. The range of valuesis shown below:

Analog Input Module Unipolar Bipolar
12-bit resolution 0to 4095 -2048 to 2047
14-bit resolution Oto 16383 -8192t0 8191

Thisvalueisinterpolated for the voltage or current range specified by the
A_INCHIT function.

2-30

Chapter 2 Function/Function Block Description

A_INCHRD

If an error occurs the output at OK is not energized and the output at ERR =1 - 6.

ERR Description
1 Theinput at RACK isout of range.
A rack hardware fault occurred.
Theinput at SLOT is out of range.
The module at the location specified is hot an analog input module.
Theinput at CHAN is out of range.
Either there isachannel hardware problem, the module was not initialized,
or the module is being continually initialized.
7 Initialization is not complete.

NOTE: Thisfunction worksin conjunction with the A_INMDIT (moduleinitial-
ize) and A_INCHIT (channel initialize) functions.

TheA_INMDIT and A_INCHIT functions must execute one time, in either order,
before the A_INCHRD function block executes.

o oA~ WN

Examples

The information below will help you to calculate the device signal if you know the
value at VALU or to calculate the VALU if you know the device signal. Some
examples follow.

Input Range|Resolution Device Signal VALU=
4-20 mA 12 bits | 1 =16 mA (VALU/4095) + 4 mA | (I - 4 mA) 4095/16 mA
4-20 mA 14 bits |1 =16 mA (VALU/16383) + 4 mA | (I - 4 mA) 16383/16 mA
0-20 mA 12 bits I =20 mA (VALU/4095) | (4095/20 mA)
0-20 mA 14 bits | =20 mA (VALU/16383) | (16383/20 mA)
Any voltage| 12 bits V = Range* (VALU/4095) V (4095/Range*)
range* 14 bits V = Range* (VALU/16383) V (16383/Range*)
*The voltage ranges for unipolar and bipolar inputs are listed below.
Unipolar Input Range Bipolar Input Range
Oto10V 10V -10to 10V 20V
Oto5V 5V -5to5V 0V
Oto25V 25V -25t025V sV
Otol25V 1.25V -125t01.25V 25V
OtolvV 1V -1tolV 2V
0to0.5V 05V -0.5t0 05V 1V
0to0.25V 0.25V -0.25t00.25 05V
0to0.125V 0.125V -0.125t00.125 V 0.25V

Chapter 2 Function/Function Block Description 2-31

A_INCHRD

For a 12-bit unipolar example, if the value at VALU was 2948 counts and the range is.125 (0
to .125), then the voltage is calculated as follows:

_ 0.125 x 2948

v 4095

or
V =.09V

For a14-bit unipolar example, if the value at VALU was 11796 counts and the rangeis.125 (0
to .125), then the voltage is calculated as follows:

v = 0125 11796
16383
or
V = .00V

For the 12-bit bipolar example, if the value at VALU was -1228 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:
V = 10 x —1228

4095

or
VvV =-3V
For the 14-bit bipolar example, if the value at VALU was -4915 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:
_ 10x-4915
16383
or

V =-3V

For a4-20 mA example, if the value at VALU was 2047 counts, then the current is cal culated
asfollows:

| = 16mAa%gE+4mA

or
=12 mA

2-32 Chapter 2 Function/Function Block Description

A_INMDIT

A _INMDIT
Analog Input Module Initialization lo/ANLGIN
»wpir] Inputs: EN (BOOL) - enables execution (One-shot)
BN Ok RACK (USINT) - rack where module resides
Sﬁg: e SLOT (USINT) - slot where module resides
{uSEC USEC (UINT) - frequency of read

Outputs: OK (BOOL) -energized if and only if ERR =0
ERR (USINT) - # 0 if and only if an error occurs

The A_INMDIT function initializes an analog input module when using aPiC
CPU. It establishes how frequently the module samples or reads voltage or current
input. NOTE: If usingan MMC CPU, usethe A _IN_MMC function.

Theinput value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is#0. Expansion racks are
numbered consecutively from one where # 1 isthe rack connected to the master, #2
isthe rack connected to # 1, etc.

For ablock analog input module, RACK must be set to 100.

For astandard analog input module, the input value at SLOT (3 up to 13) specifies
in which dlot the module resides. Slots are numbered |eft to right when facing the
PiC. Slot 1 isreserved for the CSM module. Slot 2 isreserved for either the CPU
or 1/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) isset to 1 for the
module connected to the PiC CPU, 2 for the modul e connected to module #1, 3 for
the module connected to module #2, etc.

The input at uSEC (800 - 65535) specifies in microseconds how frequently the
module reads or samples the input. The sample frequency in hertz equals 106/
UuSEC. NOTE: When using the Servo Module Encoder with Analog Input or the
block analog input module the range is 800 - 32767.

Chapter 2 Function/Function Block Description 2-33

A_TOD_T

If an error occursthe output at OK is not energized and the value at ERR equals 1 -
)
ERR Description
1 Theinput at RACK isout of range.
2 A rack hardware fault occurred.
3 Theinput at SLOT isout of range.
4 Themodule at the location specified is not an analog input module.
5 Theinput at uSEC is out of range.

NOTE: Thisfunction worksin conjunction with the A_INCHIT (channdl initial-
ize) and A_INCHRD (channel read) functions.

A_INMDIT and A_INCHIT must execute one time (the input at EN should be a
one-shot), in either order, before A_INCHRD executes.

A TOD T
Add time of day to time Arith/DATETIME

ato07] Inputs. EN (BOOL) - enables execution

JEN 0K IN1 (TIME_OF_DAY) - addend

o T IN2 (TIME duration) - addend
Outputs: OK (BOOL) - execution complete

OUT (TIME_OF_DAY) - result of add

TheA_TOD_T function adds the value of the constant or variable at IN1 to the
value of the constant or variable at IN2. TheresultisaTIME_OF DAY value that
isput in the variable at OUT. The number of daysin the TIME value at IN2 must
equal O or an error occurs. Any value for millisecondsis truncated.

Examples of add TIME_OF_DAY to TIME

Value at IN1 Value at IN2 Value at OUT
TOD#11:43:12 T#0d4h10m36ms TOD#15:53:12
TOD#23:59:54 T#3s TOD#23:59:57

2-34 Chapter 2 Function/Function Block Description

BAT_OK?

BAT OK?

Battery OK? lo/BAT_OK? n

BAT_OK? Inputs:. EN (BOOL) - enables execution
1N 0K Qutputs: OK (BOOL) - execution completed without error

The BAT_OK? function tests the condition of the battery during the ladder scan.
When there is power flow to the EN and the battery is good, the OK will be set.

Chapter 2 Function/Function Block Description 2-35

BIO_PERF

BIO_PERF

Block 1/0 Performance lo

—NAME —
BIO_PERF

{STRT
{STOP
4PTR
{RETR
1QTY

TheBIO

4EN OK

Inputs:. EN (BOOL) - enables execution

STRT (BOOL) -starts the capture of performance
information

STOP (BOOL) -stops the capture of performance
information

PTR - apointer to an array of structures holding per-
formance information for up to 77 block modules

RETR (BOOL) - enables the retry quantity

QTY (USINT) - number of retries for the system to use
when attempting to communicate with each block

Outputs:
OK (BOOL) - execution completed

PERF function block assists you in troubleshooting a block 1/0 system.

The function block monitors the number of good read/writes versus the number of
bad read/writes to the block modules. It also allows you to change the default num-
ber of four times that the system attempts to read/write a given block module
before afailure occurs.

As an example of troubleshooting, if one block module in your system has several
more retries than the others, check to seeif the module is wired correctly or is
located near a source of excessive noise.

NOTE: You can decrease the effect of transient noise by increasing the retry count.
However, remember that excessive retries can result in system degradation.

2-36

Chapter 2 Function/Function Block Description

BIO_PERF

Data Structure Members

The members of the structure required for the array of structures at the PTR

input are described below. n

IMPORTANT

The structure entered in the software declarations table for the PTR
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each
member of the structure must be as shown in order for the software to
recognize the information.

Member Type Description
TOTREAD The number of reads attempted for this block module
UDINT

(Total Reads)

BADREAD UDINT The number of retries made while reading to this
(Bad Reads) block module

TOTWRITE UDINT The number of writes attempted for this block module
(Total Writes)

BADWRITE UDINT The number of retries made while writing to this
(Bad Writes) block module

The following ladder example illustrates how the BIO_PERF function block can
be incorporated into your ladder. Note that the retry quantity (QTY) is enabled
after the performance monitor has been enabled and consequently will take effect
during the second scan of the ladder.

Chapter 2 Function/Function Block Description 2-37

BIO_PERF

Figure 2-2. Network Example using BIO_PERF Function Block

ElHetwork #1
EHNABLE
(s
E]Hetwork #2
‘-BIOPERF ——
BIO_PERF
OK
-EH OK —$ }—]
ENABLE
| P} - STRT
DISABLE
P | {sTOP

DATA(D) >— PTR

RETRY
|p | 1 RETR
QTY 1Ty
ElHetwork #3
RETRY
{s

2-38 Chapter 2 Function/Function Block Description

BOOL2BYT

BOOL2BYT
Boolean to Byte Datatype/BOOL2BYT

BOOL2BYT Inputs: EN (BOOL) - enables execution

1N 0K INOto IN7 (BOOL) - bitsto convert
| i:? o Outputs:OK (BOOL) - execution completed without error
11N OUT (BYTE) - converted value

11IN3
1 IN4
11IN5
11IN6
1IN7

TheBOOL2BYT function transfers the values of the 8 bitsat INO through IN7 into
the byte variable at OUT. The value at INO becomes the least significant (right-
most) bit of the output variable.

Example

IN7 IN6 IN5 IN4 IN3 IN2 IN1 INO ouT
0 0 0 0 1 1 1 1 00001111

Chapter 2 Function/Function Block Description 2-39

BYT2BOOL

BYT2BOOL
Byte to Boolean Datatype/BYTECONV

BYT2B00L Inputs: EN (BOOL) - enables execution

BN OKp= IN (BYTE) - byte to convert

1IN OUTOR . .
il Outputs: OK (BOOL) - execution completed without error
ouT2}|— OUTOto OUT7 (BOOL) - converted values

QUT3—
O0UT4 —
QUT5 —
oUT6 —
UT7 —

The BY T2BOOL function transfers the 8-bit value of the input at IN into the 8
boolean variables specified at OUTO through OUT7. The least significant (right-
most) bit becomes OUTO.

Example
IN OUT7 OUT6 OUT5 O0OuUT4 OUT3 OuUT2 O0UT1 OuUTo
11110000 1 1 1 1 0 0 0 0
BYTE2DW
Byte to Double Word Datatype/BYTECONV
BYTE2DW Inputs: EN (BOOL) - enables execution
BN 0K IN (BYTE) - value to convert
JIN - OUTH

Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The BY TE2DW function changes the data type of the value at IN from abyteto a
double word. The leftmost 24 bits of the double word are filled with zeros. The
result is placed in the variable at OUT.

2-40 Chapter 2 Function/Function Block Description

BYTE2SI

BYTE2LW
Byte to Long Word Datatype/BYTECONV n
BYTE2LW Inputs: EN (BOOL) - enables execution
BN 0K IN (BYTE) - value to convert

1IN OUT

Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The BY TE2LW function converts a byte into along word. The leftmost 56 bits of
the long word arefilled with zeros. Theresult is placed in avariable at OUT.

BYTE2SI
Byte to Short Integer Datatype/BYTECONV
BYTE2S] Inputs: EN (BOOL) - enables execution
BN 0K IN (BYTE) - value to convert
JIN - OUT

Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The BY TE2SI function changes the data type of the value at IN from abyteto a
short integer. Theresult is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-41

BYTE2USI

BYTE2USI
Byte to Unsigned Short Integer Datatype/BYTECONV
BYTE2USI Inputs: EN (BOOL) - enables execution

BN 0K IN (BYTE) - value to convert
LA Outputs. OK (BOOL) - execution complete
OUT (USINT) - converted value

The BY TE2USI function changes the data type of the value at IN from abyteto an
unsigned short integer. Theresult is placed in the variable at OUT.

BYTE2WO

Byte to Word Datatype/BYTECONV

(sytewo | Inputs: EN (BOOL) - enables execution
BN 0K IN (BYTE) - value to convert
Ry Outputs: OK (BOOL) - execution complete
OUT (WORD) - converted value

The BY TE2WO function changes the data type of the value at IN from abyteto a
word. Theleftmost eight bits of the word arefilled with zeros. Theresult isplaced

inthe variable at OUT.

2-42 Chapter 2 Function/Function Block Description

CAM_OUT

CAM_OUT
Cam Output (Programmable Logic Switch) Motion/MOVE_SUP
_ C
CAM_OUT Inputs. EN (BOOL) - enables execution

JEN 0K AXIS (USINT) - identifies axis (servo, digitizing, or

{AXIS OUT} tl me)

{ON .

lorr ON (DINT) - value the output is to turn on at (entered

in LU)

4SLOT
4PNT
4DABL

If ON isoutside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

OFF (DINT) - value the output is to turn off at (entered
inLU)

If OFF is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

SLOT (USINT) - identifies output module slot

PNT (USINT) - identifies output point (1 - 16 or 1 - 32)
on the output modulein SLOT.

NOTE: When calling CAM_OUT more than once for
the same dlot, be sure the point number is unique.
Never enter a point number more than once for the
same slot.

DABL (BOOL) - disables the cam output when set
Outputs. OK (BOOL) - execution completed without error
OUT (BOOL) - givesthelogic status of the output

The CAM_OUT function is used to turn on a discrete output point for a specified
distance during the rollover on position cycle for the axis. It performs like a pro-
grammable logic switch (PLS). The outputs are updated on an interrupt basis.

With aPiC CPU, the following conditions must be met in order to turn an output
on using the CAM_OUT function. The CAM_OUT function can aso be used
with the MMC CPU. Even though the outputs can be shared, they cannot be used
in more than one place.

« 16 or 32 point output module must be in the PiC location identified in
SLOT.
NOTE: If you have a PiC CPU with firmware prior to version 10.2, the out-
puts on these modul es can be used for cam outputs only. Choose “ Empty” as
the output module used with the CAM_OUT function in the hardware dec-
larations table. This ensures that the outputs will not be turned off at the
end of each scan

Chapter 2 Function/Function Block Description 2-43

CAM_OUT

e SLOT must be avalid slot number for your PiC900/90 or MM C configura
tion. (For a PiC900/90 rack, from 3 up to 13 depending on the size of the
rack you have.

For the MMC, SLOT must be 2.)
NOTE: The CAM_OUT function works on output modules only. It does
not work on input/output modules.

e If SLOT equals zero, no physical output will be used.

« Rollover on position must be on for the axis identified in AXIS.

e The ON and OFF values must be less than the rollover on position value.
ON must not equal OFF.

* A zero must be entered in DABL.

When using 32 points with the CAM_OUT, the table below shows the values to
enter at PNT.

32pt 2-16pt
module modules
Enter at PNT | Enter at PNT
ForSLOT 0 1 1 1
2 2 2
32 16 16

AA1145-0593

You can use less than 32 or 16 points on any module.

Three possible combinations for the CAM_OUT function inputs are shown in the
table that follows. The first combination iswhat is required to turn both the func-
tion and module output on.

The second combination will turn the function output on but not the module output
because SLOT = 0.

The third combination with DABL set to “1” disables the output from both the
function and the module and also removes it from any foreground cal culations.
Thisisthe recommended way to disable a cam output since it saves CPU time.
AXIS, SLOT, and PNT must have valid data entered before a cam output can be
disabled.

Each of these combinations assume that ON # OFF. If ON = OFF, then there
would be no function or module output but CPU time would be used.

NOTE

Once apoint isassigned to an axis it cannot be reassigned to a differ-
ent axis unless the servos are reinitialized.

2-44

Chapter 2 Function/Function Block Description

Table 2-2. Cam input combinations and results

If these Cam function in- || Then thefunction OUT, module out-
putsare: put, and CPU timeuseare:
Function Module Use
SLOT DABL ouT Output CPU time
SLOT#0 | DABL=0 YES YES YES
SLOT=0 | DABL=0 YES NO YES
* DABL =1 NO NO NO

CAM_OUT

An* means that any valid data may be entered at the designated inpuit.
Outputs are updated on an interrupt basis.

From 1 to 32 outputs (identified at PNT) can be turned on by calling the
CAM_OUT function once for each output desired. The distance during which
each output remains on can vary by changing the valuesin ON and OFF in each
function.

Examples of turning on an output for varying distancesisillustrated in Figure 2-
3. If therollover on position cycle equals 1,000 LU and the value entered in ON is
100 and the value entered in OFF is 200, then the output will remain on during 100
units of travel as shown on the left.

If the value entered in ON is 200 and the value entered in OFF is 100, then the out-
put will remain on for 900 units as shown on the right.

Figure 2-3. Cam ON/OFF representation

Enclosed area represents
distance output is 0

Off On
100 200

Q

AA446-4990

Chapter 2 Function/Function Block Description 2-45

CAPTINIT

CAPTINIT

Data Capture Initialization

Motion/DATA

This section contains information on how to capture data in the PiC ladder so that
it can be displayed on the workstation screen. If you are capturing data directly
from the ladder once per scan, then the variables can be put into an array of struc-
tures using the READ_SV function. If you are capturing data from servo inter-
rupts, then you use the two functions, CAPTINIT and CAPTSTAT, to get the

variables into an array of structures, as shown in Figure 2-4.

The communication function blocks are used to create abinary file that can be sent
to the PIC RAMDISK or the workstation.

Figure 2-4. Tasks for data capture

Data from servo interrupts
(use CAPTINIT and CAPTSTAT functions)

CAPTINIT CAPTSTAT

1EN 0Kk {EN 0K}

{SRCE ERR} {STRT ELEM}

1QTY 10NCE

{DEST

{1SIZE

Use the communication
Store in an function blocks to create a
array of _» blngry file to send to
structures thePiC900 RAMDISK or
workstation.
A

PiC900
RAMDISK

Data from variables in the LDO
(use READ_SV function)

READ_SV
HEN 0Kt
JAXIS RSLT}
1 VAR

Workstation

AA1131-3792

2-46

Chapter 2 Function/Function Block Description

CAPTINIT

1QTY
4DEST
{SIZE

CAPTINIT Inputs. EN (BOOL) - enables execution (One-shot)
A SRCE (ARRAY OF STRUCT) - an array of structures
1SRCE - EAR| to define what data is to be captured.

QTY (USINT) - the number of variables (from 1 to 8)
to be captured. (Same asthe number of array elements
in SRCE or the number of structure membersin

The CAPTINIT function defines the data you want to capture each servo interrupt

DEST.)

DEST (ARRAY OF STRUCT) - an array of structures
to store the captured data.

SIZE (UINT) - the number of array elementsin DEST
which represents the number of data samples to take.

Outputs: OK (BOOL) - set if no errorsin structure data

ERR (USINT) - no error if ERR = O; error if ERR # 0.
Errors are listed below.

and where the datawill be stored.

CAUTION

It isvery important that the values entered at QTY and SIZE equal the
number of variablesyou are capturing and the number of samplesyou
are taking respectively. If not, the results are unpredictable.

ERR# Description
0 No error

1 The CAPTSTAT function has not stopped capturing datafrom a
previous data capture initialization.

2 An axis number in the structureisinvalid.

3 The limit of eight variablesin the array of structures has been
exceeded.

4 Parameter number in the structure is out of range.

5 The CAPTINIT function was called before the STRTSERV func-
tion was called.

The SRCE input array of structures

An array of structuresisused at the SRCE input of the CAPTINIT function. There
isone array element for each variable to capture. Each array element isastructure
with two members; AXIS which identifies the servo or digitizing axis the variable

Chapter 2 Function/Function Block Description 2-47

CAPTINIT

appliesto and VAR which identifies the variable you want to capture. A maximum
of eight variables can be captured within one array of structures. The variables are
described in the table below.

Table 2-3. Data Capture
Var Name Type

1 Actual position
The actual position of the device with reference reset applied. Units arefeed- DINT
back units.
(Variable 1in READ_SV.)

2 Fastinput occurred
On for one interrupt. Bit 00001000 of this byte. BYTE
(Same as bit 00000010 out of STATUSSV.)

3 Commanded position
The commanded position sent to the servo upgrade. Units are feedback units. DINT
(Variable 3in READ_SV.)
NOTE: Thisisthe same as actual for adigitizing axis.

4 Pposition error
The error between the filtered output and the actual. Units are feedback units. DINT
(Variable4in READ_SV.)

5 Slow Velocity Filter error
The accumulated value in the slow velocity filter. Units are feedback units. DINT
(Variable5in READ_SV.)

6 Command change
The command delta for this interrupt after filter. Units are feedback unitsper INT
upgrade.
(Variable6in READ_SV.)

7 Position change
The change in actual position for this upgrade. Units are feedback units per INT
upgrade. (Variable7in READ_SV.)

8 Feedback position
The 24 bit counter from the hardware. Top byteisalways0. Unitsarefeed- DINT
back units.
(Variable8in READ_SV.)

9 Prefilter commanded position
The commanded position prior to the filter. Units are feedback units. DINT
NOTE: Thisisthe same as actual for adigitizing axis.

10 prefilter command change

The command deltafor thisinterrupt before filter. Units are feedback units, INT
11 Remaining master offset

The accumulated master offset. Units are feedback units. DINT
12 Remaining slave offset

The accumulated slave offset. Units are feedback units. DINT

2-48 Chapter 2 Function/Function Block Description

CAPTINIT

IMPORTANT

The structure you enter in the software declarations table for the
SRCE input must have the members entered in the order shown be-
low. Thedatatypefor each member of the structure must be as shown
in the Type column in order for the software to recognize the infor-
mation.

In the example shown below, there are three variables to be read; the actual posi-
tion of Axis 1 (1), the position change of Axis 1 (7), and the actual position of Axis

49 (1).
Name Type 110 Pt.==Init. Val.=
SOURCE (0) SOURCE(1) SOURCE (2)
SOURCE STRUCT(0..2)
CAXTS USINT 1 ! 49
.VAR USINT 1 7 1

END_STRUCT

AA1132-3792

The DEST input array of structures

DEST isthearray of structures which isthe destination of the captured data. There
isone array element for each datasample. A data sample occurs each interrupt and
will capture as many variables asindicated at SRCE. Each structure contains one
member for each variable captured. In the above example, there arethree variables
and therefore there needs to be three structure members. Each structure member
must be the correct type to accommodate the variable captured. The type of each
variable islisted under the Type column in the variable table above.

In the example, the array of structures could look like this:
Name Type [/0 Pt.

DESTIN STRUCT (0. .99)

.P0OS1 DINT
.DELTA INT
.P0S49 DINT

END_STRUCT

AA1133-3792

This array of structures accommodates 100 data samples. Captured datais stored
sequentially into the array until the end is reached (element 99 in the example).
Then the data will wrap around and begin to fill the array again unless ONCE has
been set in the CAPTSTAT function. Usethe CNT output of the CAPTSTAT func-
tion to find out the next element in the array that will be written to.

Chapter 2 Function/Function Block Description 2-49

CAPTSTAT

CAPTSTAT
Data Capture Status Motion/DATA

CAPTSTAT Inputs: EN (BOOL) - enables execution
1N 0Ky STRT (BOOL) - a positive transition will start the
15TRT ELEM} data capture process. A zero will stop the data cap-
JONCE ture process.
ONCE (BOOL) - set tofill the array of structures
onetime.

Outputs: OK (BOOL) - set if no errorsin structure data

ELEM (UINT) - the number of the next array ele-
ment that will be writtento. (0 isthefirst element
inan array.)
NOTE: If the CAPTINIT function is not called before this
function, the OK will not be set and CNT will = 0.

The CAPTSTAT function providesthe ability to start and stop the capturing of data
from the ladder.

2-50 Chapter 2 Function/Function Block Description

CLOCK

CLOCK
Clock Xclock/CLOCK

CLOCK Inputs: EN (BOOL) - enables execution
1EN K~ IN (DATE_AND_TIME) - clock set value
1IN OUT
lseT SET (BOOL) - causes set or extract

Outputs: OK (BOOL) - execution completed without error
OUT (DATE_AND_TIME) - value extracted

The CLOCK function is used to get the current date and time from the PiC, or to
enter a date and time into the PiC.

If power flow exists at SET, then the PiC clock is set with the value of the variable
at IN. Thevalueat IN isalso placed into the variable at OUT.

If power flow does not exist at SET, then the (current) PiC date and time are
extracted from the PiC clock and placed in the variable at OUT.

Typically, the CLOCK function isused in aread only mode. The example below
shows how to set thisup. Put the same variable name on IN and OUT. Placea
Normally Open contact that is never set at the SET input.

Example

CLOCK
READ

VALUE{IN OUT |-VALUE
b {SET

AA1158-3593

Chapter 2 Function/Function Block Description 2-51

CLOSE

CLOSE

Close

lo/COMM

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block
Outputs: DONE (BOOL) - energized if ERR =0

not energized if ERR £ 0

FAIL (BOOL) - energized if ERR # 0

not energized if ERR =0

ERR (INT) - Oif datatransferred successfully;

0 if data transfer unsuccessful

See Appendix B in the software manual for ERR codes.

Cbse
REQ DONE
HNDL FAIL
ERR

The CLOSE function block closes the communication channel between the LDO
and either a DOS workstation file, aPiC RAMDISK file, aPiC FMSDISK file, or

User Port.
The deviceor file at HNDL is closed, terminating the transfer of datafrom/to the

file/device. Execution of thisfunction block frees amode (or 2 modesfor read and
write or append). It also empties the read and write buffers.

CLOSE is used in conjunction with the CONFIG, OPEN, READ, SEEK, STA-
TUS, and WRITE 1/O function blocks.

CLOSLOOP
Close Loop Motion/ZINIT

CLOSLOOP Inputs: EN (BOOL) - enables execution (One-shot)
1N 0Ky AXIS (USINT) - identifies axis (servo)
{AXTS . .
Outputs: OK (BOOL) - execution completed without error

The position loop for the designated axisis closed when the CLOSL OOP function
isactivated. The commanded position of the axis will be compared to the actual
position of the axis. The difference between the two isthe following error. The
PID calculations will respond to the error by telling the analog output to send a
corrective voltage signal to the drive. The drive will move the axis toward the
commanded position. Any further disturbance in axis position will initiate a simi-
lar corrective response. This function must be included in any closed loop servo
application.

See a'so OPENLOOP.

2-52

Chapter 2 Function/Function Block Description

CLSLOOP?

CLSLOOP?
Close Loop? Motion/ZINIT
CLSLOOP? Inputs. EN (BOOL) - enables execution
1N OKE AXIS (USINT) - identifies axis (servo)
[Outputs: OK (BOOL) - set if axisis closed loop and initiaized

CLSD (BOOL) - set if the axisloop is closed, cleared
if the axisloop is open or the OK is not set

The CLSLOOP? function allows you to inquire whether or not the loop for an axis
isclosed. The axisyou areinquiring about isidentified at the AXISinput. The
CLSD output indicates whether the axis loop is closed or not.

The axiswill be closed only if you have previously called the CLOSL OOP func-
tion for thisaxis. The axiswill be open if you have called the OPENL OOP func-
tion or an E-stop error isin effect. Thisfunction may be called at any timeand in
any task.

NOTE: If using this function with a SERCOS system, the CLSD output is report-
ing the state of the SERCOS drive rather than the internal state of motion.lib.

Chapter 2 Function/Function Block Description 2-53

CONCAT

CONCAT

Concatenate String/Z/CONCAT

CONCAT Inputs. EN (BOOL) - enables execution
BN K OUT (STRING) - concatenated STRING
e IN1 (STRING) - STRING input
IN2 (STRING) - STRING input
Outputs: OK (BOOL) - execution completed without error
OUT (same variable as OUT input)

IN1

The CONCAT function merges two STRING variables together. The variable at
IN2is placed directly after the variable at IN1 and the resulting STRING is placed
in the variable at OUT.

Thisis an extensible function which can concatenate up to 17 STRINGs. The
STRING at IN17 is placed after the STRING at IN16, which is placed after the
STRING at IN15, etc. Thevariablesat IN2 through IN17 must be unique from the
variable at OUT.

An error occurs:

If the length of IN1 > length of OUT

If the length of IN2 > length of OUT

If thelength of IN1 + length of IN2 > length of OUT
If IN2, or IN3, ... or IN17 = OUT

Example of concatenate function

Var at IN1 Value at IN2 Value at IN3 Var at OUT
stringl string2 string3 stringlstring2string3

2-54 Chapter 2 Function/Function Block Description

CONFIG

CONFIG
Configure lo/COMM

Inputs: REQ (BOOL) - enables execution (One-shot)
HNDL (INT) - output from OPEN function block
CFGZ (STRING) - configuration data

Outputs: DONE (BOOL) - energized if ERR=0
not energized if ERR # 0

FAIL (BOOL) - energized if ERRZ 0
not energized if ERR =0

ERR (INT) - O if datatransferred successfully;
0 if datatransfer unsuccessful

See Appendix B in the software manual for ERR codes.

BN 1
REQ DONE
HNDL FAIL
CFGZ ERR

The CONFIG function block establishes the communication parameters for the
PiC User Port (only) and the handle specified by theinput at HNDL. To configure
User Port, create a STRING variable and connect it at the CFGZ input. Enter the
parameters in the order shown. Each parameter value must be separated by a
command.

Baud rate Parity Data bits Stop bits Synch mode Terminator
9600, N, 8, 1, N $00
String = 9600,N,8,1,N$00

NOTE: Touseall default values, create a string variable of length O with no initia
value. To use one or more (but not all default values), insert acomma for each
value that is omitted as shown below.

Baud rate Parity Data bits Stop bits Synch mode Terminator
1 Nl H) N $00

String = ,N,,,N$00

Chapter 2 Function/Function Block Description 2-55

CONFIG

Table 2-4. Parameters for CONFIG string

Parameter Acceptable | Default | Description
values value
Baud Rate || 110, 300, 600, Number of bits per second that are transferred -

1200, 2400, 9600 | @ baud rate above 9600 requires hardware sync

4800, 9600, mode

19200

Parity E - if #of 1sinlower 7 bitsis odd, then bit 8 is

E - Even settol

O -Odd N O -if #of 1sinlower 7 bitsiseven, then bit 8is

N - None settol
N - no parity checking

Data Bits || 7 or 8 8 Number of bitsthat are to be interpreted as data
Stop Bits 2(for 110 | After the transmission of every byte, pause for
baud) thetimeit takesto send 1 or 2 bits before trans-
lor?2 -
bauds)
Synch R - the PiIC will stop sending if <CTRL-S> or
Mode XOFF isreceived and resume sending when

N - None <CTRL-Q> or XON is received.

S - Send S - the PiC will send a<CTRL-S> when input

R - Recelve N needs to be suspended and a <CTRL-Q> when

B-BothS& R input isto resume.

H - Hardware H - clear to send (CTS) and request to send
(RTS) are connected between the devicesto
prevent overruns.

RS422/485 T -When using RS422/485 communications
Mode and the 2- or 4-channel serial communications
module, includinga"T" in the CFGZ string as
. shown below disables the transmitter when

T-Transmitter | | there are no characters to transmit.

Disabled String = 9600,N.,8,1,N, T$00
Thisallowsimplementation of atwo-wire party
line configuration with RS485 communication
links.

Terminator || $00 None | Charactersthat signal end of data.

CONFIG isused in conjunction with the CLOSE, OPEN, READ, SEEK, STA-
TUS, and WRITE 1/O function blocks.

2-56

Chapter 2 Function/Function Block Description

COORDZRL

COORDZ2RL

Coordinate to Real

Motion/DATA

COORD2RL

{MOVE
{ACTV
4SEG1

1 _1

HEN OKt
{CNFG ERRF

Inputs:

Outputs:

EN (BOOL) - enables execution
CNFG (STRUCTURE) - provides setup datafor move

MOVE (STRUCTURE) - provides part program data for

move

ACTV (WORD) - identifies axis for each segment output

SEGL1 - (STRUCTURE) - provides segment output for
thefirst axis. Function can be extended for 15 additional
axes SEG outputs.

OK (BOOL) - execution completed without error
ERR (INT) - # 0if and only if an error occurs.

The COORDZ2RL function isamath conversion function requiring servo initializa-
tion and a math coprocessor on the PiC CPU. It isan extensible function that cal-

culates a profile segment (output SEG1 through SEG16) for up to 16 axes from the
information provided in the CNFG and MOVE inputs.

NOTE: Of the 32 servo axes available, only servo axes numbered 1 through 16 can
be used with this function.

The CNFG input is a structure holding setup data. The MOVE input is a structure
containing part program information such as endpoints, velocities, move times, cir-
cle centerpoints, etc.

The COORD2RL math conversion function is used with the RATIO_RL function.

IMPORTANT

The structures entered in the software declarations table for CNFG,
MOVE, and SEG1 must have the members entered in the order listed
in the tables that follow. The data type entered in the Type column
for each member of the structure must be as shown in order for the
software to recognize the information.

Chapter 2 Function/Function Block Description

2-57

COORD2RL

Table 2-5. COORD2RL structure members at the CNFG input

Member Type Description

TMAXRT DINT Enter the time axis rate. 1000 units/sec is

(time axis rate) recommended for most applications.

TOLR DINT Enter in ladder units the limit on the circle endpoint
(tolerance) your application will accept before an error isreported.
FLAGS WORD Bit O isthe only bit currently in use.

(flags)

151413121110 9 8 7 6 54 3 2 10

0 = no velocity check
1 = velocity check

All remaining bits (1 - 15) should be set to

AA1110-3192 ZEero.

Table 2-6. COORD2RL structure members at the MOVE input

Member Type Description

LINEAR WORD Identify from 1 to 16 axes that will be used for linear

(linear axes) moves.

CIRCLE WORD [dentify two axes that will be used for circular moves.

(circular axes)

DEPART WORD Identify from 1 to 16 axes that will be used for third

(departure axes) axis departure moves.
NOTE: Third axis departure is accomplished by slav-
ing the third axisto the same time axis as the two axes
doing the circle.

RTTM BYTE Selectsrate or time.

(rate or time) 00 = rate 80 (hex) = time

DIR BYTE Selects the direction a circular move will take.

(direction) 00 = CW 80 (hex) = CCW

2-58 Chapter 2 Function/Function Block Description

COORDZRL

Table 2-6. COORD2RL structure members at the MOVE input (Continued)

Member Type Description
VALUE DINT Define the rate or time (based on what was selected at
(rate or time RTTM above).
value) Rate isentered in LU/min.
Timeis entered in msec.
AX1CP DINT Enter the centerpoint for the first axis (lowest number)
(First axis center- entered in CIRCLE.
point)
AX2CP DINT Enter the centerpoint for the second axis (highest num-
(Second axis ber) entered in CIRCLE.
centerpoint)
ENDPTS DINT (0-15) Enter in an array the endpoints for all axes being used.

(1-16 endpoints)

Table 2-7. COORD2RL structure members at the SEG output

Member Type Description

MASTER DINT The segment master distance

(master distance)

SLAVE DINT The segment slave distance

(dlave distance)

LEN LREAL The length of the cycle

(cyclelength/K 1)

AMPL LREAL The amplitude of the wave

(amplitude/K)

STANGL LREAL The starting angle of the wave

(starting angle/

K3)

SPARE LREAL Declare thisin your structure since it may be used in
(unused) the future for additional features.

FLAGS DWORD Bits 0 through 4 are currently being used.

(flags) (See explanation at the REAL input of RATIO_RL.)

Chapter 2 Function/Function Block Description

2-59

COORD2RL

The table below defines the outputs that can appear at the ERR output of the
COORDZ2RL function.

Table 2-8. COORD2RL ERRs

|ERR Output
0 No error
1 No bitswere set in the LINEAR, CIRCLE, or DEPART members of the MOVE
structure.
2 The same bit was set in the LINEAR and CIRCL E members of the MOV E structure.
An axis cannot be linear and circular at the same time.
3 Thesamebit was set in the DEPART and CIRCL E members of the MOV E structure.
An axis cannot be departure and circular at the same time.
4 The same hit was set in the LINEAR and DEPART members of the MOVE struc-
ture. An axis cannot be linear and departure at the same time.
5 | Setif other than O or 2 bitswere set in CIRCLE. Two bits must always be set in
order to do acircular move.
6 [TheACTV inputindicated afewer number of axesthan the number connected to the
inputs labeled at SEG.
7 |Abitissetin LINEAR, CIRCLE, or DEPART that does not have a corresponding
bit inACTV.
8 Thetime or rate value is negative. These must be positive numbers only.
9 Thetime or rate value is zero.
10 [Therate wastoo high or the time was too low to calculate.
11 | Therate wastoo low or the time was too high to calculate.
12 [Anaxisthat was selected was not initialized by the user function.
13 [The STRTSERV function was not called. No axes have been initialized.
14 [Thecircle endpoint limit you entered in the CNFG structure for TOLR has been
exceeded.
1xx | Distance calculated using scaling was too positive to fit in the 32 bit value.
XX isthe axis number.
2xx | Distance calculated using scaling was too negative to fit in the 32 bit value.
XX isthe axis number.
3xx [Velocity exceeded the maximum feedrate defined in servo setup.
NOTE: Valid profile datais still produced if this error occurs.
2-60 Chapter 2 Function/Function Block Description

CTD

COS
Cosine Arith/TRIG
C0S Inputs: EN (BOOL) - enables execution
1N 0Ky ANGL (REAL/LREAL) - angle value (in radians)
[Outputs. OK (BOOL) - execution completed without error
COS (REAL/LREAL) - cosine calculated
NOTE: The datatypes entered at ANGL and COS must
match, i.e. if ANGL is REAL, then COS must be REAL.
The COS function calculates the cosine of the angle entered at ANGL. The result
isplaced at COS.
CTD
Count Down Counters/CTD
EHE Inputs. CD (BOOL) - initiate count down
& Q LD (BOOL) - load PV to CV
ﬁs o PV (INT) - preset value
Outputs: Q (BOOL) - execution completed for count down to O

CV (INT) - count value

The CTD function block counts down to -32768 from the preset value in the vari-
able or constant at PV. The count value at CV is decremented by one whenever a0
to 1 transition occurs at CD.

Whenever the count is < zero, the output at Q is energized.
Thevalue at PV isloaded into the value at CV when power flow occursat LD.

Chapter 2 Function/Function Block Description 2-61

CTu

CTU
Count Up Counters/CTU
e Inputs; CU (BOOL) - initiate count up
o Q R (BOOL) - reset counter to zero
R cv
oy PV (INT) - preset value
Outputs: Q (BOOL) - execution complete for count up to preset
value
CV (INT) - count value
The CTU function block counts up from zero to +32767. The count valueat CV is
incremented by one whenever a0 to 1 transition occurs at CU.
Whenever the count is > the preset value at PV, the output at Q is energized.
Thevalue at CV isreset to zero when power flow occurs at R.
CTUD
Count Up/Count Down Counters/CTUD
~M5 7 Inputs CU (BOOL) - initiate count up
Uy CD (BOOL) - initiate count down
:ED 23 R (BOOL) - reset counter to zero
{LD LD (BOOL) - load PV to CV
glitd PV (INT) - preset value
Outputs:. QU (BOOL) - execution complete for count up
QD (BOOL) - execution complete for count down
CV (INT) - count value
The CTUD function block counts between +32767 and -32768.
The count value at CV increments by one whenever atransition occursat CU. The
count value at CV decrements by one whenever a0 to 1 transition occurs at CD.
Whenever CV is= PV, QU is energized; whenever CV is< 0, QD is energized.
When power flow occursat R, the value at CV resetsto zero and QD is energized.
When power flow occursat LD, the value at PV isloaded into CV and QU is ener-
gized.
NOTE: Only oneinput at atime should be energized.
2-62 Chapter 2 Function/Function Block Description

C_ERRORS

C_ ERRORS
Controlled Stop Errors Motion/ERRORS
C_ERRORS Inputs:. EN (BOOL) - enables execution
1N 0Ky AXIS (USINT) - identifies axis (servo)
1AXIS ERRSH .
Outputs: OK (BOOL) - execution complete

ERRS (WORD) - indicates errors

The ERRS output on the C_ERRORS function is aword, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
thereisan error. The low byte of the word is where the individual errors are
located.

High byte Low byte
The table that follows gives the C-stop errors and their locations.

NOTE: The C_ERRORS can aso be viewed from the tune section of the Servo
setup program. The“E” iswhat appears on the tune screen in Servo setup.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

Chapter 2 Function/Function Block Description 2-63

C_ERRORS

Table 2-9. Controlled stop errors

limit.

Bit Location Hex
Error Description (low byte) Value
(Decimal)*
7(6(5(4|3 (in
LDO)
Part reference error | Move was in progress when a part ref- 8080
erence or a part clear function was (3289%)
called.
Part reference When the dimension for the part ref- E 8040
dimension error erence was converted to feedback (32832)
units, it wastoo big to fit into 29 bits.
Distance or position | When the dimension for the move was E 8020
move dimension converted to feedback units, it wastoo (32800)
error big to fit into 31 bits.
Feedrate error** When the feedrate for the move was E 8010
converted to feedback units per servo (32784)
up-grade, it was too big to fit into 32
bits or it exceeds the velocity limit
entered in setup.
Machine reference | When the dimension for the machine E 8008
dimension error reference was converted to feedback (32776)
units, it wastoo big to fit into 29 bits.
User-defined C-stop | When this bit is set, a user-defined C- E 8004
stop has occurred. (32772)
Negative software | The command position exceeded the 8002
limit exceeded user-defined negative software end (32770)
limit.
Positive software | The command position exceeded the 8001
limit exceeded user defined positive software end (32769)

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

**This error can occur with feedrate override, new feedrate, position, distance,
velocity, or machine reference moves.

2-64

Chapter 2 Function/Function Block Description

C_STOP

C_RESET
Controlled Stop Reset Motion/ERRORS
C_RESET Inputs: EN (BOOL) - enables execution (Typically one-shot)
1N 0Ky AXIS (USINT) - identifies axis (servo)
1AXIS . .
Outputs: OK (BOOL) - execution completed without error

The C_RESET function resets the controlled stop condition and the errors that
caused it. You must always reset any C-stop error that occurs.

C STOP
Controlled Stop Motion/ERRORS
C_STOP Inputs:. EN (BOOL) - enables execution
1N 0Ky AXIS (USINT) - identifies axis (servo)
{AXIS . .
w Outputs: OK (BOOL) - execution completed without error

The C_STORP function will bring the specified axis to a controlled stop based on
the controlled stop ramp entered in setup. Any further movement by the axis will
be prevented until the C-stop condition is reset.

Chapter 2 Function/Function Block Description 2-65

C_STOP?

C_STOP?

Controlled Stop?

Motion/ERRORS

C_STOP? Inputs: EN (BOOL) - enables execution

1N 0Ky AXIS (USINT) - identifies axis (servo)

| ST Outputs: OK (BOOL) - execution completed without error
CSTP (BOOL) - indicates a C-stop is active when set

The C_STOP? function asks if there is a C-stop in effect for this axis.

2-66 Chapter 2 Function/Function Block Description

DATE2STR

DATE2STR
Date to String Datatype/D_TCONV

Inputs: EN (BOOL) - enables execution
OUT (STRING) - output STRING

{EN 0K
JouT———ouT IN (DATE) - value to be converted “
11N Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

DATE2STR

The DATE2STR function converts the value in the variable or constant at IN
to a STRING and places the result in the variable at OUT.

Example of DATE to STRING

Var at IN Value at OUT
D#1995-11-01 1995-11-01

Chapter 2 Function/Function Block Description 2-67

DELETE

DELETE
Delete String/DELETE

e Inputs:. EN (BOOL) - enables execution
| EV OUT (STRING) - output STRING
JoUT———0UT IN (STRING) - input STRING
11N L (INT) - length
in P (INT) - position (cannot equal 0)
1P Outputs. OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The DELETE function is used to delete characters from a STRING. It deletes
characters from the variable at IN. Theinput at L specifies how many
charactersto delete, starting at the position specified by theinput at P. The
resulting (leftover) STRING is placed into the variable at OUT.

An error occursif any of the following istrue:

P=0

P > 255

P > length of IN

L > 255

Lengthof IN - L > length of OUT

Example of delete function

Var at IN Value at L Value at P Var at OUT
stringlong 4 7 string

2-68 Chapter 2 Function/Function Block Description

DELFIL

DELFIL
Delete File lo/COMM

@@CEIL* Inputs:. REQ (BOOL) - enables execution (One-shot)
NAMZ (STRING) - a string containing the complete

{REQ DONE}
pathname
{NAMZ FAIL} o
cral Outputs: DONE (BOOL) - energized if ERR=0

not energized if ERR # 0

FAIL (BOOL) - energized if ERRZ 0
not energized if ERR =0

ERR (INT) - O if data transferred successfully
0if datatransfer unsuccessful

See Appendix B in the software manual for error codes.

The DELFIL function block alowsyou to delete afile from the RAMDISK or

from PiCPro.
At the NAMZ input, enter the complete pathname to delete afile in PiCPro.
With a subdirectory, Without a subdirectory,

PICPRO:c:\sub\filename.ext$00 OF PICPRO:c:filename.ext$00

Or enter the following to delete afile on the RAMDISK.

With a subdirectory, Without a subdirectory,
RAMDISK:sub\filename.ext$00 OF RAM DI SK:filename.ext$00

An empty subdirectory can be deleted with the DELFIL function also.
NOTE: The DELFIL function block cannot be used with the FMSDISK.

Chapter 2 Function/Function Block Description 2-69

DINT2DW

DINT2DW

Double Integer to Double Word Datatype/DINTCONV

Inputs: EN (BOOL) - enables execution

DINT2DW
lev okl IN (DINT) - value to convert
I ool Outputs. OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

The DINT2DW function changes the data type of the value at IN from a
doubleinteger to adoubleword. Theresultisplacedinthevariableat OUT.

DINTZ2INT

Double Integer to Integer Datatype/DINTCONV

Inputs. EN (BOOL) - enables execution

DINT2INT
lev okl IN (DINT) - value to convert
I ol Outputs: OK (BOOL) - execution completed without error
OUT (INT) - converted value

The DINT2INT function changes the data type of the value at IN from a
double integer to an integer. The leftmost 16 bits of the double integer are

truncated. Theresult isplaced in the variable at OUT.

DINTZ2LI

Double Integer to Long Integer Datatype/DINTCONV

Inputs:. EN (BOOL) - enables execution

DINT2LI
lev okl IN (DINT) - value to convert
I ol Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

The DINTZ2LI function converts a double integer into along integer. The sign
bit of the DINT is extended into the leftmost 32 bits of the long integer. The

result is placed in avariable at OUT.

2-70 Chapter 2 Function/Function Block Description

DINT2UDI

DINT2RE
Double Integer to Real Datatype/DINTCONV

DINToRE Inputs: EN (BOOL) - enables execution

| EV IN (DINT) - value to convert
Iiw oL Outputs: OK (BOOL) - execution completed without error “
OUT (REAL) - converted value

The DINTZ2RE function converts a double integer into areal. Theresultis
placed in avariable at OUT.

DINT2SI
Double Integer to Short Integer Datatype/DINTCONV
SIS Inputs:. EN (BOOL) - enables execution
|V IN (DINT) - value to convert
I ot Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value
The DINT2SI function changes the data type of the value at IN from a double
integer to ashort integer. The leftmost 24 bits of the double integer are
truncated. Theresult isplaced in the variable at OUT.
DINT2UDI
Double Integer to Unsigned Double Integer Datatype/DINTCONV
SINTa0D! Inputs:. EN (BOOL) - enables execution
| EV IN (DINT) - value to convert

Outputs: OK (BOOL) - execution complete
OUT (UDINT) - converted value

{IN - ouT

The DINT2UDI function changes the data type of the value at IN from a
double integer to an unsigned double integer. Theresult is placed in the
variable at OUT.

Chapter 2 Function/Function Block Description 2-71

DIRECT

DIRECT
Directory lo/COMM
r D%\EET n Inputs:. REQ (BOOL) - enables execution (One-shot)
g oonel BEG (BOOL) - enable to star_t at beginning of direc-
|- tory. Disable to step through directory.
o eral DIR (STRING) - a string containing the directory
name
{ NAME-NAVE |
lorsrorst NAME (STRING) - (see below)
- DTST (STRING) - (see below)
ool Outputs: DONE (BOOL) - energized if ERR=0
not energized if ERR # 0
FAIL (BOOL) - energized if ERR# 0
not energized if ERR =0
ERR (INT) - O if datatransferred successfully
0 if data transfer unsuccessful
See Appendix B in the software manual for error codes.
NAME (STRING) - astring containing the filename
DTST (STRING) - a string containing the date/time
string
SIZE (DINT) - givesthe size of thefile
SDIR (BOOL) - set if NAME output is a subdirectory
The DIRECT function block alows you to read RAMDISK or FMSDISK file
directory information from the ladder.
The directory name is entered at DIR using one of the formats shown below.
Tolist contentsof a | Tolistthecon- | When the main directory is not the
subdirectory, enter the | tents of the cur- | current directory and youwant tolist
Wh name of the subdirec- | rent directory, the contents of the main directory ,
NeNn tory at sub inthefol- | enter thefollow- | enter the following:
using. lowing: ing:
RAMDISK [RAMDISK:sub\$00 |RAMDISK:$00 | RAMDISK:*.*$00
FMSDISK [FMSDISK:sub\$00 |FMSDISK:$00 |FMSDISK:*.*$00
Set the BEG input in order to start at the beginning of the directory.
Transition the REQ input. This placesthefirst filein NAME, the date/timein
DTST, and thefilesizein SIZE. (SDIR is set when the name at the NAME
output is a subdirectory.)
Turn the BEG off to step through the remaining filesin the directory. When
thelast fileisreached, you can go back to the beginning by setting BEG again.
2-72 Chapter 2 Function/Function Block Description

DIV

DISTANCE

Distance Motion/MOVE
ST Inputs: EN (BOOL) - enables execution (One-shot)
| EVE— AXIS (USINT) - identifies axis (servo or time)
Iaxis auel RATE (UDINT) - feedrate at which motion occurs
|aate (entered in LU/MIN)
{prsT DIST (DINT) - indicates incremental move distance

(entered in LU)

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of distance move for queue

The DISTANCE function moves an axis a specified distance at a specified
feedrate. When the distance move is used with atime axis, the S CURVE
function must be called first.

DIV
Divide Arith/ARITH

Inputs: EN (BOOL) - enables execution

DIV
I DVND (NUMERIC or TIME duration) - dividend
1owD auoT DVSR (same type as DVND if DVND is numeric;
lovsn DINT if DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error
QUOT (same type as DVND) - quotient

The DIV function divides the value of the variable or constant at DVND by the
value of the variable or constant at DV SR, and places the result in the variable
at QUOT. If thereisaremainder it isnot returned. Seethe MOD function.

X DVND
<Y DVSR
Z QuOT

Chapter 2 Function/Function Block Description 2-73

DT2DATE

DT2DATE

Date and Time to Date Datatype/D _TCONV

Inputs: EN (BOOL) - enables execution
IN (DATE_AND_TIME) - value to extract from

Outputs: OK (BOOL) - execution completed without error
OUT (DATE) - extracted date

DT2DATE
{EN 0K
{IN - ouT

The DT2DATE function extracts the DATE from the DATE_AND_TIME
value in the variable or constant at IN, and placesit into the variable at OUT.
Any time values (hours, minutes, seconds) are truncated.

Example of DATE_AND_TIME to DATE

Var at IN Value at OUT
DT#1993-05- D#1993-05-13
13:00:37:44

DT2STR

Date and Time to String Datatype/D _TCONV

Inputs. EN (BOOL) - enables execution
OUT (STRING) - STRING output
IN (DATE_AND_TIME) - value to extract from
Outputs. OK (BOOL) - execution completed without error
OUT (same variable as OUT input)

DT2STR
HEN OKH
10UT_OUT |~
1IN

The DT2STR function converts the value in the variable or constant at IN into
aSTRING, and places the result in the variable at OUT.

Example of DATE_AND_TIME to STRING
Var at IN Value at OUT
DT#1993-05-13:00:37:44 1993-05-13:00:37:44

2-74 Chapter 2 Function/Function Block Description

DWOR2BYT

DT2TOD
Date and Time to Time of Day Datatype/D _TCONV
SraTD Inputs:. EN (BOOL) - enables execution
| EV IN (DATE_AND_TIME) - value to extract from

I ol Outputs: OK (BOOL) - execution completed without error
OUT (TIME_OF _DAY) - extracted value

The DT2TOD function extractsthe TIME_OF DAY from the variable or
constant at IN, and places the result in the variable at OUT. Any date values
(year, month, day) are truncated.

Example of DATE_AND_TIME to TIME_OF_DAY

Var at IN Value at OUT
DT#1993-05- TOD#00:37:44
13:00:37:44
DWOR2BYT
Double Word to Byte Datatype/DWORDCNV
Siasrl Inputs: EN (BOOL) - enables execution
v okl IN (DWORD) - value to convert

I ot Outputs: OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The DWOR2BYT function changes the data type of the value at IN from a
double word to abyte. The leftmost 24 bits of the double word are truncated.
Theresult is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-75

DWOR2DI

DWOR2DI

Double Word to Double Integer Datatype/DWORDCNV

Inputs:. EN (BOOL) - enables execution
IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

DWOR2DI
{EN 0K
{IN - ouT

The DWOR2DI function changes the data type of the value at IN from a
double word to adouble integer. Theresult isplaced inthe variable at OUT.

DWOR2LW

Double Word to Long Word Datatype/DWORDCNV

Inputs. EN (BOOL) - enables execution
IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

DWOR2LW
HEN 0K
1IN OUT

The DWORD2LW function converts a double word into along word. The
leftmost 32 bits of the long word arefilled with zeros. Theresultisplacedina

variable at OUT.

DWOR2RE

Double Word to Real Datatype/DWORDCNV

Inputs:. EN (BOOL) - enables execution
IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (REAL) - converted value

DWOR2RE
HEN OK
1IN OUT

The DWORDZ2RE function converts a double word into areal. Theresultis
placed in avariable at OUT.

2-76 Chapter 2 Function/Function Block Description

DWOR2WO

DWOR2UDI
Double Word to Unsigned Double Integer Datatype/DWORDCNV

Inputs:. EN (BOOL) - enables execution
IN (DWORD) - value to convert

N 0K
I ol Outputs: OK (BOOL) - execution completed without error “
OUT (UDINT) - converted value

The DWOR2UDI function changes the data type of the value at IN from a
double word to an unsigned double integer. Theresult isplaced inthe variable

DWOR2UDI

at OUT.
DWOR2WO
Double Word to Word Datatype/DWORDCNV
DWOR2WO Inputs:. EN (BOOL) - enables execution
lev okl IN (DWORD) - value to convert
I ot Outputs: OK (BOOL) - execution completed without error

OUT (WORD) - converted value

The DWOR2WO function changes the data type of the value at IN from a
double word to aword. Theleftmost 16 bits of the double word are truncated.
Theresult isplaced in the variable at OUT.

Chapter 2 Function/Function Block Description 2-77

D_TOD2DT

D TOD2DT
Concatenate Date and Time of Day Datatype/D _TCONV
S To0e0T Inputs:. EN (BOOL) - enables execution
|- IN1 (DATE) - value to be combined
v outl IN2 (TIME_OF_DAY) - value to be combined
Ine Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - concatenated value

TheD_TOD2DT function concatenates (combines) the value of the variable or
constant at IN1 with the value of the variable or constant at IN2. Theresultis
aDATE_AND_TIME valuethat is placed in the variable at OUT.

Example of concatenate DATE and TIME_OF_DAY

Var at IN Value at IN2 Value at OUT
D#1995-01-02 TOD#03:04:05 DT#1995-01-02-03:04:05

EQ

Equal To Evaluate/ZEQ

Inputs: EN (BOOL) - enables execution
IN1 (ANY except BOOL or STRUCT) - value to be com-
pared
IN2 (sametype asIN1) - value to be compared
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicatesif values are equa

The EQ function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. Thisis an extensible function which

can compare up to 17 inputs.

If al input values are equal, the coil at OUT is energized. If one or more
values are not equal, the coil at OUT is not energized.

2-78 Chapter 2 Function/Function Block Description

E_ERRORS

EXP
Exponential Arith/TRIG

o Inputs:. EN (BOOL) - enables execution
| EVE— LN (REAL/LREAL) - natural log value
Iow wwl Outputs: OK (BOOL) - execution completed without error

NUM (REAL/LREAL) - the number whose natural 1og
isentered at LN

NOTE: The datatypesentered at LN and NUM must match, i.e. if
LN isREAL, then NUM must be REAL.

The EXP function is the inverse of the LN function which calcul ates the
natural log of a number.

E ERRORS
Emergency Errors Motion/ERRORS

E ERRORS InpUtS: EN (BOOL) - enables execution

,E@ oKL AXIS (USINT) - identifies axis (servo or digitizing)
Iaas ersl - Outputs: OK (BOOL) - execution completed without error
ERRS (WORD) - identifies errors

The ERRS output on the E_ERRORS function is aword, or two bytes, as
shown below. The MSB bit (indicated by the “x”) in the high byte word
indicates that thereis an error. The low byte of the word is where the
individual errors are located.

High byte Low byte
The table that follows gives the E-stop errors and their locations.

NOTE: The E_ERRORS can also be viewed from the tune section of the
Servo setup program.

The Bit Location column indicates which bit is set in the low or high byte of
the word connected to each error. The“E” iswhat appears on the tune screen
in Servo setup.

The Hex Value column represents the form the error is returned in while
monitoring the ERRS output of the function in your ladder program.

Chapter 2 Function/Function Block Description 2-79

E_ERRORS

The error identified at the LSB position isloss of feedback. Thisisthe only E-
stop condition for adigitizing axis. Usethe E-STOP? and the E_RESET
functions to indicate and reset the E-stop condition.

Table 2-10: Emergency stop errors

Bit Location Hex *
N Value
Error Description (low byte) (Decimal)
8|7|6(5|4(3|2|1|(in
LDO)
(not used)
(not used)
SERCOS | Cyclic data synchronization error E 8020
error (32800)
SERCOS |SERCOS drive E-stop - Status word bits 15, 14, E 8010
error and 13 # 1 1 O respectively. (32784)
User-set | An E-stop defined by you with the E-stop func- E 8008
tion has occurred. (32776)
Overflow |A dave delta overflow during runtime has E 8004
error occurred. This problem is most likely to occur (32772)
iIf you are moving at a high rate of speed and/or
the slave distance is very large compared to the
master distance.
There are two conditions that can set this bit.
1. In FU, if the master moved position times
the slave distance entered is greater than 31
bits.
: mastermoved x SDIS
2. I.n FU, if the MDIS
Is greater than 16 bits.
Excess When an excess following error has occurred, E| |8002
error the axis has exceeded the limit entered in the (32770)
Servo setup program as the following error
limit. This represents the maximum distance
the commanded axis position can be from the
actual axis position.
Loss of|A loss of feedback from the feedback device E| 8001
feedback |hasoccurred. Availablefor servo and digitizing (32769)
axes.

NOTE: If an E-stop error occurs using the stepper axis module, the command
to the stepper will be zeroed. There is no loss of feedback or excess error with
the stepper axis.

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

2-80 Chapter 2 Function/Function Block Description

E_STOP?

E_ RESET
Emergency Stop Reset Motion/ERRORS
£ AESET Inputs: EN (BOOL) - enables execution (Typically one-shot)
7EN7 okl AXIS (USINT) - identifies axis (servo or digitizing)
{aws Outputs: OK (BOOL) - execution completed without error
The E_RESET function resets the E-stop condition and al the errors that
caused it. After an E-stop error occurs, you must always reset it.
NOTE: The E_RESET function will close the loop if a CLOSLOOP function
is executed before the E_STOP.
E STOP
Emergency Stop Motion/ERRORS
oo Inputs. EN (BOOL) - enables execution (Typically one-shot)
|- AXIS (USINT) - identifies axis (servo)
1ax1s Outputs: OK (BOOL) - execution completed without error
The E_STOP function will open the servo loop and zero the analog outpui.
E STOP?
Emergency Stop? Motion/ERRORS

— Inputs: EN (BOOL) - enables execution

7EN7 okl AXIS (USINT) - identifies axis (servo or digitizing)
Iaas esel - Outputs: OK (BOOL) - execution compl eted without error
ESTP (BOOL) - indicates an E-stop is active when set

The E_STOP? function asksif thereis a E-stop in effect for this axis.

Chapter 2 Function/Function Block Description 2-81

FAST_QUE

FAST QUE

Fast Input Queue Motion/QUE
T 0E Inputs:. EN (BOOL) - enables execution (One-shot)
I B okl AXIS (USINT) - identifies axis to be affected by the fast
Lais input (servo)

This can either be the same axis as FAST or a second axis.
FAST (USINT) - identifies axis with fast input

NOTE: Fast input on axis feedback required.

DIST (DINT) - the distance the fast input axis must travel
after the fast input occurs (entered in LU)

Range of £4,194,303 FU (A “0” may be entered if no dis-
tance needs to be covered by the fast input axis.)

NOTE: A programming error will be generated if the axis
moves more than 65,535 FU in the opposite direction of
what is entered at DIST.

Outputs: OK (BOOL) - execution completed without error

{FAST
4DIST

The FAST_QUE function allows you to manage the queues based on the
occurrence of afast input to the feedback module for an axis. Thisfunction
can be used to:

1. Start amove

2. Go from one move to another
If the first move completes before the fast input occurs, the second move
will begin just asif the FAST_QUE function had not been called.

3. End amove
If the fast input does not occur, the move will end in the normal way.

Using the fast input to trigger one of the above provides a faster response time
than is possible when managing the queues from the ladder.

The update rate entered in setup for the axisidentified at AXIS and the axis
identified at FAST must be the same.

NOTE: Aninternal bit remains on for eight updates after afast input event
occurs. If the FAST_QUE is called during those eight updates, the bit is
ignored until it changes state again. Therefore, to ensure that you do not missa
fast input event, there should always be nine or more updates between events.
(Oneiteration equals eight updates.)

When the FAST_QUE iscalled, a“holding” mode for any of the three actions
isin effect until the following two conditions are met:

« Thefast input on the axisidentified at FAST occurs.

2-82 Chapter 2 Function/Function Block Description

FAST_QUE

« TheFAST axis has moved the designated distance entered at DIST.
The holding mode is cleared when both of these conditions are met and it is
then possible to manipul ate the moves in the queue(s) in one of the following

ways.
To start amove, follow these steps:

Step 1. Call the FAST_QUE function.

Step 2. Put the move to occur on the fast input in the active queue.

The move will start after the fast input occurs and the FAST axis has moved
the specified distance.

If the fast input occurs before the FAST_QUE is called, it will be ignored.
You must call the FAST_QUE before the fast input occurs.

To move from one move to another, follow these steps:

Step 1. Put the first move in the active queue. It will begin.
Step 2. Call the FAST_QUE function.

Step 3. Put the second move in the next queue.

The first move will be aborted and the second move will begin after the fast
input occurs and the fast input axis has moved the specified distance.

Again, the FAST_QUE function must be called before the fast input occurs or
it will beignored until the next fast inpuit.

To end amove, follow these steps:
Step 1. Put the move in the active queue. 1t will begin.

Step 2. Call the FAST_QUE function. The move will end when the fast in occurs and
the axis moves the distance entered at DIST.

Do not put any move in the next queue until after the fast input occurs. If you
do, the second move will begin when the fast input occurs as described above.

A programming error (P_ERRORS function) will occur on the axis identified
at AXIS on the FAST_QUE function if the fast axis travelsin the wrong
direction more than 65,535 FU. If the axis continued to move in the wrong
direction, amove could be started unexpectedly.

It isimportant that you ensure this does not occur. Do this by programming an
ABORTALL function at the occurrence of this programming error to remove
all moves from the queues.

The programming error must be reset with the P_RESET function.

NOTE: The move will travel the distance specified in DIST and then you abort
the move. Thetotal distance traveled beyond the fast input will equal the DIST
value plus whatever distance it takes to decel.

Chapter 2 Function/Function Block Description 2-83

FAST_REF

FAST REF

Fast Input Reference (Machine Reference) Motion/REF

hT FEF Inputs. EN (BOOL) - enables execution (One-shot)
JIEN) okl AXIS (USINT) - identifies axis (servo or digitizing)
NOTE: Fast input on axis feedback required.

IAXIS QUEL

IpLUs PLUS (BOOL) - indicates direction of motion to refer-
OATE ence switch

{oim RATE (UDINT) - feedrate a which motion occurs

(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest

resolver null or the next encoder index mark after the fast

input occurs. Itisentered in LU. If DIM is outside the

range of -536,870,912 to 536,870,911 FU, the OK will

not be set.

OPTN (WORD) - provides referencing options
Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of reference move for queue

40PTN

The fast input reference is amachine reference. It will cause a servo axisto
move in the direction (PLUS) and at the feedrate (RATE) specified to the
reference switch. The reference switch is connected to the fast input on the
feedback module. When the switch closes, the position of the axisis recorded
based on the nearest null of the resolver or the next index mark of the encoder.
The value entered at DIM is assigned to this position.

If the axisisadigitizing axisor if "no motion™ has been selected at OPTN (see
below), this function does not cause motion. Y ou must use other methods of
moving the axisto the reference switch. Theinputs PLUS and RATE are
ignored when no motion is selected.

A fast reference done with the FAST _REF function monitors the axis until a
fast input on the feedback module occurs. How the fast input respondsis
defined by variable 19 in the WRITE_SV function. The default isto respond
to therising edge. In contrast, the ladder reference (see LAD_REF and
REF_END functions) monitors the axis until the REF_END function is called
in your ladder program.

NOTE: If an encoder isthe feedback device, the axis will continue to move
after the switch closes until the next index mark is seen.

The OPTN input provides the following options:

Option Binary value Hex value
1. Ignoreindex/null 00000000 00000001 0001
2. Nomotion 00000000 00000010 0002

2-84 Chapter 2 Function/Function Block Description

FAST_REF

If no option is desired, enter a“0.”

Option inputs
Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark
of an encoder or the null of aresolver during the reference cycle. If bit 0is set
to“1,” thereference position assigned by DIM will be assigned to the position
the axisis at when the fast input makes its transition.

With an encoder, the axis will stop immediately after the fast input transitions.
The axis does not continue movement until the index mark isreached. NOTE:
This makes the reference switch position given with the READ_SV function
invalid.

With aresolver, the reference switch position available with the READ SV
function isvalid.

No motion

The no motion option allows a reference to occur without any motion. The
axisis put into amode whereby it iswatching for the conditions of areference
cycle.

Even though no move is placed in the queue, a queue must be available. A
move will beinitiated by the ladder following the reference cycle.

Oncethe call is made, the reference complete flag goes low until the fast input
occurs and the index mark (unless “ignore index” option isactive) isreceived.
The reference compl ete flag goes high once these events occur and the axis
position takes on the reference value at DIM.

If the movetypeis VEL, RATIO_GR, LAD_REF, or FAST_REF, the new
axis position assigned by the no-motion reference has no effect on the move
itself. With aDISTANCE move, the actual distance covered will be the same.
If ano-motion reference occurs during a position move, the endpoint will be
reached.

If ano-motion referenceisused during aRATIO_PRO move, thelock on point
of the slave axis to the master axis may be undefined. Thisis not
recommended.

NOTE: A fast reference can also be performed on adigitizing axis. Y ou must
cause the axis to move and the fast input to occur. Use variable 29 with the
READ_SV function to read the reference switch position. REF_DNE? can
also be used with digitizing axes.

Setting up a machine reference switch

A reference switch is needed for each axis requiring a machine reference.
When the switch is tripped, the position of the axisisindicated by the signal
from the feedback device coupled to the axis. The PiC referencesto the
nearest null of aresolver or the next index mark of an encoder. If the switchis

Chapter 2 Function/Function Block Description 2-85

FAST_REF

improperly placed in relation to the feedback device, areference could take
place that was one revolution off of the previous reference.

To ensure that you will always get an accurate repeatable reference, there are
certain factors to keep in mind when setting up the reference switch:

» With encoders - the software calculations assign the reference value of the
function to the first index mark following switch closure. The reference
switch should be positioned so that the count bandwidth is within the range
of 25 to 75% of the total count. If the total count is 1000 per rev, the
switch location should be between 250 and 750 counts. SeeA in Figure 2-
5.below.

» With resolvers - the software calculations assign the reference value of the
function to the nearest null following the switch closure. The reference
switch should be positioned so that the count is greater than 3000 or less
than 1000. The switch location is incorrect if the resolver signal is
between 1001 and 2999. See B in Figure 2-5. below.

Figure 2-5. Referencing positions for encoders and resolvers

Machine reference

should occur in this half.
1000
Encoder 3000

750 250
§o
g Null
Ir?fr)li Machine reference
should occur in this half.
A B

AA585-2190

Note that the referencing position isin different halves for the encoder and
resolver. That is because the encoder references to the next index mark and
you want to avoid referencing in the same half of the encoder revolution asthe
index mark. The resolver references to the nearest null so you want to avoid
referencing around the half-rev point.

» After a machine reference is completed, the READ _SV function (see
servo data functions) can be used in your ladder to read the reference
switch position after the switch closes by entering variable 29 in the VAR
input and viewing the RSLT output in PICPro. The RSLT output isin feed-
back units. For an encoder the reference switch position is the distance
between the switch closure and the index mark.

For a resolver the reference switch position is the position of the resolver
when the switch closed.

If the reference switch position read from the READ_SV function is between
25% and 75% for the total encoder count or less than 1000 or more than 3000

2-86 Chapter 2 Function/Function Block Description

FAST_REF

for aresolver, than your reference switch is positioned properly to ensure
accurate, repeatable referencing.

If the position read is outside of these ranges you can change the position of the
feedback device when the switch transitions by either moving the reference
switch or the feedback deviceitself. Perform the machine reference again and
read the reference switch position to seeiif it is now within the range.

NOTE

If in adjusting the location of the reference switch or the feedback de-
vice, you find that the result of variable 29 increases when you expect
it to decrease after performing the machine reference, move the de-
vice in the opposite direction until the reading is acceptable.

One factor to keep in mind when performing a machine reference from the
ladder with the LAD_REF function is there can be a lag time between the
actual closing of the reference switch and the software calculations. Thisis
caused by up to 32 ms of update time and up to 200 ms of scan time. (200 ms
is the maximum time limit for one scan before aloss of scan occurs.) This
could have an affect on the repeatability of your reference especially when
referencing at high velocities. The example which followsiillustrates this.

Assume an axis using resolver feedback is moving at avelocity of 50000
counts per minute.

NOTE: 50000 C/MIN = .83333 C/ms.
Looking at an example with the maximum update and scan times,
(32 ms+ 200 ms) * .83333 C/ms=193.3330r 193 C

If the READ_SV function gave areading of 1000 C for the reference switch
position, the actual position of the device when the switch closed could be up
to 1193 counts (or 807 countsiif referencing in the negative direction).

By using alower velocity, the number of countsislowered. For example, if
the velocity is 5000 C/MIN, then the count is:

NOTE: 5000 C/MIN =.08333 C/ms.
(32 ms+ 200 ms) * .08333 C/ms=19.330r 19C

The actual position of the reference could be up to 1019 counts (981 counts if
referencing in the negative direction).

When the machine reference is done using the fast input with the FAST _REF
function, the recording of the reference switch transition is not affected by
what the ladder scan is executing at thetime. Thereisvirtually no lag between
the time the reference occurs and the time it isrecorded. Thisisavery
accurate method of referencing. The only time consideration for the fast input
isashort (50 pys) turn-on time.

NOTE: This function cannot be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-87

FB_CLS

Thefollowing FB_XXX function/function blocks are used with the DeviceNet
module to support field bus communications. They are found in the Fbinter
(Field Bus Interface) library.

FB_CLS

Field Bus Close

Fbinter/FB_CLS

CLOSE— | nputs:

REQ DONE
SLOT FAIL —
ERRF

Outputs:

REQ (BOOL) - enables execution (one-shot)

SLOT (USINT) - slot number (use same slot number
entered for FB_OPN)

DONE (BOOL) - set when communications with the
field bus are closed

FAIL (BOOL) - set if an error occurred
ERR (INT) - error number

The FB_CL S function block is used to close communications with the Field
Bus. You must call the FB_OPN function block to re-establish field bus

communications.

The ERR output will be #0 if an error occurred.

ERR# Description

What to do/check

0 No error

input.

1 No DeviceNet module was found at|Ensure that a DeviceNet moduleisinstalled in
the dlot number entered at SLOT|the correct dlot.

2-88 Chapter 2 Function/Function Block Description

FB_OPN

FB_OPN
Field Bus Open

Fbinter/FB_OPN

REQ DONE

available)
SLOT FAIL

ERR

mode.

Inputs: REQ (BOOL) - enables execution (one-shot)
SLOT (USINT) - dot number (3 - 13 main rack only

Outputs: DONE (BOOL) - set when DeviceNet moduleisin RUN

FAIL (BOOL) - set if an error occurred
ERR (INT) - error number

The FB_OPN function block is used to open communications with the field
bus placing the DeviceNet module in the RUN mode.

The ERR output will be #0 if an error occurred.

ERR# Description What to do/check
0 No error
1 No DeviceNet module was found at|Ensure that the DeviceNet module is installed

the dot number entered at SLOT
input.

in the correct dot.

No configuration file for this slot.

Ensure that you have a .UCT (configuration)
file with the same name as your .LDO file.

Chapter 2 Function/Function Block Description 2-89

FB_RCV

FB_RCV

Field Bus Receive

Fbinter/FB_RCV

FB_RCV
HEN OKH
4SLOT ERR|—

Inputs:

Outputs:

EN (BOOL) - enables execution

SLOT (USINT) - dot number (use same slot number as
entered for FB_OPN)

OK (BOOL) - execution completed without error

ERR (INT) - error number

The FB_RCV function receives all datafrom the configurator file indicated by
Tag names.

The ERR output will be #0 if an error occurred.

ERR#

Description

What to do/check

No error

No DeviceNet module was found at|Ensure that the DeviceNet module is installed
the slot number entered at SLOT|in the correct dot.

Input.

2-90

Chapter 2 Function/Function Block Description

FB_SND

FB_SND
Field Bus Send Fbinter/FB_SND
=0 Inputs: EN (BOOL) - enables execution
I B okl SLOT (USINT) - dot number (use same slot number as
|- entered for FB_OPN)
Outputs:. OK (BOOL) - execution completed without error
ERR (INT) - error number
The FB_SND function is used to send dataindicated by Tag namesin the F
configurator file.
The ERR output will be £0 if an error occurred.
ERR# Description What to do/check
0 [Noerror

1 No DeviceNet module was found at|Ensure that the DeviceNet module is installed
the slot number entered at SLOT|in the correct dot.
Input.

Chapter 2 Function/Function Block Description 2-91

FB_STA

FB_STA

Field Bus Status

Fbinter/FB_STA

FB_STA
HEN OKH
4SLOT FAIL{—
ONLI

ERR|—
STATH

Inputs: EN (BOOL) - enables execution

SLOT (USINT) - dot number (use same slot number as
entered for FB_OPN)

Outputs. OK (BOOL) - execution completed without error

FAIL (BOOL) - set if an error occurred

ONLI (BOOL) - set if the DeviceNet module is commu-
nicating with nodes.

ERR (INT) - number of error
STAT (DWORD) - status information

The FB_STA function allows you to check if the Device Net moduleis
communicating with nodes and to check field bus status information.

The ERR output will be #0 if an error occurred.

ERR# Description What to do/check

0 No error

input.

1 No DeviceNet module was found at|Ensure that the DeviceNet module is installed
the slot number entered at SLOT|in the correct slot.

The following tables define the value of status information that can appear at
the STAT output based on the the double word format shown below.

MSB

LSB2 LSB1 LSBO

NET_STATUS FLAGS |NET_STATUS CODE IF_STATUS FLAGS IF_STATUS CODE

NET_STATUS_FLAGS

NET_STATUS FLAGS indicates various condition related to the DeviceNet
module network interface. Each DeviceNet module supports a subset of the
status flags as appropriate.

Bit Name Description
0 Warning The communication error warning threshold has been exceeded.
1 NO_POWER |Bus power is not present.
2 NO_BUS |Busisnot connected.
3-7 (Reserved)
2-92 Chapter 2 Function/Function Block Description

NET_STATUS_CODE

NET_STATUS CODE indicates the status of the DeviceNet module network
interface. Each DeviceNet module supports a subset of the status codes as

FB_STA

appropriate.
Value Name Description

00 OFFLINE Network interface is offline.

01 OFFLINE_FAULT |Network interface is offline due to a network fault.

02 |OFFLINE _BAD_CFG [Network interface is offline due to a configuration fault
(invalid or duplicate station address, invalid baud rate, invalid
DIP-switch data, etc.)

03 ONLINE Network interface is online, no faults detected.

04 ONLINE_FAULT [Network interface is online, one or more network services has
failed.

05 ONLINE_ACTIVE [Network interface is online and is exchanging data, no faults
detected.

Any failure of a secure service is reported.

06 ONLINE_IDLE Network interface is online and is exchanging data, one or
more services is receiving an idle indication, no faults
detected.

07 | ONLINE_INACTIVE |Network interface is online, one or more previously active ser-
vices has been suspended, no faults detected.

08-OFFh (Reserved)

Chapter 2 Function/Function Block Description 2-93

FB_STA

IF_STATUS_FLAGS

IF_STATUS FLAGS indicates various conditions related to the DeviceNet
module end of the data exchange interface.

Bit Name Description
0 EVENT_LOST [An event was lost due to a full event queue. This flag is cleared
when the data exchange interface is closed.
1-7 (Reserved)

IF_STATUS_CODE

IF_STATUS_ CODE indicates various conditions related to the DeviceNet
module data exchange interface.

Value Name Description
00 CLOSED Data exchange interface is closed.
01 OPEN Data exchange interface is open.
02 |HEARTBEAT_ |Data exchange interface is faulted due to heartbeat timeout. (Same
FAULT behavior as closed.)
03h - (Reserved)
OFFh
2-94 Chapter 2 Function/Function Block Description

FIND

FIND
Find String/FIND

Inputs: EN (BOOL) - enables execution

FIND
I okl IN1 (STRING) - STRING to search
v outle IN2 (STRING) - STRING to find
Ine Outputs: OK (BOOL) - execution completed without error

OUT (INT) - position

The FIND function isused to find a STRING that is contained in another
STRING. It searches within the variable at IN1 for the first occurrence of the
variable at IN2. If the STRING isfound, the position of itsfirst character is
placed into thevariableat OUT. If the STRING isnot found azeroisplacedin

the variable at OUT.
An error occursif:

Lengthof IN1 = O

Lengthof IN2 = O

Length of IN2 > length of IN1

Example of find function
Var at IN1 Var at IN2 Var at OUT
stringlstring2 ring 3

Chapter 2 Function/Function Block Description 2-95

FRESPACE

FRESPACE
Free Space 10/COMM
A€ 1 Inputs: REQ(BOOL) - enables execution (One-shot)
IrReq DonEl NAMZ (STRING) - a string containing the complete
pathname
INAMZ FAIL} o
Outputs:. DONE (BOOL) - energized if ERR =0

ERRF
QrY+

not energized if ERR # 0

FAIL (BOOL) - energized if ERRZ 0
not energized if ERR =0

ERR (INT) - O if data transferred successfully
0if datatransfer unsuccessful

QTY (DINT) - number of bytes available on the RAM-
DISK or FMSDISK

See Appendix B in the software manual for error codes.

The FRESPA CE function block alows you to read at the QTY output how
many bytes of memory are available on the RAMDISK or FMSDISK.

At the NAMZ input, enter the following to check the available free space on
the RAMDISK or FMSDISK:

For RAMDISK RAM DI SK:$00
For FMSDISK FM SDI SK:$00

2-96

Chapter 2 Function/Function Block Description

GETDAY

GE
Greater Than or Equal To Evaluate/GE

Inputs:. EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2 (sametype asIN1) - value to be compared
Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are greater than or
egual to successive values

The GE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. Thisis an extensible function which
can compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17
If INL>IN2>IN3=...>IN17, the coil at OUT is energized.
Otherwise the coil at OUT is not energized.

GETDAY
Get Day Xclock/GETDAY

pr— Inputs: EN (BOOL) - enables execution

Ien okl WEEK (BOOL) - determines day of week or year
lueek oavle Outputs: OK (BOOL) - execution completed without error
DAY (UINT) - value extracted

The GETDAY function outputs the day of the week or the day of the year.

If power flow exists at WEEK, the (number of) the day of the week is output to
thevariable at DAY. The numbers0 - 6 correspond to Sunday - Saturday.

If power flow does not exist at WEEK, the (number of) the day of the year is
output to the variable at DAY . The numbers are from 1 - 365 or 366.

Chapter 2 Function/Function Block Description 2-97

GR_END

GR_END
Gear End Motion/RATIOMOV

S B0 Inputs. EN (BOOL) - enables execution (One-shot)
|- AXIS (USINT) - identifies axis (servo)
Iaxis Outputs: OK (BOOL) - execution completed without error

The GR_END function ends the ratio gear move. When itiscalledinthe
ladder, the slave axis will stop moving immediately with no ramping.

A ratio gear move may also be stopped by aborting the move:

« with no movein the queue. The ratio gear move will ramp down at the
default deceleration rate and motion will stop.
OR

 with another move in the queue. The velocity will ramp to the new move
rate and continue with the new move or the velocity will step and continueif
amaster/slave moveis next.

NOTE: A gear ratio move may also be ended withaSYN_END function. Itis

possible to specify the point at which the slave should drop out of

synchronization with SYN_END.

GT
Greater Than Evaluate/GT

Inputs:. EN (BOOL) - enables execution
IN1 (ANY except BOOL or STRUCT) - value
to be compared
IN2 (sametype asINL1) - value to be compared
Outputs: OK (BOOL) - execution completed without
error

OUT (BOOL) - indicates if values are greater
than successive values

The GT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. Thisis an extensible function which
can compare up to 17 inputs. :

For the inputs at IN1, IN2, ...IN17
If IN1>IN2>IN3>...>IN17, thecoil at OUT is energized.
Otherwise the coil at OUT is not energized.

2-98 Chapter 2 Function/Function Block Description

HOLD_END

HOLD
Feed Hold Motion/MOVE_SUP
0D Inputs: EN (BOOL) - enables execution (Typically one-shot)
| EVE— AXIS (USINT) - identifies axis (servo)
{aws Outputs. OK (BOOL) - execution completed without error
The HOLD function tells the iterator to stop iterating the current move on the
specified axis. It will ramp down at the set decel rate. This function works
with the distance, velocity, and position moves.
HOLD_END

Feed Hold End Motion/MOVE_SUP

Soeo] !mputs: EN (BOOL) - enables execution (Typically one-shot)
v ol AXIS (USINT) - identifies axis (servo)
1ax1s Outputs: OK (BOOL) - execution completed without error

The HOLD_END function tells the iterator to resume iterating the current

move on the specified axis. It will ramp up at the set accel rate. Thisfunction
works with the distance, velocity, and position moves.

It works in conjunction with the feed hold function listed previously.

Chapter 2 Function/Function Block Description 2-99

INSERT

INSERT
Insert String/ZINSERT
SERT Inputs: EN (BOOL) - enables execution
I OUT (STRING) - output STRING
JoUT-——ouT IN1 (STRING) - STRING to insert into
InY IN2 (STRING) - STRING to insert
11ne P (INT) - position after which insert occurs
1P Outputs. OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The INSERT function isused to insert a STRING into another STRING. The
variable at IN2 is placed within the variable at IN1, starting after the position
specified by P. Theresulting STRING is placed into the variable at OUT.

The variable at IN2 must be unique from the variable at OUT, or an error will
occur.

An error will also occur if:

P > 255

P > length of IN1

IN2 = OUT

Length of IN1 + length of IN2 > length of OUT

Examples of insert function

var at IN1 value at IN2 value at P var at OUT
stringstring2 1 6 stringlstring2
stringstring2 1 0 1stringstring2

2-100 Chapter 2 Function/Function Block Description

INT2SINT

INT2DINT
Integer to Double Integer Datatype/INTCONV
NI Inputs:. EN (BOOL) - enables execution
| EV IN (INT) - value to convert

I o Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The INT2DINT function changes the data type of the value at IN from an
integer to adouble integer. The sign of the integer is extended into the
leftmost 16 bits of the double integer. The result is placed in the variable at
OUT.

INTZ2LINT
Integer to Long Integer Datatype/INTCONV

oL Inputs. EN (BOOL) - enables execution

len okl IN (INT) - value to convert

I ourl Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

TheINT2LINT function converts an integer into along integer. The sign bit of
the INT is extended into the leftmost 48 bits of the long integer. Theresult is
placed in avariable at OUT

INT2SINT
Integer to Short Integer Datatype/INTCONV
NIoSINT Inputs. EN (BOOL) - enables execution
|V IN (INT) - value to convert

I ot Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

The INT2SINT function changes the data type of the value at IN from an
integer to a short integer. The leftmost 8 bits of the integer are truncated. The
result is placed in the variable at OUT.

Chapter 2 Function/Function Block Description 2-101

INT2UINT

INT2UINT

Integer to Unsigned Integer Datatype/INTCONV

Inputs: EN (BOOL) - enables execution

INT2UINT
lev okl IN (INT) - value to convert
I ol Outputs: OK (BOOL) - execution completed without error

OUT (UINT) - converted value

The INT2UINT function changes the data type of the value at IN from an
integer to an unsigned integer. The result is placed in the variable at OUT.

INT2WORD

Integer to Word Datatype/INTCONV

Inputs:. EN (BOOL) - enables execution
IN (INT) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

INT2WORD
HEN 0K
1IN OUT

The INT2WORD function changes the data type of the value at IN from an
integer to aword. Theresult isplaced in the variable at OUT.

IN_ POS?
In Position Motion/MOVE_SUP
T Inputs:. EN (BOOL) - enables execution
| FEV— AXIS (USINT) - identifies axis (servo or time)
Iaas mesl Outputs: OK (BOOL) - execution completed without error
INPS (BOOL) - indicates if the axisisin position if it

is within the bandwidth established in setup and
including any filter following error and the propor-
tional gain position, and both queues are empty

The IN_POS? function asks the question “ Are both the active and the next que
empty and isthe position within the setup parameter?’ If the output at INPSis
set, the axisisin position. If not, the axisis not in position.

For aTIME axis, the output at INPS will be set if a Distance, Position, or
Velocity moveis not in progress.

2-102 Chapter 2 Function/Function Block Description

IPACCEPT

The IPXXXX function blocks are used to communicate from application to application using
Giddings & Lewis'simplementation of the BSD socket interface.

IPACCEPT
(IP Accept) 10/SOCKETS
e Inputs. REQ(BOOL) - requests execution (One-shot)
Irea oonel HNDL (UINT) - socket handle from IPSOCK function
block
{HNDL FAIL}
Lip7_1p7l IPZ (STRING) - holds the remote node I P address
cnl Outputs: DONE (BOOL) - execution completed without error
HNDL L FAIL (BOOL) - energized if and only if errisz 0

IPZ (STRING) -same area as IPZ input, with zero ter-
minated string inserted

ERR (INT) - error number if FAIL isset
HNDL (UINT) - new socket handle for connection

The IPACCEPT function block is used by the TCP server to accept incoming
connect requests. It is used after the IPSOCK and the IPLISTEN function
blocks. It removes the next connect request from the queue (or waits for one),
creates a new socket for the connection, and returns a handle to that new

socket.

The TCP/IP stack will check for an available connect request assigned to the
socket specified in HNDL. If arequest isfound, anew socket will be created.
If no request is found, the scan will continue until arequest isfound.

If anew socket cannot be created, the scan will continue until there is a socket
available.

The Host node address will be returned at |PZ.

Once the new socket is no longer needed, the application must call the
IPCLOSE function block in order to free that socket.

Chapter 2 Function/Function Block Description 2-103

IPCLOSE

IPCLOSE

(IP Close) 10/SOCKETS
*WEOE Inputs. REQ (BOOL) - requests execution (One-shot)
Ireq DONEL HNDL (UINT) - socket handle from the IPSOCK
Lol FarLl function block

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL is set

ERRF

The IPCLOSE function block is used by an application to terminate a
communication session for the socket specified at HNDL. Any unread data at a
socket will be discarded. Once the IPCLOSE function block is called, the
socket handleis no longer valid and free to be reused by a subsequent IPSOCK
or IPACCEPT call.

2-104

Chapter 2 Function/Function Block Description

IPCONN

IPCONN
(IP Connection) 10/SOCKETS
fN?gEOW Inputs:. REQ (BOOL) - requests execution (One-shot)
lrea oonel HNDL (UINT) - socket handle from the 1PSOCK
function block
{HNDL FAIL}
lhos? eral HOSZ (STRING) - name or address of the target host,
. zero terminated
PORT (UINT) - port number on the target host

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL is set

The IPCONN function block is used by a client application to connect to a
remote server by specifying the remote endpoint address for a socket. If used
with a TCP socket, the three-way TCP handshake isinitiated. If used with a
UDP socket, it simply fillsin the target endpoint (address and protocol port).

The TCP/IP protocol stack will obtain the endpoint address for the named host
and connect to the requested protocol port (if the preceding call to the IPSOCK
function block had the TYPE set to 1 for TCP).

In the absence of DNS/DHCP, the TCP/IP protocol stack will keep its own
route table to nearby neighbors for peer-to-peer connections.

Chapter 2 Function/Function Block Description 2-105

IPHOSTID

IPHOSTID

(IP Host Identification)

10/SOCKETS

{REQ DONE |
45LOT FAILFE
{CHAN ERR}
{NAMZ

—NAME ——
IPHOSTID

Inputs:. REQ (BOOL) - requests execution (One-shot)
SLOT (USINT) - slot number of the resource
CHAN (USINT) - channel number for thisNAME

NAMZ (STRING) - name of this resource, zero termi-
nated

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris#z 0
ERR (INT) - error number if FAIL is set

The IPHOST function block is optional and not required to be used. It assigns
aname to a communication resource. If there are multiple communication
resources in use, the IPHOST function block must be called for each one so
that a different nameis assigned to each resource.

The SLOT input is used to select the physical location of the TCP/IP
communication module to use. There may be up to two in the system.

The CHAN input is used to select one of several possible communication
resources. The actual assignments will be an on-going, upward compatible
assignment of numeric assignment to a physical communication resource.

Channel [Description
0 Default ethernet connection (currently BNC)
1 10-Base-T connection (twisted pair)
2 10-Base-5 connection (15-pin AUI)
3 10-Base-2 connection (BNC coax)
4 Modem port

The NAMZ input is used to assign a TCP/IP address to this resource. If a
Domain Name Server (DNS) or DHCP isin operation, aname may be inserted.
Otherwise, an | P address in dotted decimal notation is required. Thisinput
variable must be a zero terminated string. The loop-back resource shall be
predefined and named localhost at address 127.0.0.1. Implementation of the
localhost resource still requires a TCP/IP protocol stack running on a
communication module or ethernet module.

2-106

Chapter 2 Function/Function Block Description

IPIP2ZNAM

IPIP2ZNAM

(IP IP to Name) I0/SOCKETS
TWEQF Inputs: REQ (BOOL) - requests execution (One-shot)
Inea oonel IPZ (STRING,) - IP address, zero terminated
1Pz FAILL CNT (INT) - Size of the HOSZ buffer

It Emal HOSZ (STRING) - receives the host name
Ihosz-oszl Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL is set

HOSZ (STRING) - receives the host name

The IPIP2NAM function block allows the application to obtain the host name
when you supply the IP address. -
NOTE: You must have a DNS (Domain Name Server) configured in the

system and available on the network to use this function block.

Chapter 2 Function/Function Block Description 2-107

IPLISTEN

IPLISTEN
(IP Listen) 10/SOCKETS
TW%TW Inputs:. REQ (BOOL) - requests execution (One-shot)
lrea oonel HND_L (UINT) - socket handle from the IPSOCK
function block
{HNDL FAIL} _
le el QUE (UINT) - depth of queue (maximum of 5)
Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL is set

The IPLISTEN function block is used to make a socket passive (i.e., ready to
accept incoming connect requests). It binds the socket defined in HNDL to the
port defined by the protocol port (PROT) when the socket is created with the
IPSOCK function block. For UDP it binds and for TCP it binds and also
prepares for connects. It also sets the size of a queue used to buffer multiple
connect requests while a server processes the first one.

The socket specified in HNDL is prepared to service remote requestsfor aTCP
connection. The number of connect requests that may be buffered is defined by
the QUE input. The IPACCEPT function block can be used to remove connect
requests from the queue.

2-108 Chapter 2 Function/Function Block Description

IPNAM2IP

IPNAMZ22IP
(IP Name to IP) 10/SOCKETS
TWEQF Inputs:. REQ (BOOL) - requests execution (One-shot)
lrea oonel HOSZ (STRING) - name of host, zero terminated
1HoSZ FAIL} CNT (INT) - size of the HOSZ buffer
lont Erml IPZ (STRING) - receives the | P address
lipz-—-1pz1 Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL is set
IPZ (STRING) - IP address, zero terminated

The IPNAM2IP function block allows the application to obtain an | P address
when you supply the host name. -
NOTE: You must have a DNS (Domain Name Server) configured in the

system and available on the network to use this function block.

Chapter 2 Function/Function Block Description 2-109

IPREAD

IPREAD
(IP Read)

10/SOCKETS

{REQ DONE |
{HNDL FAIL
{CNT ERR}

|BUFR-BUFR}
lorsT ot OFST (UINT) - offset into buffer for data

{PRI PRI (BOOL) -priority of the function block

—AE — Inputs:. REQ (BOOL) - enables execution (One-shot)

IPREAD
HNDL (UINT) - socket handle from the IPSOCK

function block
CNT (INT) - size of the buffer
BUFR (MEMORY AREA) - buffer to contain data

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL isset
BUFR (MEMORY AREA) - same area as BUFR input
ACT (INT) - number of bytes stored in buffer

The IPREAD function block allows you to read input data sent between a
client function and a remote server. The data content is a stream of octets. As
dataisreceived by the TCP/IP stack, it is appended to this stream. A read of
this stream will return the CNT number of octets or the entire stream if it
contains fewer octets than CNT. The IPREAD function block is used with a
TCP or UDP (connected) socket. NOTE: When the socket isa UDP
(connectionless) socket, use the IPRECV function block to get a packet of
octets from a UDP socket.

The PRI input sets the priority level at which the function block will be
handled. A high priority isindicated when PRI is set. To affect ahigh priority,
the function block should be in aladder task

The ACT output will not aways equal CNT and nothing can be learned if they
are not equal. ACT = 0 also means nothing.

2-110

Chapter 2 Function/Function Block Description

IPRECV

IPRECV
(IP Receive) 10/SOCKETS
fN?ggECT Inputs:. REQ (BOOL) - requests execution (One-shot)
lreg oonEL HND_L (UINT) - socket handle from the IPSOCK
function block
{HNDL FAIL} _
|Pe— CNT (INT) - size of buffer area
Iurr_BURRL BUFR (MEMORY AREA) - buffer to contain message
loest acrl OFST (UINT) - offset into message
l1pz——_1pzL IPZ (STRING) - place to receive node | P address
IpR1 PORT| PRI (BOOL) - priority of the function
Outputs:. DONE (BOOL) - execution completed without error

The IPRECV funtion block is used to get a packet of data sent between aclient
function and aremote server. The data content is a complete packet of octets.

FAIL (BOOL) - energized if and only if errisz 0
ERR (INT) - error number if FAIL isset

BUFR (MEMORY AREA) - same area as BUFR input
ACT (INT) - number of bytes stored in BUFR

IPZ (STRING) - same as IPZ input but holds the IP
address of the sending node

PORT (UINT) - port number in sending node

If thereisa UDP packet waiting on the TCP/IP stack, this packet will be
returned. If there is no packet available, this function block will wait
indefinitely until a packet isreceived. Any time-out function must be

implemented in the application software. The IPRECV function block may be

cancelled by closing the socket.

The PRI input sets the priority level at which the function block will be

handled. A high priority isindicated when PRI is set. To affect a high priority,

the function block should be in aladder task
The IPRECV function block is used with a UDP (connectionless) socket.

NOTE: When the socket isa TCP or UDP (connected) socket, use the |PREAD

function block.

Chapter 2 Function/Function Block Description

2-111

IPSEND

IPSEND
(IP Send) 10/SOCKETS
fN?ggENT Inputs:. REQ (BOOL) - requests execution (One-shot)
lrea oonel HND_L (UINT) - socket handle from the IPSOCK
function block
{HNDL FAIL} o
lourn emal BUFR (MEMORY AREA) - buffer containing data-
CNT gram
lorsT CNT (INT) - size of buffer
e OFST (UINT) - offset into message
{porT NAMZ (STRING) - name or address of target node,
Jor zero terminated
PORT (UINT) - port number in target node
PRI (BOOL) - priority
Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris#z 0
ERR (INT) - error number if FAIL is set
The IPSEND function block is used to send data between client function and
remote servers. The data content is a packet of octets.
The PRI input sets the priority level at which the function block will be
handled. A high priority isindicated when PRI is set. To affect ahigh priority,
the function block should be in aladder task.
The IPSEND function block is used with a UDP (connectionless) socket.
NOTE: When the socket isa TCP or UDP (connected) socket, use the
IPWRITE function block.
2-112 Chapter 2 Function/Function Block Description

IPSOCK

IPSOCK

(IP Socket) 10/SOCKETS
’N?PPEOK Inputs:. REQ (BOOL) - requests execution (One-shot)
lrea oonel TYPE (USINT) - 0 = UDP CLIENT, 1 = TCPR, 4 =
{TYPE FAIL} UDP SERVER

PROT (UINT) - protocol port number
SLOT (USINT) - slot number

Outputs: DONE (BOOL) - execution completed without error
FAIL (BOOL) - energized if and only if erris#z 0
ERR (INT) - error number if FAIL is set
HNDL (UINT) - unique socket handle

{PROT ERR}
4SLOT HNDL |

The IPSOCK function block is used to obtain a data structure and assigniitto a
specific communication resource. When the REQ input is set, the input

parameters will be passed to the TCP/IP protocol stack defined by the SLOT
input. The function will then wait for aresponse to the request. This may take
multiple scans.

If asocket data structure is allocated, the DONE output will be set. The HNDL
output can then be used for further operations with this socket data structure. 1f
an error occurs, the FAIL output will be set and the ERR output will be set to
the error number.

The type of service (TCP, UDP Client, or UDP Server) and Protocol (PROT)
are required to bind the protocol to the socket. NOTE: Bind is done by the
IPLISTEN function block using the data entered in the TY PE and PROT
inputs of the IPSOCK function block.

The TCP/IP community assigns protocols via RFC 1060 (Assigned Numbers).

Chapter 2 Function/Function Block Description 2-113

IPWRITE

IPWRITE
(IP Write) 10/SOCKETS
*Wvgl? Inputs:. REQ (BOOL) - requests execution (One-shot)
lreg oonEL HND_L (UINT) - socket handle from the IPSOCK
function block
{HNDL FAIL} o
|PyE— BUFR (MEMORY AREA) - buffer containing data
lorst acrl OFST (UINT) - offset into the buffer for data
Jont CNT (INT) - number of bytesin the buffer
{PRI PRI (BOOL) - priority of the function
Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if erris# 0
ERR (INT) - error number if FAIL isset
ACT (INT) - number of bytes appended

The IPWRITE function block is used to send data between client function and
remote servers. The data content is a sequence of octets. That sequence will be
appended to the stream of any other octets that have previouly been sent via

this function block.

The PRI input sets the priority level at which the function will be handled. A
high priority isindicated when PRI isset. To affect ahigh priority, the function
block should bein aladder task.

The IPWRITE function block is used with a TCP or UDP (connected) socket.
NOTE: When the socket is a UDP (connectionless) socket, use the IPSEND
function block.

2-114

Chapter 2 Function/Function Block Description

IPWRITE

Overview of Using the Ethernet -TCP/IP Function Blocks

The following procedures summarize the various ways of using the IP function
blocks to accomplish certain operations with TCP or UDP.

Creating a TCP Server
The following procedure is used to setup a TCP server.

1. Cdl the IPSOCK function block. Enter a“1” (TCP) in the TY PE input of
the IPSOCK function block. This creates a data structure that will be used
to associate this server with a specific TCP based protocol.

2. Call the IPLISTEN function block. This marks the socket as used by the
server. Incoming connect requests will be buffered up to the depth of the
gueue. They are removed by an accept request.

3. Call the IPACCEPT function block. This obtains a new socket that can be
passed to a server TASK or used by the server in the application. The IPZ

value may be used to determine who issued the connect request.

4. When the server isdone using IPREAD and IPWRITE function blocks, the
IPCLOSE function block should be called to free the new socket that was
created.

5. Steps 3 and 4 can then be repeated. Step 3 can be called again before step 4
iscaled if multiple connections are required. However it is the applica-
tion’s responsibility to make sure that each server uses the correct socket.

6. Oncethe ladder decides that the socket created by the IPACCEPT function
block is no longer required, call the IPCLOSE function block to free this
Socket.

7. Also, once the ladder decides that the server is no longer required, the
I PCL OSE operation should be called to free the original socket obtained in
step 1.

Creating a TCP Client

The following procedure is used to setup a TCP client connection to a server.
The server must already be running for the operation to work.

1. Cdl the IPSOCK function block. Enter a“1” (TCP) in the TY PE input of
the IPSOCK function block. This creates a data structure that allows the
client to use a specific protocol.

2. Call the IPCONN function block. This connects the client with the
requested server on the requested node.

3. Cdl the IPREAD and IPWRITE function blocks to transfer data between
the client and the server.

4. When done transferring data, call the IPCLOSE function block to free the
socket obtained in step 1.

Chapter 2 Function/Function Block Description 2-115

IPWRITE

Creating a UDP Server (Connectionless)

The following procedure is used to setup a UDP server.

1.

Call the IPSOCK function block. Enter a“4” (UDP Server) inthe TY PE
input of the IPSOCK function block.This creates a data structure that will
be used to associate this server with a specific UDP based protocol.

Call the IPLISTEN function block.

Call the IPRECV function block. This provides a buffer that an incoming
datagram can be read into. Upon receipt of a datagram, the response (if
any) may be generated and sent using the IPSEND function block. The
sending node name and port (IPZ and PORT) are available to be used in a
response.

Call the IPSEND function block if necessary and return to step 3 or go to
step 5.

When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

Creating a UDP Client (Connectionless)

The following procedure is used to setup a UDP client.

1.

Cadll the IPSOCK function block. Enter a“0” (UDP Client) inthe TY PE
input of the IPSOCK function block. This creates a data structure that will
be used to associate this client with a specific UDP based protocol.

Call the IPSEND function block with a message to be sent to the server.

Call the IPRECV function block if aresponseis expected. Go back to step
2 or on to step 4. If atime-out occurs, decide whether to call the IPRECV
function block again.

When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

NOTE: If there are multiple messages in transit, UDP clients and servers are not guar-
anteed that messages will be received or received in the same order as sent.

UDP Client (Connected)

1.

2.
3.

Call the IPSOCK function block. Enter a®“0” (UDP Client) inthe TY PE
input of the IPSOCK function block.

Call the IPCONN function block to connect the client to the server.

Cal the IPREAD and IPWRITE function blocks to read and write datato
the server.

The UDP server isimplemented in the same manner as a connectionless UDP
server (see above).

NOTE

The following books may be helpful as references when working with TCP/IP:

e Comer, D.E. (1991), Internetworkinging with TCP/IP Vol.I: Principals, Protocols, and Architec-
ture. Prentice-Hall, Englewood Cliffs, New Jersey. ISBN 0-13-468505-9

e Comer, D.E. (1993), Internetworking with TCP/IP \ol. 111: Client-Server Programming and Appli-
cations. Prentice-Hall, Englewood Cliffs, New Jersey. ISBN 0-13-474222-2

2-116

Chapter 2 Function/Function Block Description

Ethernet-TCP/IP Errors

IPWRITE

The following errors can be reported our of the ERR output on the IPXXXX function blocks.

ERR# Description ERR# Description
0 No error 40 Destination address required
1 Not owner 41 Protocol wrong type for socket
2 No such file or directory 42 Protocol not available
3 No such process 43 Protocol not supported
4 Interrupted system call 44 Socket type not supported
5 1/0 error 45 Operation not supported on socket
6 No such device or address 46 Protocol family not supported
7 Arg list too long a7 Address family not supported
8 Exec format error 48 Address already in use
9 Bad file number 49 Can't assign requested address
10 No children 50 Socket operation on non-socket
11 No more processes 51 Network is unreachable
12 Not enough core 52 Network dropped connection on reset
13 Permission denied 53 Software caused connection abort
14 Bad address 54 Connection reset by peer
15 Directory not empty 55 No buffer space available
16 Mount device busy 56 Socket is aready connected
17 File exists 57 Socket is not connected
18 Cross-device link 58 Can't send after socket shutdown
19 No such device 59 Too many references. can’t splice
20 Not adirectory 60 Connection timed out
21 Isadirectory 61 Connection refused
22 Invalid argument 62 Network is down
23 File table overflow 63 Text file busy
24 [Too many files open 64 Too many levels of symbolic links
25 Not atypewriter 65 No route to host
26 File name too long 66 Block device required
27 Filetoo large 67 Host is down
28 No space |eft on device 68 Operation now in progress
29 Illegal seek 69 Operation already in progress
30 Read-only file system 70 Operation would block
31 Too many links 71 Function not implemented
32 Broken pipe 72 Operation cancelled
33 Resource deadl ock avoided 1000 'r:;iegi ISanon-zero terminated string which requires zero termi-
34 No locks available 1001 |[ThereisaCNT input whichistoo large.
35 Unsupported value 1002 'tl)'gaer dSL OT number requested does not contan an Ethernet
36 Message size 1003 E:; ngerrr'] ;hgol;rg}vr\]/at\rhi ?:cgf not support TCP/IP or there 1S no|
37 Argument too large 1004 |[ThelPZ buffer istoo small.
38 Result too large

Chapter 2 Function/Function Block Description 2-117

LAD_REF

LAD_ REF
(Ladder Reference (Machine Reference) Motion/REF
L3D FEF Inputs: EN (BOOL) - enables execution (One-shot)
|- AXIS (USINT) - identifies axis to be referenced (servo
or digitizing)
{AXIS QUE} o o _
IpLUs PLUS (BOOL) - indicates direction of motion to refer-
- ence switch
lom RATE (UDINT) - feedrate at which motion occurs
- (entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest

resolver null or the next encoder index mark when ref-

erence switchisset. ItisenteredinLU. If DIM isout-

side the range of -536,870,912 to 536,870,911 FU, the

OK will not be set.

OPTN (WORD) - provides referencing options
Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - queue number for reference move

Theladder reference is amachine reference done from the ladder. 1t will cause
aservo axisto movein the direction (PLUS) and at the feedrate (RATE)
specified to the reference switch* until the REF_END functioniscalled in
your ladder program. In your ladder logic, the closing of the reference switch
should enable REF_END.

When the switch closes, the position of the axisis recorded based on the
nearest null of the resolver or the next index mark of the encoder. The value
entered at DIM is assigned to this position.

If the axisisadigitizing axisor if ‘“no motion’ has been selected at OPTN (see
below), this function does not cause motion. Y ou must use other methods of
moving the axis to the reference switch. The inputs PLUS and RATE are
ignored when no motion is selected.

Theladder reference monitorsthe axisuntil the REF_END functioniscalledin
your ladder program. In contrast, afast reference (see FAST_REF) monitors
the axis until afast input on the feedback module occurs.

NOTE: If an encoder isthe feedback device, the axis will continue to move
after the switch closes until the next index mark is seen.

The OPTN input provides the following options:

Option Binary value Hex value
1. Ignoreindex/null 00000000 00000001 0001
2. Nomotion 00000000 00000010 0002

2-118 Chapter 2 Function/Function Block Description

LAD_REF

If no option is desired, enter a“0.”
*See FAST_REF function for information on setting up a reference switch.

Option inputs
Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark
of an encoder or the null of aresolver during the reference cycle. If bit Ois set
to“1,” the reference position assigned by DIM will be assigned to the position
the axisis at when the fast input makes its transition.

With an encoder, the axiswill stop immediately after the fast input transitions.
The axis does not continue movement until theindex mark isreached. NOTE:
This makes the reference switch position given with the READ_SV function
invalid.

With aresolver, the reference switch position available with the READ_SV
function isvalid.

No motion

The no motion option allows a reference to occur without any motion. The

axisis put into amode whereby it iswatching for the conditions of areference

cycle.

Even though no move is placed in the queue, a queue must be available. A
move will beinitiated by the ladder following the reference cycle.

Oncethe call is made, the reference complete flag goes low until the reference
switch input occurs and the index mark (unless “ignore index” option is active)
isreceived. The reference complete flag goes high once these events occur and
the axis position takes on the reference value at DIM.

If the movetypeis VEL, RATIO _GR, LAD_REF, or FAST_REF, the new
axis position assigned by the no-motion reference has no effect on the move
itself. With aDISTANCE move, the actual distance covered will be the same.
If ano-motion reference occurs during a position move, the endpoint will be
reached.

If ano-motion referenceisused during aRATIO_PRO move, thelock on point
of the slave axis to the master axis may be undefined. Thisis not
recommended.

NOTE: A ladder reference can also be performed on a digitizing axis. You
must cause the axis to move and the fast input to occur. Use variable 29 with
the READ_SV function to read the reference switch position. REF_DNE? can
also be used with digitizing axes.

NOTE: This function cannot be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-119

LE

LE
Less Than or Equal To Evaluate/LE

Inputs: EN (BOOL) - enables execution
IN1 (ANY except BOOL or STRUCT) - value
to be compared
IN2 (same type as IN1) - value to be compared
Outputs: OK (BOOL) - execution completed without
error

OUT (BOOL) - indicates if values are less than
or equal to successive values

The LE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. Thisis an extensible function which
can compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17
If INL<IN2<IN3<...<IN17, the coil at OUT isenergized.
Otherwise the coil at OUT is not energized.

2-120 Chapter 2 Function/Function Block Description

LEN

LEFT
Left String String/LEFT
T Inputs: EN (BOOL) - enables execution
| EV OUT (STRING) - output STRING
JouT———ouT IN (STRING) - STRING to extract from
11N L (INT) - length
in Outputs: OK (BOOL) - execution completed without error
OUT (same variable as OUT input)
The LEFT function is used to extract characters from the |eft side of a
STRING. The number of characters specified by the input at L are extracted
from the left side of the variable at IN and placed into the variable at OUT.
An error occursif:
L > 255
L > length of OUT
Example of left function
Var at IN Value at L Var at OUT
stringlstring2 7 stringl
LEN
Length String/LEN

Inputs. EN (BOOL) - enables execution
STR (STRING) - input value

Outputs: OK (BOOL) - execution completed without error
LEN (INT) - length

LEN
HEN 0K
4STR LEN|-

The LEN function is used to return the length of a STRING. The number of
charactersin the variable at STR is placed in the variable at LEN.

Example of length function

Declared length of string Value at STR Value at LEN
10 string 6

Chapter 2 Function/Function Block Description 2-121

LIMIT

LIMIT

Limit Filter/LIMIT

Inputs:. EN (BOOL) - enables execution
MIN (ANY except BOOL and STRUCT)) - minimum
value
IN (same type as MIN) - value to be limited
MAX (sametype as MIN) - maximum value
Outputs: OK (BOOL) - execution completed without error
OUT (sametype as MIN) - value within limits

LIMIT
HEN OKH
MIN - OUT |-
1IN
4 MAX

The LIMIT function assigns a value to the variable at OUT that is within the
lower and upper limitsyou enter. The value at MIN (lower limit) must be less
than the value at MAX (upper limit). The value at OUT will be the value of
the input at either 1) IN, 2) MIN, or 3) MAX.

For the variables or constants assigned at IN, MIN, and MAX if:
MIN <IN £ MAX, then OUT =IN
IN >MAX, then OUT = MAX
IN < MIN, then OUT = MIN

LINT2DI
Long Integer to Double Integer Datatype/LINTCONV

Inputs: EN (BOOL) - enables execution

LINT2DI

lev okl IN (LINT) - value to convert

I ol Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value

The LINT2DI function converts along integer into adouble integer. The left
most 32 bits of thelong integer are truncated. Theresult isplaced in avariable

at OUT.

2-122 Chapter 2 Function/Function Block Description

LINT2LW

LINT2INT
Long Integer to Integer Datatype/LINTCONV
NI Inputs:. EN (BOOL) - enables execution
lev okl IN (LINT) - value to convert
I ol Outputs: OK (BOOL) - execution completed without error
OUT (INT) - converted value

The LINT2INT function converts along integer into adoubleinteger. The left
most 48 bits of the long integer are truncated. Theresultisplaced in avariable
at OUT.

LINT2LR
Long Integer to Long Real Datatype/LINTCONV

. L
S Inputs: EN (BOOL) - enables execution -

IN (LINT) - value to convert
Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

4EN 0Kt
1IN OUTE

The LINT2LR function converts along integer into along real. Theresultis
placed in avariable at OUT.

LINT2LW
Long Integer to Long Word Datatype/LINTCONV
T Inputs: EN (BOOL) - enables execution
|V IN (LINT) - value to convert
I ourl Outputs: OK (BOOL) - execution completed without error
OUT (LWORD) - converted value

The LINT2LW function converts along integer into along word Theresultis
placed in avariable at OUT.

Chapter 2 Function/Function Block Description 2-123

LINT2SI

LINT2SI

Long Integer to Short Integer Datatype/LINTCONV

Inputs:. EN (BOOL) - enables execution
IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (SINT) - converted value

LINTOSI
{EN ok}
{IN - outh

The LINT2SI function converts along integer into a short integer. The left
most 56 bits of the long integer are truncated. Theresult isplaced in avariable

at OUT.

LINT2ULI

Long Integer to Unsigned Long Integer Datatype/LINTCONV

Inputs: EN (BOOL) - enables execution
IN (LINT) - value to convert

Outputs. OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

LINT2ULI
4EN 0Kt
1IN OUTH

The LINT2ULI function converts along integer into an unsigned long integer
Theresult isplaced in avariable at OUT.

LN

Natural Log Arith/TRIG

Inputs: EN (BOOL) - enables execution
NUM (REAL/LREAL) - value

Outputs. OK (BOOL) - execution completed without error
LN (REAL/LREAL) - natural log

NOTE: The data types entered at NUM and LN must
match, i.e. if NUM isREAL, then LN must be REAL.

LN
4EN 0Kt
4NUM LN}

The LN function calculates the natural log of the number entered at NUM. The
result isplaced at LN.

2-124 Chapter 2 Function/Function Block Description

LREA2LW

LOG
Log Arith/TRIG
e Inputs:. EN (BOOL) - enables execution
| EVE— NUM (REAL/LREAL) - value
Iwi Loal Outputs: OK (BOOL) - execution completed without error
LOG(REAL/LREAL) - log of NUM
NOTE: The datatypesentered at NUM and LOG must
match, i.e. if NUM is REAL, then LOG must be
REAL.
The LOG function calculates the log of the number entered at NUM. The
result is placed at LOG.
LREAZ2LI

Long Real to Long Integer Datatype/LREALCNV

Inputs: EN (BOOL) - enables execution
IN (LREAL) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

LREAZLI
4EN 0Kt
1IN OUTH

The LREAZ2LI function converts along real into along integer Theresult is
placed in avariable at OUT.

LREA2LW

Long Real to Long Word Datatype/LREALCNV

Inputs: EN (BOOL) - enables execution
IN (LREAL) - value to convert

Outputs: OK (BOOL) -execution completed without error
OUT (LWORD) - converted value

LREAZ2LW
4EN 0Kt
1IN OUTH

The LREA2LW function converts along real into along word. Theresultis
placed in avariable at OUT.

Chapter 2 Function/Function Block Description 2-125

LREAZRE

LREA2RE

Long Real to Real Datatype/LREALCNV

Inputs: EN (BOOL) - enables execution
IN (LREAL) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (REAL) - converted value

LREA2RE
{EN ok}
{IN - outh

The LREAZ2RE function convertsalong real into areal. Theresultisplacedin
avariableat OUT.

LREA22ULI

Long Real to Unsigned Long Integer Datatype/LREALCNV

Inputs:. EN (BOOL) - enables execution
IN (LREAL) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

LREA2ULI
{EN ok}
{IN outh

The LREA2ULI function converts along real into aunsigned long integer.
Theresult isplaced in avariable at OUT.

2-126 Chapter 2 Function/Function Block Description

LWOR2BYT

LT
Less Than Evaluate/LT
Inputs: EN (BOOL) - enables execution
IN1 (ANY except BOOL or STRUCT) - value to be
compared
IN2 (sametype asIN1) - value to be compared
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicates if values are less than succes-
sive values
The LT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. Thisis an extensible function which
can compare up to 17 inputs.
For the inputs at IN1, IN2, ...IN17
If INL<IN2<IN3<...<IN17, thecoil at OUT is energized.
Otherwise the coil at OUT is not energized.
LWOR2BYT
Long Word to Byte Datatype/LWORDCNV

LWOR2BYT Inputs: EN (BOOL) - enables execution
len okl IN (LWORD) - value to convert
| oyl Outputs: OK (BOOL) - execution completed without error
OUT (BYTE) - converted value

The LWOR2BY T function converts along word into abyte. The leftmost 56
bits of the long word are truncated. Theresult isplaced in avariable at OUT.

Chapter 2 Function/Function Block Description 2-127

LWOR2DW

LWOR2DW

Long Word to Double Word Datatype/LWORDCNV

Inputs:. EN (BOOL) - enables execution
IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (DWORD) - converted value

LWOR2DW
{EN ok}
{IN - outh

The LWOR2DW function converts along word into adouble word. The
leftmost 32 bits of the long word are truncated. Theresultisplacedin a

variable at OUT.

LWORZ2LI

Long Word to Long Integer Datatype/LWORDCNV

Inputs: EN (BOOL) - enables execution
IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (LINT) - converted value

LWOR2LI
4EN 0Kt
1IN OUTH

The LWORZLI function convertsalong word into along integer. Theresultis
placed in avariable at OUT.

LWORZ2LR

Long Word to Long Real Datatype/LWORDCNV

Inputs. EN (BOOL) - enables execution
IN (LWORD) - value to convert

Outputs. OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

LWOR2LR
HEN OKr-
1IN OUTH

The LWORZ2LR function converts along word into along real. Theresultis
placed in avariable at OUT.

2-128 Chapter 2 Function/Function Block Description

LWR_CASE

LWORZ2ULI
Long Word to Unsigned Long Integer Datatype/LWORDCNV
LWOR2ULL Inputs: EN (BOOL) - enables execution
lev okl IN (LWORD) - value to convert
I ol Outputs: OK (BOOL) - execution completed without error
OUT (ULINT) - converted value

The LWOR2ULI function converts along word into an unsigned long integer.
Theresult isplaced in avariable at OUT.

LWOR2WO
Long Word to Word

Datatype/LWORDCNV

LWOR2WO

{EN ok}
{IN outh

Inputs:. EN (BOOL) - enables execution
IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (WORD) - converted value

The LWOR2WO function converts along word into aword. The leftmost 48
bits of the long word are truncated. The result isplaced in avariable at OUT.

LWR_CASE
Lower Case StringZ/LWR_CASE
LWR_CASE Inputs: EN (BOOL) - enables execution
len okl IN (STRING) - string of charactersto convert to lower
case
J0UT---0UT}

1IN

Outputs: OK (BOOL) - execution completed without error
OUT (STRING) - converted string

The LWR_CASE function converts the charactersin a string to al lower case
characters. Theresult isplaced in the string at OUT.

The OK will not be set if the number of charactersin the string at IN islarger
than the maximum number of characters you have declared in the string at
OUT. Seeaso UPR_CASE function.

Chapter 2 Function/Function Block Description 2-129

MAX

MAX
Maximum Filter/MAX
e Inputs. EN (BOOL) - enables execution
| EV IN1 (ANY except BOOL and STRUCT)) - value to be
I onil compared/moved
e IN2 (sametype asIN1) - value to be compared/moved
7777777 Outputs: OK (BOOL) - execution completed without error
OUT1 (same type as IN1) - moved value
The MAX function determines which input at IN1 or IN2 has the largest
(maximum) value, and places the value of that variable or constant into the
variable at OUT. Thisisan extensible function which can output the
maximum value of up to 17 variables.
MEASURE
Measure Motion/MOVE_SUP

Inputs:. EN (BOOL) - enables execution (Typically one-shot)
AXIS (USINT) - identifies axis (servo or digitizing)
NOTE: Fast input on axis feedback required.

Outputs. OK (BOOL) - execution completed without error

MEASURE
HEN 0Kt
JAXTS

If registration or referencing are not being used but you still want the fast input
to be read, the MEASURE function isused. It enables the module to respond
tothefast input. 1t must be called once before variable 20 (Fast input distance)
isread.

2-130 Chapter 2 Function/Function Block Description

MID

MID
Middle String String/MID
e Inputs. EN (BOOL) - enables execution
|V OUT (STRING) - output STRING
JouT-—out IN (STRING) - STRING to extract from
11N L (INT) - length
i P (INT) - position
{P Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The MID function is used to extract characters from (the middle of) a
STRING. The number of characters specified by the input at L are extracted
from the variable at IN, starting at the position specified by theinput at P. The
resulting STRING is placed in the variable at OUT.

An error occurs if:
P=0

P > 255

P > length of IN

L > 255

L > length of OUT

Example of MID Function

Thevaueat L is4 so four characterswill be extracted from the string at IN and
placed in the string at OUT. In the example below, start counting from the | eft.

Var at IN Value at L Value at P Var at OUT
abcdefghij 4 3 cdef

Chapter 2 Function/Function Block Description 2-131

MIN

MIN
Minimum Filter/MIN
o Inputs:. EN (BOOL) - enables execution
| EV IN1 (ANY except BOOL and STRUCT) - value to be com-
{INT OUTH |- pared/moved
e IN2 (sametype asIN1) - value to be compared/moved
7777777 Outputs: OK (BOOL) - execution completed without error
OUT1 (same type as IN1) - moved value
The MIN function determines which input at IN1 or IN2 has the lowest
(minimum) value, and places the value of that variable or constant into the
variableat OUT. Thisisan extensible function which can output the minimum
value of up to 17 variables.
MOD

Modulo (Remainder)

Arith/ARITH

MOD

1DVSR

HEN 0K
{DVND REM|—

Inputs. EN (BOOL) - enables execution
DVND (NUMERIC or TIME dur) - dividend

DV SR (sametype as DVND if DVND isnumeric; DINT if
DVND isTIME) - divisor

Outputs: OK (BOOL) - execution completed without error
REM (same type as DVND) - remainder

The MOD function divides the value of the variable or constant at DVND by
the value of the variable or constant at DV SR, and places the remainder in the
variable at REM. If thereisno remainder, zero is placed in the variable. The
guotient is not returned. See the DIV function.

2-132

Chapter 2 Function/Function Block Description

MUL

Move Filter/MOVE

Inputs: EN (BOOL) - enables execution
IN1 (ANY) - value to be moved

Outputs: OK (BOOL) - execution completed without error
OUT1 (sametype as IN1) - moved value

The MOVE function puts the value of the constant or variable at IN1 into the
variable at OUT1, the value of the variable or constant at IN2 into the variable
at OUT2, etc. From 1 to 16 inputs can be moved.

The input variables or constants to this function can be of different types. An
output variable must be of the same type as its corresponding input (on the
same line).

NOTE: Inthisextensible function, each input is moved to its corresponding
output sequentially. Other extensible functions look at all the inputsfirst and
then go to the outputs.

Multiply Arith/ARITH

Inputs: EN (BOOL) - enables execution
MCND (NUMERIC or TIME dur) - multiplicand

MPLR (sametypeas MCND if MCND is numeric; DINT
if MCND isTIME) - multiplier

Outputs. OK (BOOL) - execution completed without error
PROD (sametype as MCND) - product

The MUL function multiplies the value of the variable or constant at MCND
by the value of the variable or constant at MPLR, and places the result in the
variable at PROD. Thisis an extensible function that can multiply up to 17

numbers.
X MCND
*Y MPLR
Z PROD

Chapter 2 Function/Function Block Description 2-133

MUX

MUX
Multiplex Filter/MUX

T Inputs:. EN (BOOL) - enables execution
I K (USINT) - value selector
Ik ot INO (ANY except STRUCT) - value to be selected
11vo IN1 (sametype as INO) - value to be selected
11N Outputs: OK (BOOL) - execution completed without error

OUT (sametype as INOQ) - selected value

The MUX function is used to select one of two (or more) values and place it
into the output variable. The selection is based on the value of the NUMERIC
input at K.

If the value at K equals O, then the value of the variable or constant at INO is
placed into the variable at OUT. If theinput at K equals 1, then the value of
theinput at IN1 is placed into the variable at OUT.

Thisisan extensible function. Up to 17 inputs can be specified. If the value of
theinput at K equals 2, 3, ...16, then the value of the input at IN2, IN3, ...IN16
is placed into the variable at OUT.

2-134 Chapter 2 Function/Function Block Description

NETCLS

NE
Not Equal To Evaluate/NE

Inputs:. EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2 (sametype asIN1) - value to be compared
Outputs: OK (BOOL) - execution completed without error
OUT (BOOL) - indicatesif values are not equal

NE
HEN OKH
J4INT - OUT -
4IN2

The NE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. If they are not equal, the coil at OUT
isenergized. If they are equal, the coil at OUT is not energized.

NEG
Negate Value Arith/ARITH

o Inputs:. EN (BOOL) - enables execution

v okl IN (NUMERIC) - signed number to negate
I ourl Outputs: OK (BOOL) - execution completed without error

OUT (sametype as IN) - negated number

The NEG function negates (finds the opposite) value of the signed number at
IN and places the result into the variable at OUT.

The negate function on a number, x, is:
f(x) =-x

NETCLS
NEXNET Network Close lo/NETWORK

NWES I nputs: REQ (BOOL) - enables execution (Typically one-shot)
o ool Outputs: DONE (BOOL) - execution completed without error

The NETCLS function block closes the communication channel for this PiC,
removing the node from the NEXNET network.

Chapter 2 Function/Function Block Description 2-135

NETFRE

NETCLS should not be executed before the DONE output of the NETOPN
function block has been set. If NETCLS has been executed, the NETOPN
function block must execute again to re-enable communication.

NETFRE
NEXNET Network Free lo/NETWORK

NAME
NETFRE

0K

Inputs: EN (BOOL) - enables execution (Typically one-shot)
Outputs: OK (BOOL) - execution completed without error

CLRC (UINT) - number of bytes cleared, samevariableas
at CNT for NETSTA

EN

The NETFRE function block clears the input buffer of datainvolved in the
most recent recel pt transaction, telling the communications daughter board that
data can be received again.

NETFRE zeros the output at CLRC, which should be the same variable that is
at the CNT output of the NETSTA function block.

This function block should be executed after all datafor atransaction has been
received. Until NETFRE executes, receipt of new dataisinhibited.

2-136 Chapter 2 Function/Function Block Description

NETMON

NETMON
NEXNET Network Monitor lo/NETWORK

Inputs: EN (BOOL) - enables execution (One-shot)
Outputs. OK (BOOL) - execution completed without error
STAT (INT) - status of network

The NETMON function block monitors and outputs the status of the PiC
network. NETMON isfor diagnostic purposes only. Do not useit in your
application LDO. Never enable the NETMON function al the time.

The status of the network is placed in the variable at STAT:

sTAT =0 If Noreceive activity and transmitter isenabled. The transmitter
and/or receiver are not functioning properly.

STAT =3 Thenode seesreceive activity and seesthe token. The transmitter
isenabled. The network and node are operating properly.

STAT =8 Thenode seesreceive activity, but is not seeing the token. Possi-
ble causes are listed below.

1. No other nodes exist on the network.

Data corruption exists. N
The mediadriver is not functioning properly.

The topology is set up incorrectly.
There is noise on the network.
A reconfiguration is occurring.

SIENCLE S N

Chapter 2 Function/Function Block Description 2-137

NETOPN

NETOPN

NEXNET Network Open lo/NETWORK
WWEN* Inputs:. REQ (BOOL) - enables execution (One-shot)
lrea oonel SID (USINT) - source ID number of PiC

lsip rar L. Outputs. DONE (BOOL) - energized if ERR=0

ERRL— not energized if ERR #0
FAIL (BOOL) - energized if ERR #0
not energized if ERR =0

ERR (INT) - O if no errors occur
#0 if error occurs

The NETOPN function block prepares the PiC (in which it is executed) for
communication with another PiC. It performs the following:

1. Checks and initializes communications.

2. Assigns a unique network node number to this PiC.

3. Opens the communication channel if no errors occur.

Thevalue at SID (Source IDentification) is assigned to this PiC as a unique

node number. The value at SID should be from 1 - 255. This number is used
by other PiCsin the network to reference this PiC.

If no errors occur, the output at DONE is energized, the output at FAIL is not
energized, and the output at ERR equals zero.

If an error occurs, it occurs during the checking and initialization of the
daughter board. The output at DONE is not energized, the output at FAIL is
energized, and the output at ERR #0 as shown below.

2-138

Chapter 2 Function/Function Block Description

NETOPN

ERR =1 The ARCNET hardware ID check failed.

ERR =2 The transmitter isnot available. An ARCNET communications fail-
ure has occurred.

ERR =3 The power-on reset flag cannot be cleared. An ARCNET communi-
cations failure has occurred. .

ERR =4 The SID specified isassigned to another node. Check SID numbers.

ERR=5 to44 Check Appendix B in the software manual for errors connected to
the OPEN function block.

ERR >1XXX The node number has been set by PiCPro and is different than the
number you entered at the SID input. The XXX holds the PiCPro
node number 001 through 255.

All PiCsin anetwork should execute the NETOPN function block one time
(theinput at REQ should be a one-shot) before they execute any other
NEXNET function blocks.

Other NEXNET function blocks are: NETCLS, NETFRE, NETMON,
NETRCV, NETSND, and NETSTA.

If aPiC has executed aNETCLS, it must execute NETOPN again to re-enable
communications.

Chapter 2 Function/Function Block Description 2-139

NETRCV

NETRCV
NEXNET Network Receives lo/NETWORK
*Né?“%cv Inputs: EN (BOOL) - enables execution (Typically one-shot)
| EV CNT (INT) - number of bytesto read
JoNT FAILL OFST (UINT) -offset from start of BUFR
lorsT AcTL. BUFR (memory area) - destination of data
| BUFR-BUFR— memory areaisa STRING, ARRAY, or STRUCTURE
- Outputs: OK (BOOL) -energized immediately after enable if
ERR=0

not energized if ERR=1o0r 2

FAIL (BOOL) - energized if ERR=1o0r 2
not energized if ERR =0

ACT (INT) - number of bytes received
BUFR (same variable as BUFR input)
ERR (INT) -0 if no errors occur

The NETRCV function block "reads" datafrom the input buffer (of the
communications hardware) and places it in a data memory area.

The number of bytes specified by the value at CNT are read and placed within
the memory area specified at BUFR. The value of CNT should be such that:

1< CNT <494,

IMPORTANT

When receiving aSTRING, the length specified should be the number
of charactersindicated by the CNT output of NETSTA.

Thedataisplaced in BUFR starting at OFST bytes past thefirst byte of BUFR.
(If OFST equals0, 1, 2, etc. the data starts at O, 1, 2, etc. bytes past the
beginning of BUFR).

The number of bytes actually read is placed in the variable at ACT. Thevalue
of ACT will belessthan the value of CNT when an error occurs. Otherwise
the value of ACT will equal the value of CNT.

2-140 Chapter 2 Function/Function Block Description

NETRCV

Multiple NETRCV function blocks may be executed to sequentially read the
data from one transaction, allowing for the separation of the datainto different
memory areas. Thetotal number of bytes read by one or more NETRCV's
should equal the value of the CNT output of the NETSTA function block.

If an error occurs the output at DONE is not energized, the output at FAIL is
energized, thevalue at ACT equals 0, the value at BUFR is unchanged, and the
output at ERR equals 1 or 2.

ERR =1 Thereisno datain theinput buffer to receive.

ERR =2 Thevalue of CNT isgreater than the number of bytes in the input
buffer.
NOTE: The NETFRE function block should be executed after all
data (for one transaction) has been read from the input buffer.

Chapter 2 Function/Function Block Description 2-141

NETSND

NETSND
NEXNET Network Sends lo/NETWORK
fngDf Inputs:. REQ (BOOL) - enables execution (One-shot)
{Rea DONEL TBUF (memory areq) - optional protocol data
1TBUF FAILL TCNT (INT) - # of bytesto send from TBUF
17Nt ERRL- DBUF (memory area*) - data to be sent
IDBUF ACTl— DCNT (|NT) - #of bytes to send from DBUF
{DCNT OFST (UINT) - offset from start of DBUF
{OFST DID (USINT) - destination PiCs
1DID *memory area isaSTRING, ARRAY, or STRUCTURE

Outputs: DONE (BOOL) - energizedif ERR=0
not energized if ERR #0
FAIL (BOOL) - energized if ERR£0
not energized if ERR =0
ERR (INT) - 0 if transfer successful
#0 if transfer unsuccessful
ACT (INT) - actual number of bytes sent

The NETSND function block sends data from this PiC to another PiC or all
networked PiCs (broadcast message). NETSND transfers protocol data from
the memory area specified at TBUF and/or datafrom the memory area
specified at DBUF-.

Protocol datais not required. If protocol datais created, the value of TCNT
should specify the number of bytes of protocol (at TBUF). If protocol datais
not used, there should be anull input at TBUF and the value at TCNT should
be 0.

Thevalue at DCNT specifies the number of bytesto send from the entry at
DBUF.

The data that is transferred from within DBUF starts at OFST bytes past the
beginning of DBUF. (If OFST equalsO, 1, 2, etc. then the data sent starts at 0,
1, 2, etc. bytes past the first byte of DBUF.)

Itisrequired that TCNT + DCNT < 494.

2-142 Chapter 2 Function/Function Block Description

NETSND

The receiving PiCs should have amemory areathat is equivalent to the data
being sent defined at the BUFR input to the NETRCV function block(s).

IMPORTANT

When sending a STRING, the length specified should be the number
of characters plus 2 (bytes).

Thevaue at DID should be from 0 - 255. If thevalue at DID is O, thedatais
sent to all other PiCsin the network. If thevalue at DID is 1 - 255, thedatais
sent to the PiC with that SID.

If an error occurs, the output at DONE is not energized, the output at FAIL is
energized, the value at ERR equals an error number (see below) and the value
a ACT isO.

ERR =1 The transmitter is unavailable. A previous send has not com-
pleted.
ERR =2 The message failed to be acknowledged as received within 900
milliseconds.
ERR =3 An attempt was made to send more than 494 bytes.
| | | N
ERR =4 Thereis no TBUF input to the function block when protocol data
is created.
ERR=5 Thereis no DBUF input to the function block.

ERR =6 to 44 Check Appendix B in the software manual for errors connected to
the WRITE function block.

Note: This PiC should execute the NETSND function only after it has set the
DONE output of the NETOPN function block.

Chapter 2 Function/Function Block Description 2-143

NETSTA

NETSTA
NEXNET Network Status lo/NETWORK
wgm Inputs. EN (BOOL) - enables execution
o« Outputs: OK (BOOL) -execution completed without error
siol SID (USINT) - source node ID
DIDL DID (USINT) - destination node ID
CNT|— CNT (INT) - number of bytes received

The NETSTA function block outputs the number of bytes that are in this PiCs
daughter board input buffer (sent by another PiC). It also outputs the node
number of the sending PiC and the node number of this (receiving) PiC.

The number of the sending PiC (1 - 255) is placed in the variable at SID. The
value at SID equals O if thereisno datain the buffer.

The number of thisPiC is placed in the variable at DID. Thevalue at DID
equals 0 if the datais a broadcast or if there is no datain the buffer.

The number of bytesin the input buffer is placed in the variable at CNT. This
value indicates how many bytes should be read or received (by one or more
NETRCYV function blocks). Thevalue at CNT equals O if thereis no datain
the buffer.

If only one NETRCV function block is executed to read the data from the input
buffer, then the CNT output value of NETSTA should equal the CNT input
valueto the NETRCV.

If more than one NETRCV function block is executed to read the datafrom the
input buffer, then the sum of the bytes read by the NETRCV s should equal the
CNT value from NETSTA.

NOTE: Ensure that the DONE output of the NETOPN function block is set
(the communication channel is open) before NETSTA executes.

2-144

Chapter 2 Function/Function Block Description

NEWRATIO

Motion/MOVE_SUP

NEWRATIO
New Ratio
NEWRAT IO Inputs:
1EN 0Kl
{AXIS
AMAST
13DST
{MDST
Outputs:

The NEWRATIO function alows you to change the current constant ratioin a

EN (BOOL) - enables execution
AXIS (USINT) - identifies the dave axis (servo)

MAST (USINT) - identifies the master axis the slave
axisfollowsin the ratio move

SDST (DINT) - (slave distance) indicates the new dis-
tance the dave should move for each MDST distance
(entered in LU*)

MDST (DINT) - (master distance) indicates the new
distance the master axis will move during each SDST
(entered in LU*)

*NOTE: The range of values entered in SDST and
MDST is -32768 to 32767 FU (excluding O for the
MDST input.) If you are using ladder units, make sure
they do not exceed this range when converted to feed-
back units.

OK (BOOL) - execution complete without errors

RATIO_GR or aRATIOSY N move and change the default ratio in a

RATIOSLP move.

Changing the ratio in RATIO_GR and RATIOSYN

Y ou define a constant ratio when using the RATIO_GR or RATIOSY N
moves. The NEWRATIO function is called after the RATIO_GR or

RATIOSY N moveis active and allows you to change this constant ratio. The

new ratio takes effect after the next servo interrupt.

The function does not use the queue but changes the ratio of the movein the

active queue.

Changing the default ratio in RATIOSLP and RATIO_RL
The RATIOSLP and RATIO_RL moves have adefault ratio of 1:1. The

NEWRATIO function is normally called before the move is active and allows

you to change this default ratio.
If the NEWRATIO function is called after the move, the current ratio of the

move is used initially and the ratio defined by NEWRATIO takes effect after

the next servo interrupt.

Chapter 2 Function/Function Block Description

2-145

NEWRATIO

The OK will not be set if any of the following programming errors occur:

1. Master axis not available
2. Master distance not valid
3. Slavedistance not valid.

IMPORTANT

Whenever the NEWRATIO functioniscalled, it always setsthe default ratio
for aRATIOSLP move.

If, for example, the NEWRATIO function iscalled for aRATIO_GR
or RATIOSY N move, and later aRATIOSLP moveiscalled, the RA-
TIOSLP move will also use the ratio established in the NEWRATIO
function as its default ratio.

If you do not want to use this ratio, call the NEWRATIO function

again.

2-146 Chapter 2 Function/Function Block Description

NOT

NEW_RATE
New Rate Motion/MOVE_SUP
AT Inputs:. EN (BOOL) - enables execution
| AXIS (USINT) - identifies axis (servo)
Iaxis RATE (UDINT) - new feedrate (entered in LU/MIN)
1RATE QUE (USINT) - number of move whose rate you want
Lo to change
Outputs: OK (BOOL) - execution completed without error

The NEW_RATE function alows the rate of the move identified by the queue

number to be changed. The move identified by the queue number can bein the
active or next queue.

If a“0” isentered in QUE, the new feedrate only affects the movein the active
queue.

NOT

Not

Binary/NOT

4EN
1IN

T Inputs: EN (BOOL) - enables execution
okl IN (BITWISE) - number to be complemented
il Outputs: OK (BOOL) - execution completed without error

OUT (sametype asIN) - complemented number

The NOT function complements the variable or constant at IN and places the
result in the variable at OUT. The net effect of thisfunction isthat the bits of
the output variable are the reverse of the bits of theinput variable or constant.

If bit x of the input is 0 then bit x of the output is 1. If bit x of theinputisl
then bit x of the output isO.

Example of NOT function:

Value at IN Value at OUT
11001010 00110101

Chapter 2 Function/Function Block Description 2-147

NUM2STR

NUMZ2STR
Numeric to String Datatype/NUMZ2STR
oS T Inputs: EN (BOOL) - enables execution
| EV STR (STRING) - output STRING

JsTRo__sTRL NUM (NUMERIC) - number to convert (may include
plus (+) or minus (-) sign)

Outputs: OK (BOOL) - execution completed without error
STR (same variable as STR input) - output STRING

4NUM

The NUM2STR function converts the numeric variable or constant at NUM
into a STRING, and places the result into the variable at STR. If the length of
the variable at STR is not adequate to hold the value (from NUM), the output
at OK will not energize and the value of the variable at STR will be null
(STRING length of zero).

When converting REAL or LREAL floating point numbers, the output follows
the following format.

REAL LREAL
Minimum size
of string 13 characters 23 characters
g g =
.- g g
© o < G
£ B £ £
3 = = 3 g =
2 3 e 2 @ O ° - o
&9 S g g a%s 5 g g
2& © 5 X = = S X
s 2 g @ 55 zZ g 3
EL 5 o 2 = < 5 2
String output 25 3 2 s £5 @ 2 5
5o @ 5 2 57T 2 Z 9
o a = o k=2 o =
(<o) © c @ c 5 T c 2
2c © 2 T D & [Te) oD ©
nn © (2B D B — n o
[—— |k] |
+1.234567 E + 10 +1.234567890123456 E + 123
I | [E—
Mantissa Exponent Mantissa Exponent
AA1082-4591 AALOB34501

2-148 Chapter 2 Function/Function Block Description

OPEN

OPEN
Open lo/COMM

—WE— Inputs. REQ(BOOL) - enablesexecution (One-shot)
IREQ DONEL- NAMZ (STRING) - name of file/device

Inaz FaLL L MODE (INT) - mode in which to open channel
lwoe erl. Outputs:. DONE (BOOL) - energizedif ERR=0

not energized if ERR £ 0

FAIL (BOOL) - energizedif ERR %0
not energized if ERR =0

ERR (INT) - 0 if datatransfer successful
0if datatransfer not successful

See Appendix B in the software manual for ERR codes.
HNDL (INT) - unigue communication number

HNDL

The OPEN function block prepares afile or device for a sequential read/write.
It performs three functions.
1. It accepts the name of the file or device from the input at NAMZ.

2. It accepts the mode in which the file/device should be opened from the input at
MODE.

3. It assigns a unique number (called a handle) for the file/device and mode, and
places the number into the variable at HNDL. n
A maximum of 10 modes can be assigned for files/devices at onetime. A
READ and WRITE or an APPEND equalstwo modes. All othersequal one.

Input variable Enter this To do this
NAMZ* PICPRO:c:\sub\filename.ext$00 open workstation DOS files**
RAMDI SK:sub\filename.ext$00 open RAMDISK files
FM SDISK:filename.ext$00* * * open FMSDISK files

USER:$00 open User Port
MODE** 16#601 READ ONLY
16#602 WRITE ONLY ****
16#603 READ and WRITE
16#604 APPEND (READ and WRITE - start

write at end of file)

* PICPRO, RAMDISK, FMSDISK, and USER must be entered in capital
letters, followed by acolon (). A full (directory) path must be specified for

Chapter 2 Function/Function Block Description 2-149

OPEN

files. The $00 characters are required at the end. NOTE: The total number of
charactersislimited to 77.

** Workstation files can be opened only in the read (16#601) or write
(16#602) mode; and only one workstation file at a time can be open.

*** EMSDISK files can be opened only in the read mode.

**** |f thereis an existing file, opening it in the write only mode will delete
the existing data. The new data will then be written to it.

A subdirectory can be created by opening in the WRITE ONLY mode. If the
subdirectory and filename do not exist when the OPEN is performed, both will
be created.

OPEN is used in conjunction with the CLOSE, CONFIG, READ, SEEK,
STATUS, and WRITE I/O function blocks.

-150

Chapter 2 Function/Function Block Description

OPENLOOP

OPENLOOP
Open Loop Motion/ZINIT
OPENLOOP Inputs: EN (BOOL) - enables execution (One-shot)
len okl AXIS (USINT) - identifies axis (servo)
Iaxis Outputs: OK (BOOL) - execution completed without error

The position loop for the designated axis is opened when the OPENL OOP
function isactivated. The servo software instructs the analog output to send a
zero-volt signal to the drive.

If the drive has been properly adjusted, the zero-volt signal will causeit to hold
the motor at zero velocity. If the drive has not been adjusted properly, the
motor may “drift.”

No other commands can be sent until the loop is closed again. See also
CLOSLOOP.

Chapter 2 Function/Function Block Description 2-151

OR

OR

Or (Inclusive)

Binary/OR

Inputs:. EN (BOOL) - enables execution
IN1 (BITWISE) - number to be ORed
IN2 (sametype as IN1) - number to be ORed
Outputs: OK (BOOL) - execution completed without error
OUT (sametype asIN1) - ORed number

The OR function ORs the variable or constant at IN1 with the variable or
constant at IN2, and places the resultsin the variable at OUT. Thisisan
extensible function which can OR up 17 inputs.

The OR function placesa 1 in bit x of the output variable when bit x of one or
more (including all) input variablesequals 1. A zeroisplaced in bit x of the
output variableif bit x of all input variables equals 0.

Example of OR function (on three inputs):

11000011 valueat IN1
10101010 valueat IN2
11001100 valueat IN3
11101111 value at OUT

-152

Chapter 2 Function/Function Block Description

PART_REF

PART _CLR
Part Reference Clear Motion/REF
AT CLR Inputs:. EN (BOOL) - enables execution (Typically one-shot)
o - o« AXIS (USINT) - identifies axis (servo or digitizing)
1 S | Outputs. OK (BOOL) - execution completed without error

The PART_CLR function cancels the part reference dimension (See
PART_REF below). The axis revertsto the original reference value.

An axis can be “part referenced’ several times. The PART_CLR function will
cancel al part references asif no part reference had occurred.

NOTE: This function can be used with the stepper axis module.

PART_REF

Part Reference Motion/REF
A p— Inputs: EN (BOOL) - enables execution (One-shot)
|] AXIS (USINT) - identifies axis to be part referenced
Lars (servo or digitizing)

REFD (DINT) - reference dimension entered in LU. If
REFD is outside the range of -536,870,910 to
536,870,911 FU, the OK will not be set.

Outputs: OK (BOOL) - execution completed without error

4REFD

The part reference function allows you to change the current position of an
axis. No motion occurs when a part reference is performed. The reference
dimension value at REFD will become the new current position for the axis
specified at AXIS. Thisreference dimension will remain in effect until itis
canceled using the PART_CLR function or replaced by anew part reference.

A servo axis must be at rest when a part reference is performed. A digitizing
axis can be in motion when a part reference is performed.

This function can be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-153

PID

PID

Proportional, Integral, Derivative lo/PID

Background information on PID control

When aprocess characteristic such aslevel, speed, temperature, pressure, flow,
etc. is being monitored and controlled, the PID function can be used to
maintain the desired or setpoint value for the process. The actual process
characteristic could deviate from the desired setpoint due to disturbancesin the
system. Thisdeviation isthe error.

E = setpoint (SPT) - actual (ACT)
or
E = actual (ACT) - setpoint (SPT)

Once an error is detected, the PiC will modify the output to the processin an
attempt to force the error to zero. The purpose of the PID function isto act on
this error in one or a combination of the ways listed below.

Definition Characteristics
Proportional establishes an output whose value is ¢ Fast response
proportional to the value of theinstanta- « Easy to use
neous error. (F) * Always some error (offset)
between setpoint and actual
Integral or establishes an output whose value is ¢ Provides most correction for
reset proportional to the error over a period slowly changing processes
of time. (1) « Eliminates the inherent offset of
proportional only control
» Adversely affects stability
Derivativeor establishes an output whose value is ¢ Provides most correction for rap-
rate proportional to the rate of change of the idly changing processes
error. (D) « Almost anticipates correction
needed
» Cannot be used alone
» Does not reduce the inherent off-
set
The process output can be controlled by using P, PI, PID, or PD depending on
the desired response for the process.
-154 Chapter 2 Function/Function Block Description

PID

— NAME— Inputs: EN (BOOL) - enables execution (timer output)

4EN

4SPT
JACT
4187
{REV
MAN

{BTVL

PID

SPT (DINT) - setpoint value of the control variable
specified as a scaled value between + 2,147,483,646

ACT (DINT) - actual value of the control variable in
same units as setpoint value

IST (STRUC) - structure holding PID variables
REV - (BOOL) - reverse sign on output
MAN - (BOOL) - Manual/auto mode

0Kt
FAIL-
ERRF
OUTH
HILTH
LOLT

BTVL - (DINT) - bumpless transfer value

Outputs: OK (BOOL) - execution completed without error
FAIL (BOOL) - setif ERR# 0
ERR (SINT) - 0 = no error; 1 = math overflow error
OUT (DINT) - value of the output in the range of
+ 2,147,483,646
HILT (BOOL) - set if output was limited by the HIGH
limit
LOLT (BOOL) - set if output was limited by the LOW
limit

The PID function block is designed to provide proportional, integral, and
derivative control for processing applications. There are two PID algorithms
availableto usein aPID control loop. The function block must be declared in
the software declaration table.

The desired setpoint for the process variable is entered at SPT (setpoint). The
actual (ACT) input specifies the measured value of the process variable.

If REV input is set, the sign on the PID output is reversed.

A bumplesstransfer feature is available with the MAN and BTVL inputs. The
MAN is a manual/automatic boolean switch. When it is set, the value at the
BTVL input isthe value at the OUT output. The algorithm updates the integral
accumulator. This prevents the accumulation of an integral error during the
manual mode. Then when the MAN input is cleared, the transfer to PID
control is smooth.

The FAIL output will be set if amath overflow error occurs. A 1 appears at the
ERR output. The function output will be the output of the last iteration that did
not fail.

The IST isan input structure to the PID function block. The members are
described below.

Chapter 2 Function/Function Block Description 2-155

PID

IMPORTANT

The structure you enter in the software declarations table for the IST
input must have the members entered in the order shown below. The
data type for each member of the structure must be as shown in the
Type column in order for the software to recognize the information.

Put initial values for the following structure members in the Init. Val
column: B 1,D, Ts, KDFT, FR, FD, DB+, DB-, HIGH, LOW, and EX-
OP.

The software assigns values to PROP, INTG, and DERV.

Theinitial values for these three structure members must be 0.

Structure for the IST input of PID function block

Structure

name ~_PID STRUCT

__ P INT

Jl INT

D INT

IS INT

KDFT SINT

FP SINT

b .FD SINT

Members .DBPLUS INT

of = _DBMINUS INT

structure . H[GH DI NT

JLow DINT

.EXOP WORD

.PROP DINT

CINTG DINT

| .DERV DINT

END_STRUCT

-156

Chapter 2 Function/Function Block Description

PID

The IST structure members

P INT (write)

glfl))r oportion- proportional gain (Kp) * 100 [For example, P of 0.55 entered as 55]

| INT (write)
(integral) Reciprocal of theintegral time (f(1,Ti)) * 100 (time units)

D INT (write)
(derivative) Derivative time (Td) * 100 (time units)

TS INT (write)

(sampletime) p|p sampletimein seconds* 100
Tsrepresents the sample time used to calculate the integral and derivative
gainsfor the PID loop as shown in the equations below.

NOTE: The TS valueisthe product of the PID sample time (the PID enable
period) times 100. For example, a 10 ms sampleresultsina TS value of 1
(0.010* 100) and a 200 ms sampleresultsin a TS value of 20 (0.200 * 100).

Integral Gain Derivative Gain
. _ Ts_ _Td_D
Ki = T Tsx| Kd = TS~ Ts

A filter value for the derivative term can be entered at KDFT. Filtersfor the
proportional and derivative errors can be entered at FP and FD respectively.

KDFT SINT (write)

ﬁ? i\)/ative Filter value for the derivative term in percent (derivative change limit)
ilter

FP . SINT (write)

gﬁ;o;;ortlonal Proportional error filter in percent (100% = no filtering)
ilter

FD SINT (write)

(derivative Derivative error filter in percent (100% = no filtering)
error filter

A deadband is used to set up arange on either side of the setpoint where the
output does not change if the error remains within the range or band. This

Chapter 2 Function/Function Block Description 2-157

PID

allows you to control how close the actual value will match the setpoint value
without changing the output. The rangeis entered in DB+ and DB-.

DBPLUS INT (write)

(positive Deadband in the positive direction of out (OUT + DB)
deadband)

DBMINUS INT (write)

(negative Deadband in the negative direction of out (OUT - DB)
deadband)

An anti-reset windup feature is available with the HIGH and LOW limits. It
prevents the integral gain from becoming excessive or winding up when the
limits are reached. The output will be held at the value it was during the
previous iteration whenever the high or low limit is encountered.

(The HILT and LOLT outputs are set respectively if the HIGH or LOW limits
are encountered.)

HIGH DINT (write)

(highlimit) output high limit used for integral accumulator high saturation limit. Same
units as setpoint.

LOW DINT (write)

(lowlimit) Output low limit used for integral accumulator high saturation limit. Same
units as setpoint.

NOTE: HIGH and LOW are used for anti-reset windup.

The word available with the EXOP gives you four options.

EXOP WORD (write)
(execution

options) 151413121110 9 87 6 5 4 3 2 1 0
HEEREERERRRRRREN

| | I_ 0 - ISA algorithm, 1 - Independent gains algorithm
e 0 - Error = SPT - ACT, 1 - Error = ACT - SPT
Set remaining bits to 0 0-FP % (SPT-ACT),1-FP* SP
0-FD % (SPT-ACT),1-FDx SP

AA1095-1292

-158 Chapter 2 Function/Function Block Description

EXOP Bit 0

PID

The PID function block gives you a choice of two algorithms in the EXOP
member of the IST structure at bit O.

1. ThelSA agorithm
2. Theindependent gains algorithm

The terms used in the following equations are described here:

Equation

Term
Mn
Kp
Ts

Ti

Td
B
DCL

Ts
Ti

Td
Ts

The following continuous equation performs the calculation with the ISA

(Function

Term)
(OUT)

(P)
(Ts)

DxTs

algorithm:

M(t) = K p[e(t) += q Oe(t)dt + Td o)

Description

= output
= proportional gain constant
= samplerate

= integra time

= derivativetime

= eror thejthiteration

= derivative change limit

= Ki, integral gain constant

= Kd, derivative gain constant

derivative from previous iteration

de(t).
dt o

The discrete equation is shown below:

Mj = KIOEEH

Prop

Ej+E(j
2

Integral
(Reset)

1) Td[Ej —E(j—1)] xDCL+[D(j—-1) x(1- DCL)]E

Derivative(current)
(Rate)

Chapter 2 Function/Function Block Description 2-159

PID

The block diagram below illustrates the ISA agorithm.

Figure 2-6. Block diagram of ISA algorithm

YES

e
E
.
e
e
-
E
s
.
e
e
-
E
s
.
e
e
-
’

A

Manual Input
User conversion
NO factors for device
—> @ interface

rrersMaNUal ENQAQEU rv s s e e e e

EE

YES ¢ SPT
o

4

ACT)

e

+
' Dead
O - Band

s PID ENQAQEU~+ssssssssrstssvnississssssssssssss,
SPT Differential
\ + Term +
Q_} Dead K Proportional] §,
- [Bend Error
ACT/V L Integral /
Term

e

Differential
Term

BTVAL—p Output ———

le

Error

N+ <
‘ niegral
Proportional —>©—’|E'>Q> Accumulator

I o o o 0 0 0 0 I 0 o o o N NN F o rrrss

:

e

PR RS

High iev
» st —
Low

]
¥
-
¥
¥
¥
¥
-

I

Device Unit=>Output

DEVICE
A/D Board
etc.

User Conversion

_} factors for device

interface
Output=> Device Unit

AA1097-1292

The following continuous equation performs the cal culation with the
independent gains algorithm:

_ 1.4 det
M(t) = Kp><e(t)+Ti EJ’ Oetdt + Td

det
dt

The discrete equation is shown below:

Mj = Kpx Ej +

Ts

Ti

j=n

j=0

y EE(-D,Td
2

Ts

[Ej —(Ej—1)] xDCL + D(j—1) x (1—DCL)

-160

Chapter 2 Function/Function Block Description

PID

The block diagram below illustrates the independent gains algorithm.

Figure 2-7. Block diagram of Independent gains algorithm

Manual Input

User conversion

NO factors for device
> interface

Device Unit=>Output
YES P

S Manual ENQAQEd « @« o s ot o s S PC L LS S S y
sp 9ag Differential BTVAL—p Output—%—

-K‘ Term
+ > Dead Proportional + 3 ntegral
B |
_ and Error ccumulator
AC'I’/'

O

-

DEVICE
A/D Board
etc.

High Rev T

User Conversion

factors for device
'—} Output——| i erface

Output=> Device Unit

AR R R R AR LR R R L LY,
B

e PID Engaged.a-..u-;.a,-.a-..u-;.a,-.a..-,u.a,-.a..-,u.a,-.a..-,u.a,-.a..u;.a
i sp Differential

+ -> Term
Q —» EB);?S J_} Proportional
T/' - Error
AC L Integral

Term

L N R R

"

=+
e

%

Low

e

T

AA1098-1292

EXOP Bit 1

With bit 1, you can choose to have the error calculated by the setpoint minus
the actual or by the actual minus the setpoint.

EXOP Bit 2

With bit 2, you can choose to have the proportional filter multiplied by the
setpoint minus the actual or by the setpoint only.

EXOP Bit 3

With bit 3, you can choose to have the derivational filter multiplied by the
setpoint minus the actual or by the setpoint only.

The values of the proportional, integral, and derivative terms for the current
step can be read with members PROP, INTG, and DERV. Add them to your
View list in PiCPro.

Chapter 2 Function/Function Block Description 2-161

PID

PROP DINT (read)

(pr_o;:)ortlonal The value of the proportional term at this step.
gain

INTG DINT (read)

(integral gain) The value of the integral term at this step.

DERV_ DINT (read)
(der |)va1|ve The value of the derivative term at this step.
gain

Y ou may execute the PID loop every scan or trigger it at your own update rate
by using the timer TON function block at the EN input (see below). Total
update time is the timer value plus the time required for one ladder scan.

Figure 2-8. Example PID network using a timer

_TIMER PIDEN
TON PID
TIMEDONE TIMEDONE
— N U —(——{EN OKf—— —
T#250ms—PT ET SETPOINI—{SPT FAIL}—— —|
ACTUAL——]ACT ERRI—
PID —IST OUT}—
|| REV HILT—— —
|| MAN LOLT—— —
BTVE—{BTVL

AA1099-2692

-162 Chapter 2 Function/Function Block Description

POSITION

POSITION

Position Motion/MOVE
- Inputs: EN (BOOL) - enables execution (One-shot)
| EVE— AXIS (USINT) - identifies axis (servo or time)
Iaxis auel RATE (UDINT) - feedrate at which motion occurs

(entered in LU/MIN)
POS (DINT) - indicates absolute position endpoint
(entered in LU)
Outputs:OK (BOOL) - execution completed without error
QUE (USINT) - number of position move for queue

{RATE
1POS

The POSITION function moves an axis to an endpoint at a specified feedrate.
When the position move is used with atime axis, the S_ CURV E function must

be called first.

Chapter 2 Function/Function Block Description 2-163

P_ERRORS

P_ERRORS
Programming Errors Motion/ERRORS

P_ERRORS

{EN
Iaas eapsl - Outputs: OK (BOOL) - execution completed without error

Inputs:. EN (BOOL) - enables execution

okl AXIS (USINT) - identifies axis (servo)

ERRS (WORD) - identifies errors

The ERRS output on the P_ERRORS function isaword, or two bytes, as
shown below. The MSB bit (indicated by the “x”) in the high byte word
indicates that thereisan error.

High byte Low byte

The programming errors listed in the tables below can be divided into two
categories--those connected to the FAST _QUE function and those connected
to the master/slave moves.

NOTE: The P_ERRORS can also be viewed from the tune section of the
Servo setup program.

The Bit Location column indicates which bit is set in the low or high byte of
the word connected to each error. The“E” iswhat appears on the tune screen
in Servo setup.

The Hex Value column represents the form the error is returned in while
monitoring the ERRS output of the function in your ladder program.

Thefirst error listed (bit location 8 of low byte) is connected to the
FAST_QUE function. The remaining errors are connected to the master/slave
MOVES.

Programming errors (Low byte)

. . Hex *
Bit Location
- Value
Error Description (low byte) (Decimal)
8(7/6|5|4(3(2|1|(inLDO)
The FAST axisin |The axis traveled more than 65,535 |E 8080
the FAST _QUE |FU in the opposite direction of the (32896)

functionmoved |value entered in DIST of the
toofarinwrong |FAST_QUE function.

direction

Profile number not | Data for a profile move is not valid. E 8040
found (32832)
-164 Chapter 2 Function/Function Block Description

P_ERRORS

Master axis not|This error can occur when using the E 8020
available FAST_QUE function or the functions (32800)
for master/slave moves (RATIO_GR,
RATIOSYN, or RATIOPRO). The
conditions that can set this bit:

1. Master axis or fast axis not initial-
ized
2. Interrupt rates different for axes

3. Axis at dave input is the same as
axis at master input in master/

slave moves
(not used)
(not used)
(not used)
(not used)
Master start posi- | When the dimension for the lock posi- E| 8001
tion for lock on tion was converted to feedback units, (32769)

it was too big to fit into 32 bits.

Chapter 2 Function/Function Block Description 2-165

P_ERRORS

Programming errors (High byte)

. . Hex*
Bit Location
I . Value
Error Description (high byte) (Decimal)
8(7(6|5(4(3[2|1|(in
LDO)
This bit is set whenever any of the| X 8000
remaining 15 bitsis set. (32768)
(not used)
(not used)
(not used)
Master axis beyond| The master axis is beyond its starting E 8800
start point point for aratio move. (34816)
Slave axis beyond|The slave axis is beyond its starting E 8400
start point point for aratio move. (33792)
Master distance not|When the master distance is converted E| [8200
valid to feedback units, it is greater than 16 (33280)
bits.
Slave distance not|When the slave distance is converted E| 8100
valid to feedback units, it is greater than 16 (33024)
bits.

*When more than one error occurs, the hex values are OR’d. For example, if 8100
and 8200 occur, the result is 8300 hex (33536 decimal)

-166 Chapter 2 Function/Function Block Description

P_RESET

P_RESET
Programming Reset Motion/ERRORS
— Inputs: EN (BOOL) - enables execution (Typically one-shot)
lv ol AXIS (USINT) - identifies axis (servo)
axis Outputs. OK (BOOL) - execution completed without error

Usethe P_RESET function to reset any programming errors that occur.

Chapter 2 Function/Function Block Description 2-167

Q_AVAIL?

Q_AVAIL?

Queue Available?

Motion/QUE

Inputs: EN (BOOL) - enables execution

Q_AVAIL?

Ien okl AXIS (USINT) - identifies axis (servo)

|mwis g, Outputs: OK (BOOL) - execution completed without error
QAVL (BOOL) - queue availableif set

The queue available function asks the question “Is a queue available for the
specified axis?’ If QAVL isset, then aqueueisavailable. If not, no queueis

available.
The Q_AVAIL?inquiry cannot be set until the servo loop is closed.

Q_NUMBER

Queue Number Motion/QUE

Inputs. EN (BOOL) - enables execution

Q_NUMBER
lev okl AXIS (USINT) - identifies axis (servo)
Iaas ael Outputs:OK (BOOL) - execution completed without error
QUE (USINT) - the number of the move in the active

queue

The Q_NUMBER function gives the number of the move that isin the active
gueue. A gueue number is assigned to each move by the software when the
move function OK output is set. Queue numbers are assigned to the moves
sequentially from 1 to 255. A "0" at the QUE output indicates that thereis no

move in the queue.

-168 Chapter 2 Function/Function Block Description

RATIOCAM

RATIOCAM
Ratio Cam Motion/RATIOMOV
oow Inputs: EN (BOOL) - enables execution (One-shot)
|F— AXIS (USINT) - identifies slave axis (servo)
Iaxis el MAST (USINT) - identifies master axis
st CAM .(ARRAY OF ST RUCTURES)_ -_points to thg first ele-
ment in the array of structures defining the profile to run
I NOTE: Each segment of the profileis entered in FUs. If you
195TR are entering equal master segments, then you enter a STRUC-
1MSTR TURE WITH AN ARRAY here.
10PTN SSTR (DINT) - Slave starting point in LU

S—— If SSTR is outside the range of -536,870,912 to 536,870,911
FU, the OK will not be set.
MSTR (DINT) - Master starting point in LU
If MSTR is outside the range of -536,870,912 to 536,870,911
FU, the OK will not be set
OPTN (WORD) - provides four options: repeat, ignore mas-
ter start, ignore slave start, equal master segments

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of the cam profile move for the
queue.

MASTER AXIS NOTE

The master axis for any master/slave move can be one of three types available:

1. Aservoaxis
(Range of numbers available to enter at MAST for servo axes is 1
through 16.)
A servo axis must be set up with the Servo setup and tuning program.

2. Atimeaxis
(Range of numbers available to enter at MAST for time axes is 25
through 28.)
A time axis creates atime basis for ave axesto follow. It providesthe
ability to generate velocity profiles. It is set up and monitored using the
S CURVE function and/or variables 1, 6, 12, and 26 with the
READ_SV and WRITE_SV functions.

3. Adigitizing axis
(Range of numbers available to enter at MAST for digitizing axesis 49
through 64.)
A digitizing axis must be set up with the Servo setup and tuning pro-
gram.

Chapter 2 Function/Function Block Description 2-169

RATIOCAM

With RATIO_GR and RATIOSY N functions, the slave distance/master
distance ratio is constant.

With the RATIOCAM function, the slave distance/master distance ratio can
vary in steps or segments over the course of the profile as shown below in Fig-
ure 2-9. There are 10 segments in the example profile.

NOTE: Each square equals 10 feedback units.

In each individual segment, you define the slave distance/master distance ratio
by determining how far the slave axis will move while the master axis covers
its segment distance.

The master movesfive unitsin each segment. NOTE: Itisnot required that the
master axis move the same distance each segment.

Figure 2-9. A ratiocam profile with 10 segments

Ratio

Slave Distance
(area under the curve)

6

Master Distance AAB51-2091

An example of aprofile where the master distance varies over the course of the
ratiocam profile is shown in Figure 2-10.

Figure 2-10. A ratiocam profile with 9 segments

Ratio

Slave Distance
(area under the curve)

o ife

Master Distance

AAB52-2091

An example of aprofile where the ave axisis moving in anegative direction
during the last four segments of the ratiocam profile is shown in Figure 2-11.

2-170 Chapter 2 Function/Function Block Description

Ratio

RATIOCAM

Figure 2-11. A ratiocam profile with 10 segments

Slave Distance
(area under the curve)

Master Distance

o

AAB53-2091

The SSTR, MSTR, and OPTN inputs

When the SSTR input is used, it definesthe slave axis position at the beginning
of the profile.

When the MSTR input is used, it defines the master axis position at the
beginning of the profile.

The OPTN input provides the following options.

Bit # Option Binary Value Hex Value Entered

0 Repeat profile 00000000 0001
00000001

1 Ignore master start 00000000 0002
00000010

2 Ignore dave start 00000000 0004
00000100

3 Equa master segments* 00000000 0008
00001000

*The Equal master segments option can be used if the master distance for each
segment isthe same. It provides away of saving memory. Instead of entering
an array of structuresto hold the profile data, you enter a structure with an
array. Information on equal master segments can be found at the end of this
RATIOCAM description.

If you want the profile to repeat continuously, bit O is set.

If you choose to ignore the master start (bit 1 set), any value you enter in
MSTR has no effect. The cam profile will begin executing as soon as the
function is called. During thefirst cycle, the slave axis may be located within
the profile depending on its current position and the value in SSTR.

If you choose to ignore the slave start (bit 2 set), any value entered in SSTR
has no effect and the profile will execute at the beginning when the master axis
reaches its starting point (MSTR).

Chapter 2 Function/Function Block Description 2-171

RATIOCAM

If you choose to ignore both MSTR and SSTR (bits 1 and 2 set), the profile
will execute immediately at the beginning from wherever the master and slave

axes are currently located.

The four examples that follow illustrate
what affect ignoring or using the SSTR
and MSTR inputs via OPTN have on what
the beginning position for each axis will
be.

Three segments of a ratiocam profile
(shown on the right) will be used in each
example. The master axis moves 100 units
in each segment. The slave axis moves 50,
75, and 100 units in the first, second, and
third segments respectively.

Beginning of
profile

N

Example 1 - Ignore SSTR and MSTR

Entering a7 inthe OPTN input sets all three bits. The value at the SSTR and
MSTR inputs (xxx) will beignored. The profile will repeat, the master start
will be ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the axeslock on immediately and
the slave begins moving. The current positions of the axes become the
positions at the beginning of the profile.

IE)

50
Slave Distance

100

i

/

100'100|

100

Master Distance

7

AA1101-1592

Master Distance

RATIOCAM Current Axes Positions Portion of Cam Profile
Slave Axis
xxx4 SSTR . Position 150 25
Slave Axis @ 100 |
XXx{MSTR Master Axis @ 400 -
7 {0PTN
75
50
Master Axis Slave Distance
Position | | /
400 500 600 700 7
| |
10 | 10 | 100

AA1102-1592

2-172 Chapter 2 Function/Function Block Description

Example 2 - Ignore SSTR

RATIOCAM

Thevaueinthe SSTR input isignored since a5 has been entered in the OPTN
input setting bits 0 and 2. The profile will repeat, the master start will not be
ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the master must move from its
current position to 100 (the MSTR value) before lock on occurs and the slave
begins moving. The positions at the beginning of the profile are the MSTR
value for the master axis and the current position (100) for the slave axis.

RATIOCAM Current Axes Positions Portion of Cam Profile
Slave Axis
xxx{SSTR) Position 150 225
100 IMsTR Slave Axis @ 100 |
5 10PTN Master Axis @ 50

100

75

50

Master Axis Slave Distance
Position | |

100 200 300 400

| |
100 ! 100 ! 100
Master Distance

~X

AA1103-1592

Chapter 2 Function/Function Block Description

2-173

RATIOCAM

Example 3 - Ignore MSTR

Thevaueinthe MSTR input isignored since a 3 is entered in the OPTN input
setting bitsO and 1. The profile will repeat, the master start will be ignored,

and the slave start will not be ignored.

When the RATIOCAM functioniscalled, the laveisat 150 within the profile.

Lock on occursimmediately and the slave beginsto move. The beginning

positions of the axes are based on the value in SSTR (50) for the lave axis and
the current master position minus how far the master has moved in the profile

(200 - 167) or 33 for the master axis.

RATIOCAM Current Axes Positions Portion of Cam Profile
S| Axi Current Position of
%0 155TH F?(\)/;tior:s Slave Axis
i *
Xxx {MSTR Slave Axis @ 150 15
3 JoPTN Master Axis @ 200
Master Axis
Position
333
| |
100 | 100 | 100
Master Distance AAL104.1502
2-174 Chapter 2 Function/Function Block Description

Example 4 - Use both SSTR and MSTR

The SSTR and the MSTR inputs are not ignored. A 1isentered in the OPTN
input setting bit 0. The profile will repeat, the master start will not be ignored,
and the slave start will not be ignored.

When the RATIOCAM functioniscalled, the daveisat 250 within the profile.
The master axisis at 100 and must move to 425 within the profile to lock on.

The beginning positions of the axes at the start of the profile are based on the
valuein the SSTR (50) and the MSTR (150) inputs .

RATIOCAM

RATIOCAM

Current Axes Positions

Portion of Cam Profile

50
150

SSTR
MSTR
OPTN

Slave Axis @ 250*
Master Axis @ 100

Slave Axis
Position

Master Axis
Position

@ Current Position 250

of Slave Axis

Master Distance

AA1105-1592

*Typically, the position of the slave axis in examples 3 and 4 must be within
the profile (> 50), unless rollover on position is on.

Chapter 2 Function/Function Block Description

2-175

RATIOCAM

Other characteristics of the ratiocam move include;

Affectsthe dave axisonly.

The slave axis may be a master axis to another axis.

More than one slave axis may be connected to the master axis.
The master axis may be a servo, atime, or adigitizing axis.

If the master axis reverses direction, the slave axiswill follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axiswill be at its corresponding position as defined in the array of struc-
tures.

If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOCAM function.

Inverted ratios are possible by entering negative slave segment elementsin
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

Starting points for the master axis and slave axis may be entered.
Both the master and slave axes must be at the same interrupt rate.
Registration can be used with the RATIOCAM function.

The ratiocam function move will repeat continuously if the repeat option is
set until either the move is aborted or aREP_END function is called. With
the abort move function, the move will stop wherever it isin the profile.
With the repeat end function, the move will stop at the end of the current
profile.

A new ratio cam profile can then be called.

2-176

Chapter 2 Function/Function Block Description

RATIOCAM

« Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profileerror (P-error) [A number less than two entered as the size of
the profile, amaster segment is zero, or not all master segments have
the same sign]

3. Slave axis beyond start point (P-error) [Slave start value out of range,
current slave position is not within profile, not ignoring slave start with
both queues not available
NOTE: Rollover on position will not be used by the servo software to
correct this condition.]

4. Master axis beyond start point (P-error) [Master start value out of range
or master axis beyond start point]

5. Slave axis (AXIS) not initialized during setup

« An E-error will occur if there is a slave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ ERRORS
function.

To ensure that this E-error will not occur, calculate the worst case for your
application as explained below. With feedback units equal to ladder units,
master distance/interrupt (velocity) X largest slave array value<32 bits

Chapter 2 Function/Function Block Description 2-177

RATIOCAM

Creating a profile with an array of structures

NOTE

An array of structuresis always used to create the ratio cam profile if
the master distance varies with each segment. It can also be used if
the master distance for each segment isequal as shown in the example
that follows. However, if you want to save memory, you can set op-
tion bit 3 and enter a structure with an array.

Each segment or step in the cam profile is defined by you in PiCPro by
creating an array of structuresin the software declarationstable. (More
information on arrays and structures can be found in the Software Manual.)

There are two members of the structure--the master distance and the Save
distance. These distances are entered in feedback units. Each element in the
array represents the master distance and the slave distance for one segment of
the cam profile.

In order to create the array of structures, you need to know:

1. The master distance and the slave distance for each segment. Thetable on
the left that follows contains this information for the example in Figure 2-9.

2. The number of segments the profile contains.

NOTE: Add*“1” to this number to calculate the length of the array you will
declare. For the example which contains 10 segments, the length of the array
is“11” asseenin Figure 2-9. The servo software uses the first element in the
array to determine the size of the profile.

2-178 Chapter 2 Function/Function Block Description

RATIOCAM

The table below on the right contains the array information for the examplein

Figure 2-9.
Distance data for example profile Array data for example profile
Segment # Master Slave Element .Master (FU) .Slave (FU)
0 +11* +0*
1 50 100 1 +50 +100
2 50 200 2 +50 +200
3 50 350 3 +50 +350
4 50 450 4 +50 +450
5 50 550 5 +50 +550
6 50 450 6 +50 +450
7 50 350 7 +50 +350
8 50 250 8 +50 +250
9 50 150 9 +50 +150
10 50 50 10 +50 +50
* See note that follows.
NOTE

Remember that thefirst element (0) in the array determinesthe size of
the cam profile.

The .MASTER line of the first element must contain the number of
segments in the profile plus one.

It isnot necessary to enter any valueinthe SLAVE line. It will default
to zero.

By entering the name of the array and the first element at the CAM input, the
desired profile can be accessed by the RATIOCAM function.

CAUTION

Never attempt to change the values in the array elements while the
move is being executed.

Chapter 2 Function/Function Block Description 2-179

RATIOCAM

The example below shows how the RATIOCAM function can be entered in

your LDO.
RATI0CAM
| | EN OKL
1 —|AXIS QUE|— QUET
o —{MasT
RC1(0) —{CAM
0 —ISSTR
0 —IMSTR
7 —{OPTN
REP_END
—| }79\1 K|
1axts
AA1159-3593

2-180 Chapter 2 Function/Function Block Description

RATIOCAM

Equal Master Segments

If the master distance for all the segmentsin the RATIOCAM profileisthe
same, you can define the profile in the software declarations table with a
structure with an array as shown below in order to save memory.

Structure with an array (if master distance for all segments is equal)

RC1 STRUCT
SIZE INT
.MASTER INT

.SLAVE INT (0..9)

In this structure with an array,
SIZE isthe number of dave segmentsin the profile plus 2
.MASTER is the master distance for all segments

SLAVE isan array holding the slave distances for each segment (In this
example, there are 10 slave segments.)

Bit 3 of the option bits must be set when you use this structure with an array.

The array of structures used in the previous examples (shown below) must be
used if the master distance for all the segments variesin the RATIOCAM
profile. It can aso be used when the master distance for each segment is equal
but it uses more memory than using the structure with an array above.

Array of Structures (if master distance for all segments varies)

RC1 STRUCT (0. .10)
.MASTER INT
.SLAVE INT

Chapter 2 Function/Function Block Description 2-181

RATIOPRO

RATIOPRO

Ratio Profile

Motion/RATIOMOV

RATIOPRO
4EN

JAXTS
{MAST
4PNUM
{MSTR
{RPTP
{RVAL
{BKPR

Inputs: EN (BOOL) - enables execution (One-shot)
okl AXIS (USINT) - identifies slave axis to move (servo)
L MAST (USINT) - identifies master axis
PNUM (USINT) - profile number to be run
MSTR (DINT) - master start position (entered in LU)
RPTP (BOOL) - repeat profile
RVAL (BOOL) - reversal alowed
BKPR (BOOL) - back to back profiles
Outputs:OK (BOOL) - execution completed without error

— QUE (USINT) - indicates the number of the ratiopro

move for the queue

MASTER AXIS NOTE

2. Atimeaxis

3. Adigitizing axis

The master axis for any master/slave move can be one of three types avail-
able:
1. Aservoaxis
(Range of numbers available to enter at MAST for servo axesis 1
through 16.)
A servo axis must be set up with the Servo setup and tuning pro-
gram.

(Range of numbers available to enter at MAST for time axes is 25
through 28.)

A time axis creates atime basisfor dave axesto follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

(Range of numbers available to enter at MAST for digitizing axesis
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning
program.

2-182

Chapter 2 Function/Function Block Description

RATIOPRO

Ratiopro function summary

Theratio profile function enables the slave axis to start aratio move where the
slave axis moves at a variable ratio relative to the position of an independent
master axis.

When the master axis (MAST) passes through the master start position
(MSTR) in the positive direction, the slave axis will start executing a profile
(PNUM). This profile has been created by you using the PiC Profile program
as explained in Chapter 7.

To run the profile repeatedly, RPTP is set.
To stop arepeating profile the REP_END function is used.

If it is desirable to have the slave axis follow the master axis when the master
reverses direction, then set reversal allowed (RVAL).

If it is desirable to have two different profiles run back to back, set back to
back profile (BKPR). When two profiles are run back to back, the last segment
of the profile in the active queue and the first ssgment of the profile in next
gueue is dropped.

The execution of the function will not be OK if any of the following occurs:

« Aninvalid input is entered.

» When the servo software converts your axis units to feedback unitsin order
to perform its calculations, the number is out of range.

e The queues are full.
A number for the move (QUE) is assigned by the software to identify the move
for the queue.

Profile number

Thisisthe number of the profile made by you using the PiC Profile program
that you want this move to execute. The number assigned to PNUM must be
from 1 to 18.

Figure 2-12. User-defined profile

PROF_1
HEN OK}t

D

AA581-2190

Chapter 2 Function/Function Block Description 2-183

RATIOPRO

IMPORTANT

Be sure to follow the two steps listed below in the order listed when
using profiles:

1. Initialize the servo data.

2. Initialize the profile data by including the profile function in your
LDO before calling the RATIOPRO function that usesit.

Enter the position of the master at which the slave will lock onto the master
and be synchronized. Thiswill be handled during the first segment of the
profile.

For example, if you know that the master axis should be at 10,000 units at the
end of the first segment and also it moves 5000 unitsin that first segment, then
the value entered at MSTR would be 5000 (10,000 - 5000 = 5000).

The slave has to be moved into position before the RATIOPRO move begins.
In this example, you know that the slave should be at 8000 at the end of the
first segment and that it moves 2500 unitsin the first ssgment. Then you
would use the position move function to move the slave axis to 5500 (8000 -
2500 = 5500).

Repeating profiles

If you want the profile you are using in the RATIOPRO move function to run
continuoudly, enter a“1” at the RPTP input. What happens when RPTP is set
isshown in Figure 2-13. Note that the first and last segments are dropped
when the profile repeats.

When using repeating profiles, it isimportant to have the ending ratio of the
first segment match as close as practical the starting ratio of the last segment.
This prevents any large stepsfor the slave axis. Thiswas achieved by dividing
segment 4 and 5 in Figure 2-13. If this was not a repeating profile, segments 4
and 5 could have been one segment.

2-184

Chapter 2 Function/Function Block Description

RATIOPRO

Figure 2-13. Repeating profile

Portion of profile that will be repeated
when repeat profile is selected.

First Segment

Last Segment

The first segment must begin at zero.
The last segment must end at zero.
However, if the profile will be repeated
continuously in your application, it will
not include the first and last segment.

AA586-2190

To stop repeating profiles, enter aREP_END function.
Reversal of the slave axis allowed

If the RVAL input is set, the slave axiswill follow the master axisif it reverses
direction during the profile.

The slave will follow the master in areverse direction until it reaches the
MSTR dimension. At that point, the slave will stop and the two axes are no
longer synchronized.

If the RVAL input is not set, the slave axis will stop and wait for the master to
move in a positive direction again. It will begin to move forward again when
the master axis position callsfor it.

If the master axis reverses back to the MSTR dimension, synchronization is
lost.

Chapter 2 Function/Function Block Description 2-185

RATIOPRO

Back to back profiles

It is possibleto run two profiles back to back if the BKPR inputissettoa“1.”
The second profileis caled in asecond RATIOPRO function. When thisis
done, the last segment of the first profile and the first segment of the second
profile are dropped as shown below.

Figure 2-14. Back to back profiles

|
|
| |
| |
| | |
Profile 1 Profile 2

The last segment from profile 1 and the first segment
from profile 2 are dropped when back to back profiles
are run.

———— Profile1 | Profle2 ——

Profiles 1 and 2 run back to back
AA554-1790

2-186 Chapter 2 Function/Function Block Description

RATIOSCL

RATIOSCL

Ratio Scale Motion/MOVSUP
earT0scL | Inputs:. EN (BOOL) - enables execution (One-shot)
| EVE— AXIS (USINT) - identifies the slave axis associated
Lais with the scaling (servo)

NUM (INT) - numerator of the scale factor

DEN (INT) - denominator of the scale factor

NOTE: Range for NUM and DEN inputs is less than
+32767 FU.

OPTN (WORD) - set the LSB to zero for slave scaling;
set the LSB to one for master scaling

NOTE: Master and slave scaling are independent. To
scale both, the function must be called twice.

Outputs: OK (BOOL) - execution complete without errors .

4NUM
4DEN
40PTN

The RATIOSCL function allows you to scale the slave and/or master axisin
RATIOCAM and RATIOSLP, and the master axisin RATIO_RL moves. The
profiles generated by these moves will be scaled by the amount defined in the
numerator (NUM) and denominator (DEN) inputsto the RATIOSCL function.
To turn off scaling, call this function again with equal numbers entered in
NUM and in DEN.

Ratio move functions called before calling the RATIOSCL function are not
affected by the scaling. Only the ratio move functions called after the
RATIOSCL function will be scaled by the valuein NUM and DEN. Scaling
will be in effect on any RATIOCAM, RATIOSLP, and RATIORL movein
your program.

Scaling resolution is maintained throughout the profile. An example of the
effect thishasisif you have an original profile with equal positive and
negative distances, then the scaled profile will also have equal positive and
negative distances.

Chapter 2 Function/Function Block Description 2-187

RATIOSCL

To change the scaling of an already repeating ratio move, follow these stepsin
order.

1. Call the RATIOSCL function with anew ratio. Thiswill change the scaling
for subsequent moves.

2. Cadll theratio move again. Thiswill queue the move with the new scaling.

3. Call the REP_END function. Thiswill end the first move and blend into the
second profile with the new scaling.

Anoverflow in the calculations will cause an E-stop error to be set. Overflows

can be caused by a profile segment and/or scaling that is extremely large.

The scaling does not affect the default gear ratio that can be used with the
RATIOSLP and RATIO_RL functions. Usethe NEWRATIO function to
change the default gear ratio value.

It isimportant to remember that the scaling affects the master/slave
relationship, not the individual axes. Multiple slave axes following the same
master can each have different master scaling.

With slave scaling, the slave distance is multiplied by the scaling factor. With
master scaling, the master distance as viewed by the slave is multiplied by the
scaling factor asit occurs. Thisisillustrated by the examplesfor a
RATIOCAM and a RATIOSLP move that follow.

2-188

Chapter 2 Function/Function Block Description

RATIOSCL

Ratio Cam Profile

The RATIOCAM move with no scaling is shown on the left. When you enter
a2/1 dlave scaling factor as shown in the center, each original slave distanceis
multiplied by the scaling factor of 2/1. When you use a 2/1 master scaling
factor as shown on the right, the slave axis views the actual master travel as
multiplied by the scaling factor of 2/1 asit occurs; i.e., amaster travel of 50
countsis actually the 100 counts of the profile.

RatioCam RatioCam RatioCam
No scalin Effective profile with slave Effective profile with
9 scaling (2/1) master scaling (2/1)
S
< s 400 S
S | 300 S [200
s S | 200 150
150 200 S
100 100
M 100 100 100 M 100 100 100 M 50 50 50

Chapter 2 Function/Function Block Description 2-189

RATIOSCL

Ratio Slope Profile

The RATIOSLP move with no scaling is shown on the left. When you enter a
2/1 dave scaling factor as shown in the center, each original slave distanceis
multiplied by the scaling factor of 2/1. When you use a 2/1 master scaling
factor as shown on the right, the slave axis views the actual master travel as
multiplied by the 2/1 scaling factor asit occurs; i.e., amaster travel of 50
countsis actually the 100 counts of the profile.

Ratio Slope Ratio Slope Ratio Slope
No scaling Effective profile with slave scal- Effective profile with mas-
ing (2/1) ter scaling (2/1)
4.0 4.0
2.07 2.0 2.0
S S S
200 S
1.0+ 104 300 | 490 1.04150 s
S S S
200 s
150 200 | 100 10
M 100 100 100 M 100 100 100 M 50 50 50
2-190 Chapter 2 Function/Function Block Description

RATIOSLP

RATIOSLP

Ratio Slope

Motion/RATIOMOV

4EN

JAXTS
{MAST
4SLPE
{MSTR
40PTN

RATIOSLP

Inputs: EN (BOOL) - enables execution (One-shot)
okl AXIS (USINT) - identifies the slave axis (servo)

L MAST (USINT) - identifies the master axisthe dave axis
follows
SLPE (ARRAY OF STRUCTURES) - data to define the
profile

MSTR (DINT) - Master starting point entered in LU

If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

OPTN (WORD) - provides two options. repeat and
ignore master start
Outputs:OK (BOOL) - execution complete without errors

QUE (USINT) - number of the RATIOSLP move for the
queue

MASTER AXIS NOTE

The master axisfor any master/slave move can be one of three types
available:
1. Aservoaxis
(Range of numbers available to enter at MAST for servo axesis 1
through 16.)
A servo axis must be set up with the Servo setup and tuning pro-
gram.

2. Atimeaxis
(Range of numbers available to enter at MAST for time axes is 25
through 28.)
A time axis creates atime basisfor dave axesto follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. Adigitizing axis
(Range of numbers available to enter at MAST for digitizing axesis
49 through 64.)
A digitizing axis must be set up with the Servo setup and tuning
program.

Chapter 2 Function/Function Block Description 2-191

RATIOSLP

The RATIOSLP function is similar to the RATIOPRO and RATIOCAM
functions. It allows aratio to be established between a slave axis and a master
axiswhich varies over the course of the profile. The table below compares the

three types of moves.

Comparison of RATIOSLP, RATIOCAM, and RATIOPRO

RATIOSLP

RATIOCAM

RATIOPRO

Array of structures in
ladder

Array of structures in
ladder

Axis profile setup with
PiCPFL editing program

Structure members Structure members

Setup Master distance Master distance
Slave distance Slave distance
Slope
Starting ratio
Flags

Limit of M/S | 16-bit (FU) 16-hit (FU) 32-bit (FU)

distances/

segment
Ratios can change lin-|Ratio is constant within|Ratios can change lin-
early within each seg-|each segment. early within each seg-
ment. ment.

Profile

ratios /I_M\b |_|_ I /]_I/I\

Ending ratio of previous Ending ratio of previous
segment does not have segment must equal start-
to equal starting ratio of ing ratio of next segment.
next segment.
Has a default ratio of [No default ratio No default ratio
11

D?;zlg” (Can change default
with NEWRATIO func-
tion)

2-192 Chapter 2 Function/Function Block Description

RATIOSLP

With the RATIOSL P function, the slave distance/master distance ratio can
vary linearly in segments over the course of the profile.

The datarequired for creating aslope profileisentered in an array of structures
at the SLPE input of the RATIOSLP function. More information on thisis
covered in the sections on the RATIOSL P structure members and Creating an
array of structures.

The master starting point is entered in the MSTR input. The profile will begin
executing at the beginning with the master and slave axes locked on when the
master reaches its starting position.

NOTE: If the ratio slope move is queued with no master starting position and
the master axisis moving in the opposite direction of that indicated in the
profile segments, the direction of the master will have to be reversed and the
accumul ated distance covered before the move will execute.

The OPTN input provides the following options.

Option Binary value Hex value
1. Repeat profile 00000000 00000001 0001
2. lgnore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit Oisset. If bit 0isnot set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered
in MSTR has no effect. The slope profile will begin executing as soon as the
function is called.

Other characteristics of the ratio slope move include:

« Affectsthe dave axisonly.

« Thedave axis may be a master axisto another axis.

« Morethan one dave axis may be connected to the master axis.
« The master axis may be a servo, atime, or adigitizing axis.

« If the master axisreversesdirection, the slave axiswill follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the lave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axiswill be at its corresponding position as defined in the array of struc-
tures.

« Ifitisnot desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOSL P function.

Chapter 2 Function/Function Block Description 2-193

RATIOSLP

Inverted ratios are possible by entering negative slave segment elementsin
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

Anindividua segment of the profile may pass through zero. Segment 3in
the profile on the left passes through zero to cover the slave distance
(shaded areas). The profile on the right uses two segments to accomplish
the same thing.

Segment passing through zero Two separate segments

|+] '

3

AA1090-4591 AA1089-4591

The starting point for the master axis may be entered. 1f the moveis queued
with no master start and the master axis is moving in the opposite direction
as defined by the profile segments, the distance will be accumulated. This
distance must be recovered before motion will start.

Both the master and slave axes must be at the same interrupt rate.
Registration can be used with the RATIOSLP function.

The profile can be changed on the fly by queuing up a new ratio slope move
and aborting the current one. Any remainder from the previous moveis
cleared.

The default ratio of the function is executed whenever an empty segment is
encountered and/or the flag is set. The default ratiois 1:1. Thiscan be
changed with the NEWRATIO function.

NOTE: Itispossibleto set up adefault ratio with no motion on the slave
axis by entering a0 in the SDST input of the NEWRATIO function.

The ratioSL P function move will repeat continuoudly if bit O of the OPTN
input is set until either the move is aborted or aREP_END function is
called. With the abort move function, the move will stop wherever itisin
the profile. With the repeat end function, the move will stop at the end of
the current profile.

Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, amaster segment is zero, or not all master segments have
the same sign]

3. Master axisbeyond start point (P-error) [Master start value out of range
or master axis beyond start point]

2-194

Chapter 2 Function/Function Block Description

RATIOSLP

4. Slave axis (AXIS) not initialized during setup

« AnE-error will occur if there are calculation errors during runtime. The hex
code 0004 indicates this error on the ERRS output of the E_ ERRORS func-
tion.

Chapter 2 Function/Function Block Description 2-195

RATIOSLP

RATIOSLP structure members

The five members of the structure required for the array of structures at the
SLPE input are described below.

MASTER INT The MASTER member specifiesthe distance (in feed-
(master diss Range -32768 to back units) the master travels during a segment. The
tance) 32767 FU values of the master distance entered in feedback
units must all be the same sign for each segment.
SLAVE INT The SLAVE member specifies the distance (in feed-
(davedis- Range -32786 to back units) the slave travels while the master travels
tance) 32787 FU its distance during a segment. The values of the Slave
distance entered in feedback units can be either sign.
SLOPE DINT The SLOPE member specifies the
(slope) Range -2147483648 to 2147483647 slope of the segment.
scaled by 224
(Range -127 to 127 unscal ed)
SRATIO DINT The SRATIO member specifies the
(starting ratio) Range -2147483648 to 2147483647 starting ratio of the segment.
scaled by 224

(Range -127 to 127 unscaled)

FLAGS

DWORD

(continued on next page)

2-196

Chapter 2 Function/Function Block Description

RATIOSLP

FLAGS DWORD
(flags)

3130 29 28 27 26 25 24 23 22 21 91817 16 151413 121110 9 8 7 6 4 10

il UL = execute vaid data for seqment:
1 = execute default ratio

L 0=copy a0to bit O after segment execution,

1 = copy alto bit O after segment execution
If bit O is set to O, the segments of the slope profile will execute in sequence
as entered in the array of structures.
If bit Oissetto 1, the segment is considered empty. The default ratio will be
in effect until bit 0 is set to 0 and valid slope profile data is entered in the
array of structures.
NOTE: The default ratio of the RATIOSLP function is 1:1. The NEWRA-
T10O function allows you to change the default to another value.
As each segment compl etes its execution, whatever valueisin bit 1 is copied
into bit O.
All remaining bits (2 - 15) should be set to zero.

Chapter 2 Function/Function Block Description 2-197

RATIOSLP

Working with the FLAGS member

The FLAGS member of the structure provides the capability of using the
default ratio with the RATIOSLP function. Once the default ratio isrunning it

ispossibleto usethe array of structureslike arotary queue with datamoving in
from the ladder and out via servos in sequence.

Bitl BitO

Example
0 0 With both bits set to zero, the RATIOSLP function will
execute like RATIOCAM. If repeat is set on the OPTN
input, the profile will repeat continuously. | [\ T
I ~

1 1 With both bits set to one, the RATIOSLP function will
execute at the default ratio until the ladder placesdatain Default
the array of structures and clears bit O. Ratio

L T

When each segment of the profile completes its execution, whatever isin bit 1
iscopied into bit O.

NOTE: Whenever the default ratio is used, set the reversal not allowed flag

using variable 21 of the WRITE_SV function before calling the RATIOSLP
function.

2-198 Chapter 2 Function/Function Block Description

Slave Distance

Ratio “Master Distance

RATIOSLP

Creating a profile with an array of structures

Each segment in the slope profile is defined by you in PiCPro by creating an
array of structures in the software declarations table. (More information on
arrays and structures can be found in Chapters 2 and 3. See aso the
RATIOCAM function.)

There are five members of the structure--the master distance, the slave
distance, the slope, the starting ratio, and flags. Each element in the array
represents these five items for one segment of the slope profile.

In order to enter the data for the array of structures, you need to know:

1. Themaster distance, the slave distance, the slope, the starting ratio, and
the ending ratio for each segment.

2. Whether or not you want to turn the array of structuresinto arotary
gueue and make use of the default ratio capability. Thisisdonewiththe
FLAGS member of the structure.

3. Thenumber of segments the profile contains.
NOTE: Add*“1” to this number to calculate the length of the array you
will declare. The servo software usesthefirst element inthe array to de-
termine the size of the profile.

Example

8

8

[¢)]

o

A simplified example of aratio slope profileis shown in Figure 2-15. It has
SiX segments.

Figure 2-15. Slope profile

Slave Distance
(area under the curve)
1 K] 4 5 6
(1500) (4000) (3000) (2500) (2500)

Master Distance
| (500) | (1000) | (500) | (500) | (500) | (500) |

NOTE: Each division on the horizontal axis equals 100 units.
Each division on the vertical axis equals 1 unit. AALOB04301
For each individual segment, you determine how far the slave axis will move
while the master axis coversits segment distance. This establishes the slave
distance/master distance ratio for the segment. Y ou also need to know the
starting ratio of each segment. With thisinformation, an ending ratio can be

calculated. Once thisis known, the slope for the segment can be cal cul ated.

Chapter 2 Function/Function Block Description 2-199

RATIOSLP

Thefollowing stepsillustrate how to determine this data for one segment from
the profile as shown in Figure 2-16.

Figure 2-16. Segment 3 of the ratio slope profile

Starting
ratio (SR) 6\0&

distance

©)
3
(4000)

(43) oned Buipug

Master distance (M)

AA1062-4391

Step 1. Master Distance - The master distance for segment 3 is 500 units.

Step 2. Slave Distance - The slave distance is determined by calculating the area
under the curve. Thisis 4000 units.

Step 3. Starting Ratio - The starting ratio from the vertical axisis 6.
The starting ratio must be scaled by 224 or 16777216 before entering in the
array element.

6 x 224= 100663296
Step 4. Ending Ratio - The ending ratio is calculated from the following formula.

2s
ER—M SR

where:

ER = ending ratio
S=davedistance
M = master distance
SR = starting ratio

_ 2(4000)
ER = S35 -6
ER =10

NOTE: Theending ratio isneeded in order to calculate the slope. It isnot
entered into the structure.

2-200 Chapter 2 Function/Function Block Description

RATIOSLP

Step 5. Slope- The slopeis calculated from the following formula.

Slope = ER=SR

Slope =.004

The slope must be scaled by 2%* or 16777216 before entering in the array
element.
0.004 x 224 = 67109

Data required for ratio slope profile

Segment # 1 2 3 4 5 6
Master 500 1000 500 500 500 500
Slave 1500 6000 4000 3000 2500 2500
Slope .012 0 .008 -.008 .008 -.008

Starting Ratio 0 6 6 8 3 7
(Ending (6) (6) (10) 4) (7) 3)
Ratio*)

*The ending ratio is needed in order to calculate the slope. It is not entered
into the structure.

Chapter 2 Function/Function Block Description 2-201

RATIOSLP

Data to enter into array of structures

Element # 0 1 2 3 4 5 6
Master 7 500 1000 500 500 500 500
Slave 0 1500 6000 4000 3000 2500 2500
Slope (scaled) 0 67108 0 134218 -134218 | 134218 | -134218
Sta(rs“cna?e%‘;‘“o 0 0 |100663296 | 100663296 | 134217728 | 50331648 | 117440512
Flag 0 0 0 0 0 0 0
IMPORTANT
Remember that thefirst element in the array determinesthe size of the
profile.
The .MASTER line of the first element must contain the number of
segments in the profile plus one.
It isnot necessary to enter any valuein theremaining lines. They will
default to zero.
By entering the name of the array and the first element at the SLPE input, the
desired profile can be accessed by the RATIOSL P function.
CAUTION
Never attempt to change the values in the array elements while the
move is being executed unless the rotary queueisin effect.
2-202 Chapter 2 Function/Function Block Description

RATIOSYN

RATIOSYN
Ratio Synchronization Motion/RATIOMOV
ATT09 Inputs:. EN (BOOL) - enables execution (One-shot)
| EVE— AXIS (USINT) - identifies the slave axis which will
lats auel move at a constant ratio depending on the master axis
Lt movement (servo)
. MAST .(U'SINT) - identifies the master axis that the
dave axisisto follow

™ SDST (DINT) - (dave distance) indicates the distance
155TR the slave should move for each MDST distance
1MSTR (entered in LU*)

MDST (DINT) - (master distance) indicates the dis-
tance the master axis will move during each SDST
(entered in LU*)

*NOTE: The range of values entered in SDST and
MDST is-32768 to 32767 FU excluding 0. If you are
using ladder units be sure they do not exceed this range
when converted to feedback units.

SSTR** (DINT) - Slave starting point entered in LU

If SSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

**The following equation must be satisfied for the
SSTR input entry or P_Error #16 8400 is generated.

(SSTR - SCMD)(MDST/SDST) < 32768

MSTR (DINT) - Master starting point entered in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of ratio syn move for queue

The ratio syn move function, like the ratio gear move, establishes a constant
ratio between a slave axis and a master axis.

In addition, a positional relationship between the master and slave is defined.
The master starting point (MSTR) and the slave starting point (SSTR) are
entered. The sign on the number entered in MDST dictates the direction the
axis must approach its starting point.

Chapter 2 Function/Function Block Description 2-203

RATIOSYN

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

If thereisaremainder as aresult of the software division,
software includes it in its cal cul ations preventing any driftin ng tr ot oma'he desired
ratio.

dave distance

MASTER AXIS NOTE

The master axisfor any master/slave move can be one of threetypes
available:
1. Aservoaxis
(Range of numbers available to enter at MAST for servo axesis 1
through 16.)
A servo axis must be set up with the Servo setup and tuning pro-
gram.

2. Atimeaxis
(Range of numbers available to enter at MAST for time axes is 25
through 28.)
A time axis creates atime basis for slave axesto follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

3. A digitizing axis
(Range of numbers available to enter at MAST for digitizing axesis
49 through 64.)
A digitizing axis must be set up with the Servo setup and tuning
program.

2-204

Chapter 2 Function/Function Block Description

RATIOSYN

A. Mechanical Representation The ratiosyn move is similar to the ratio
gear move in that the gearswill move at a

constant ratio. In addition, a positional
relationship between the master and slave
axesis established.

The profile of the move would look like
that shown to the right of example C.
Note that the A, B, and C points corre-
spond to the gear positioning in diagrams
A, B, and C on the left.

When the function is executed (A), the

master is in motion. From A to B in the
profile, the positional relationship is
established.

Master Slave

At B, the axes move together and are locked
on. The dlave axis began to move at a point
that ensured that it will reach SSTR when the

master axis reaches MSTR.
In the profile, the shaded area represents the
‘ distance the slave moved in anticipation of
arriving a SSTR when the master reached
A MSTR. It represents the difference between
_ SSTR and the actual position of the slave. The

dlave starts out at the constant ratio.

When the axes arrive at C, their positions are

aligned as shown in C below left. This posi-
Master Slave tional relationship will be maintained through-

out the move.

Chapter 2 Function/Function Block Description 2-205

RATIOSYN

Ratio Syn Profile

Constant ratio
<ﬂ> . -
MDST Positional \\\
- -% _ | relationship Slave Distance
o established. \\
| | 1\ | |

| | | A | |

A B C

Move started Lock on MSTR

M r lav i
aste Slave Master Distance

AA453-5190

2-206 Chapter 2 Function/Function Block Description

RATIOSYN

Some characteristics of the ratio syn move include:

« Affectsthe dave axisonly.

« Thedave axis may be a master axis to another axis.

« Morethan one dlave axis may be connected to the master axis.
« The master axis may be a servo or adigitizing axis.

« |If the master axis reverses direction, the slave will follow.

« Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has the same affect as making both signs posi-
tive.)

 Starting points for the master axis and slave axis are entered. (Seethe
explanation that follows for conditions necessary to ensure that aratio syn
move will begin.)

« Both the master and slave axes must be at the same interrupt rate.

« Theratio can be changed on the fly by:
using the NEWRATIO function

Master and slave axes starting points

For aRATIOSY N move to occur, the slave axis must start at a point so that
when the master axis arrives at the value entered in MSTR, the slave axis will
be at the value entered at SSTR. The following guidelines ensure that this will

happen.
« Both axes must be below their respective starting points.

« The master axis must be moving in the correct direction to reach its starting
points. Direction is defined by the sign of the number entered in MDST.

« The master axis must be a greater distance from its MSTR position than the
dave axisisfrom its SSTR position.

When you enter avaluein SSTR, the software uses that information plus what
it knows about the slave' s actual position to calculate the ratio syn starting
position for the master. Several examples of how the master start is calculated
follow. Thefirst three follow the guidelines listed above.

Examples 4 and 5 show the effect of rollover on position in allowing the
guidelines to be “stretched.”

Chapter 2 Function/Function Block Description 2-207

RATIOSYN

Example 1 - Slave axis at SSTR

In this example:

SDST
MDST
SSTR
MSTR

SC (slave current position)

The save/master ratio is 1:1. A slave starting point
1 (SSTR) of 100 and a master starting point (MSTR)
1 of 200 has been entered. The slave axisis a SSTR.
100 Inthiscase, the calculated master start will equal the
200 Vvaueat MSTR.
ms (calculated master start) = MSTR

100 When the master axis reaches 200, the dave axis

ROP (rollover on position) = Off pegins to move. The axes are locked and synchro-

nized.

Figure 2-17. Slave axis at SSTR

This symbol represents
' lock on for the axes.

Slave
current
position

Slave Axis

Master axis)'

Master Axis

AAB02-0591

2-208

Chapter 2 Function/Function Block Description

RATIOSYN

Example 2 - Slave axis below SSTR

In this example: Theratio is till 1:1 and the slave start is 100 and
SDST = 1 the master start is 200. The slave's current posi-
MDST = 1 tionis25. Thecalculationis:
SSTR = 100 ms= MSTR - (SSTR - SC)
MSTR = 200 ms = 200 - (100 - 25)

ms= 125

SC (slave current position)
ROP (rollover on position)

25 When the master axis reaches 125, the slave axis
Off will begin to move toward 100 so that when the
master reaches 200 the slave will be at 100.

Figure 2-18. Slave axis below SSTR

This symbol represents
' lock on for the axes.

Slave
current
position

- —>
L I (N AN AN N N (N N N N B
\ \ \ ‘ \ \ \ ‘ [[[‘ [[[‘
0 25 100 200 300 400
Slave Axis
Master axis
_____ t — —»
L1 R I I N A N (N SO AN NN NN N
[[[| \ \ \ | \ \ \ | \ \ \ |
0 100 125 200 300 400
Master Axis

AA803-0591

Chapter 2 Function/Function Block Description 2-209

RATIOSYN

Example 3 - Slave/master ratio in not 1:1

In this example: Rotary axes will be used to show a ratio of 2:1.
SDST = 2 The dave start is 100 and the master start is 200.
MDST = 1 The slave’s current position is 25. The calculation
SSTR = 100 Is:
_ _ (SSTR-SC) x MDST
MSTR 200 ms SDST
SC (slave current position) = 25 ms = (100-25) x 1
ROP (rollover on position) = Off 2
ms = = 375
ms=MSTR - ms
ms=200- 37.5
ms = 162.5

When the master axis reaches 162.5, the lave axis
will begin to move to 100 so that when the master
reaches 200 the slave will be at 100.

Figure 2-19. S/Mratio not 1:1

This symbol represents lock
on for the axes.

270
270
0 180
180 0
L
?
0%
NS
90

AA804-0591

In any of these examples, it would be impossible to perform aratio syn move if
the slave axis was past SSTR or the master axis was past the cal culated master
start position.

However, if rollover on position is applied to the master and/or lave axis, it
may still be possible to lock on and synchronize. The slave start and the
current slave position must be within the rollover on position value.

2-210

Chapter 2 Function/Function Block Description

RATIOSYN

Example4-Rolloveron positionontheslave axis; theslaveis pastthe SSTR

In this example: The current slave position is past its SSTR value.
SDST 1 Without using rollover on position, the ratio syn

MDST = 1 move could not be started.
SSTR = 50 Withrollover on position set at 100, the cal culated
MSTR = 200 master start isasfollows:

ms=MSTR - (SSTR - SC+ ROP)

SC (slave current position) 75 ms=200- (50 - 75+100)

ROP (rollover on position) 100 ms=125
(dave)
Figure 2-20. ROP on slave; slave past SSTR
Slave
current
position
- — — —)>
| | | || | | || | | || | | |
|] T
Acual —_y 75 100 200 300 400
pOSItIOﬂ
o 100 |
Rollover on 0 100
position 100
0 100
Slave Axis
Master axis
————— - —>
[N I AN N A N A SN N AN I N N
| 1 T
0 100 125 200 300 400
Master Axis

AAB05-0591

Chapter 2 Function/Function Block Description 2-211

RATIOSYN

Example 5 - Rollover on position on the master axis; master is past the MSTR

In this example: The current master position is past its MSTR
SDST = 1 vaue. Without using rollover on position, the
MDST = 1 ratiosyn move could not be started.
SSTR = 100 Withrollover on position set at 200, the calculated
MSTR = 75 master start isasfollows:
N ms=(MSTR - MC + ROP) - (SSTR - SC)
SC (slave current position) = 50 ms = (100 - (100 - 50))
MC (master current position) = 175 ms =50
ROaF;(roIIover onpostion) = 200 Since the master is already past 50, A ROP is
(master) added to msto ensure start.
Figure 2-21. ROP on master; master past MSTR
v,
‘ L [v e
I
0 100 200 300 400
Slave Axis
Master
current
H
Actual 400
position
Rollover on ‘ 0 50 75 200 ‘
position 200
Master Axis
AAB06-0591
NOTE

Master and slave offsets will also have an effect on the starting of a
ratio syn move. They would be added into (or subtracted out of) the
calculations with MSTR and SSTR respectively.

2-212 Chapter 2 Function/Function Block Description

RATIO_GR

RATIO_GR

Ratio Gear Motion/RATIOMOV
0 o Inputs:. EN (BOOL) - enables execution (One-shot)
I) okl AXIS (USINT) - identifies the dlave axis which will move
Lats ael at a constant ratio depending on the master axis move-

{MAST
4SDST
{MDST

ment. (servo)

MAST (USINT) - identifies the master axis that the slave
axisistofollow (See master axis note below.)

SDST (DINT) - (slave distance) indicates the distance the
dlave should move for each MDST distance (entered in
LU*)

MDST (DINT) - (master distance) indicates the distance
the master axis will move during each SDST (entered in
LU*)

*NOTE: The range of values entered in SDST and MDST
is-32768 to 32767 FU (excluding O for the MDST input.)
If you are using ladder units, make sure they do not exceed
this range when converted to feedback units.

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of ratio gear move for queue

The ratio gear move function establishes a constant ratio between a slave axis
(AXI1S) and amaster axis (MAST).

NOTE: The master axis cannot be entered in AXIS. Thiswill generate a P-

error if attempted.

If the dlave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

If thereisaremainder as aresult of the software division of slave distance
divided by master distance, the software includesit inits calculations
preventing any drifting from the desired ratio.

See aso RATIOSYN.

Chapter 2 Function/Function Block Description 2-213

RATIO_GR

A. Mechanical Representation

Master

MASTER AXIS NOTE

2. Atimeaxis

3. Adigitizing axis

The master axisfor any master/slave move can be one of threetypes
available:
1. Aservoaxis
(Range of numbers available to enter at MAST for servo axesis 1
through 16.)
A servo axis must be set up with the Servo setup and tuning pro-
gram.

(Range of numbers available to enter at MAST for time axes is 25
through 28.)

A time axis creates atime basis for slave axesto follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

(Range of numbers available to enter at MAST for digitizing axesis
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning
program.

A ratio gear move can be represented
mechanically by two gears as shown on
the left. The master gear isin motion.

When the function is executed, imagine
the gears moving together as shown in B.
The dave begins its motion from what-
ever position it is at and follows the mas-
ter at a constant ratio until the move is
ended.

The profile of the move would look like
that shown to the right of example B.

Slave

2-214

Chapter 2 Function/Function Block Description

Master

RATIO_GR

Ratio Gear Profile

Constant ratio

SDST
DST

Ratio
|

Slave Distance

Master Distance
AA449-5190

Slave

Some characteristics of the gear ratio move include:

Affectsthe slave axis only.

The dlave axis may be a master axis to another axis.

More than one slave axis may be connected to the master axis.
The master axis may be aservo or adigitizing axis.

If the master axis reverses direction, the slave will follow.

Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has the same affect as making both signs posi-
tive))

No starting or stopping points are entered.
Both the master and slave axes must be at the same interrupt rate.
The ratio can be changed on the fly by:

« Caling the NEWRATIO function

« Queuing up a new ratio move and aborting the current one.
Any remainder from the previous move is cleared.

Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis entered as master and
dave]

2. Slavedistance not valid (P-error)
3. Master distance not valid (P-error)
4. Slave axis (AXIS) not initialized during setup

An E-error will occur if thereis a dlave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ERRORS
function.

Chapter 2 Function/Function Block Description 2-215

RATIO_RL

RATIO_RL

Ratio Real

Motion/RATIOMV

RATIO_AL Inputs:

HEN 0Kt
JAXTS QUEF
{MAST
{REAL
{MSTR
40PTN

Outputs:

EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies slave axis (servo)

MAST (USINT) - identifies master axis

REAL (ARRAY OF STRUCTURES) - points to the

first element in the array of structures defining the pro-
fileto run

MSTR - (DINT) - master starting point of the move
entered in LU

If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

OPTN - (WORD) - provides two options: repeat and
ignore master start

OK (BOOL) - execution completed without error

QUE (USINT) - number of real profile move for the
queue

The RATIO_RL function is an axis control function requiring servo
initialization and a math coprocessor on the PiC CPU. It issimilar to the
RATIOSLP function. The differenceisthat the data defining the slave axis
profile for RATIO_RL uses floating point numbers. Each segment of the
profile can be a trigonometric function or a polynomial. A trigonometric
function requires that the radius, starting angle, and segment length be entered

in astructure.

RATIO_RL can be used in conjunction with the math conversion COORD2RL

function.

The AXIS and MAST inputs are used to identify the slave and master axes

respectively.

2-216 Chapter 2 Function/Function Block Description

RATIO_RL

MASTER AXIS NOTE

3. Adigitizing axis

The master axisfor any master/slave move can be one of threetypes
available:
1. Aservoaxis
(Range of numbers available to enter at MAST for servo axesis 1
through 16.)
A servo axis must be set up with the Servo setup and tuning pro-
gram.

2. Atimeaxis
(Range of numbers available to enter at MAST for time axes is 25
through 28.)
A time axis creates atime basis for slave axesto follow. It provides
the ability to generate velocity profiles. It is set up and monitored
using the S CURVE function and/or variables 1, 6, 12, and 26 with
the READ_SV and WRITE_SV functions.

(Range of numbers available to enter at MAST for digitizing axesis
49 through 64.)

A digitizing axis must be set up with the Servo setup and tuning
program.

When the MSTR input is used, it defines the master axis position at the
beginning of the profile.

The OPTN input provides the following options:

Option Binary value Hex value
1. Repeat profile 00000000 00000001 0001
2. Ignore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit Oisset. If bit Oisnot set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered
in MSTR has no effect. The slope profile will begin executing as soon as the
function is called.

Some characteristics of the ratio real move include:

Affectsthe slave axis only.

The slave axis may be a master axis to another axis.

More than one slave axis may be connected to the master axis.
The master axis may be aservo, atime, or adigitizing axis.

Chapter 2 Function/Function Block Description 2-217

RATIO_RL

If the master axis reverses direction, the slave axiswill follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axiswill be at its corresponding position as defined in the array of struc-
tures.

If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIO_RL function.

Inverted ratios are possible by entering negative slave segment elementsin
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

The starting point for the master axis may be entered. If the moveis
gueued with no master start and the master axis is moving in the opposite
direction as defined by the profile segments, the distance will be accumu-
lated. This distance must be recovered before motion will start.

Both the master and slave axes must be at the same interrupt rate.
Registration can be used with the RATIO_RL function.

Theratio_RL function move may repeat continuously if the repeat optionis
set until either the move is aborted or aREP_END function is called. With
the abort move function, the move will stop wherever it isin the profile.
With the repeat end function, the move will stop at the end of the current
profile.

Some conditions for which the OK will not be set and the queue will be “0”
include

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, or the same axis was entered as master
and slave]

2. Profileerror (P-error) [A number less than two entered asthe size of the
profile, a master segment is zero, or not all master segments have the
same sign]

3. Master axis beyond start point (P-error) [Master start value out of range
or master axis beyond start point]

4. Slave axis (AXI1S) not initialized during setup

« AnE-error will occur if there is a slave delta overflow during runtime.

2-218

Chapter 2 Function/Function Block Description

RATIO_RL

RATIO_RL structure members for the REAL input

The members of the structure required for the array of structures at the REAL
input are described below.

IMPORTANT

The structure entered in the software declarations table for the REAL
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each
member of the structure must be as shown in order for the software to
recognize the information.

NOTE

Remember that the first (0) element in the array determines the size
of the profile. The MASTER line of the first element must contain
the number of segmentsin the profile plus one.

It is not necessary to enter any value in the other lines. They will de-
fault to zero.

Chapter 2 Function/Function Block Description 2-219

RATIO_RL

MASTER
(master distance)

DINT

(Range is
-536,870,912 to
+536,870,911 FU)

The MASTER member specifiesthe distance (in feed-
back units) the master travels during a segment. The
values of the master distance must al be the same
sign for each segment.

SLAVE
(slave distance)

DINT

(Range is
-536,870,912 to
+536,870,911 FU)

The SLAVE member specifies the distance (in feed-
back units) the save travels while the master travels
its distance during a segment. The values of the Slave
distance can be either sign.

For acircular move, LEN holds the number of master

(Ien'é'i']\'/K) LREAL countsin one radian.
. For alinear move, LEN holds the value of K;.
AMPL LREAL For acircular move, AMPL holds the wave amplitude.
(amplitude/K2) For alinear move, AMPL holds the value of K.
STANGL For a circular move STANGL holds the value of the
(starting angle/K3) LREAL starti ng angle in radians.
For alinear move, STANGL holds the value of K.

SPARE | REAL Declare this in your structure since it may be used in
(spare) the future for additional features.

Tf'l-:‘;i DWORD Bits O through 4 are currently being used.

(continued on next page)

2-220

Chapter 2 Function/Function Block Description

RATIO_RL

FLAGS DWORD (continued from previous page)

(flags) Bits O through 4 are currently being used.

151413121110 9 8 7 6 5 4 3 2 1

0

|
I— 0 = execute valid data for segment;
1 = execute default ratio

L 0=copy a0to hit O after segment execution;
1 = copy alto bit O after segment execution
1 = execute asine function
Bits 3 and 4 must be zero.

1 = execute a cosine function
Bits 2 and 4 must be zero.

0 = execute polynomial function
Bits 2 and 3 must be zero also.

AA1110-1992

If bit Oisset to 0, the segments of the real profile will execute in sequence as entered
in the array of structures.

If bit Oisset to 1, the segment is considered empty. The default ratio will be in effect
until bit O isset to 0 and valid real profile datais entered in the array of structures.
NOTE: The default ratio of the RATIO_RL functionis 1:1. The NEWRATIO func-
tion alows you to change the default to another value.

Bit 1 Aseach segment completes its execution, whatever valueisin bit 1 is copied into bit
0.

Bit 2 If bit2issetto 1l and bits 3 and 4 are 0, a sine wave is executed. The slave distance
into the segment is calculated as follows:

Bit 0

Distance = Asin% + BSE— AsinOs

where:A = amplitude

m = master distance into segment

LEN = number of master counts in one radian
Os = starting angle in radians

Chapter 2 Function/Function Block Description 2-221

RATIO_RL

Bit 3 If bit3issetto 1l and bits2 and 4 are 0, acosine waveis executed. The slave distance
into the segment is calculated as follows:

_ 0
. — +
Distance = ACOSELEN es AcosOs

where:A = amplitude

m = master distance into segment

LEN = number of master countsin one radian
Bs = starting angle in radians

(continued on next page)

Bit 4 If bits2, 3, and 4 are 0, apolynomial isexecuted. The slave distance into the segment
is calculated as follows:

Distance = K1m + Kom2 +K3m3

where:K 1, K2, K3 =long reals
m = master distance into segment

All remaining bits (5 - 15) should be set to zero.

2-222 Chapter 2 Function/Function Block Description

RATIO_RL

Working with the FLAGS and the default ratio

The FLAGS member of the structure provides the capability of using the
default ratio with the RATIO_RL function. Once the default ratio isrunning it
ispossibleto usethe array of structureslike arotary queue with datamovingin
from the ladder and out via servos in sequence.

Bitl BitO Example

0 0 With both bits set to zero, the RATIO_RL function will
execute the segment beginning at the defined starting

angle. If repeat is set on the OPTN input, the segment ’

will repeat continuously. |

1 1 With both bits set to one, the RATIO_RL function will
execute at the default ratio until the ladder placesdatain pefaut

Ratio

the array of structures and clears bit 0. ~

When each segment completes its execution, whatever isin bit 1 is copied into
bit O.

NOTE: Whenever the default ratio is used, set the reversal not allowed flag
using variable 21 of the WRITE_SV function before calling the RATIO_RL
function.

The master starting point is entered inthe MSTR input. The profile will begin
executing at the beginning with the master and slave axes locked on when the
master reaches its starting position.

NOTE: If theratio real move is queued with no master starting position and
the master axisis moving in the opposite direction of that indicated in the
profile segments, the direction of the master will have to be reversed and the
accumul ated distance covered before the move will execute.

The OPTN input provides the following options:

Option Binary value Hex value
1. Repeat profile 00000000 00000001 0001
2. lgnore master start 00000000 00000010 0002

If you want the profile to repeat continuously, bit Oisset. If bit 0isnot set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered
in MSTR has no effect. The profile will begin executing as soon as the
function is called.

Chapter 2 Function/Function Block Description 2-223

RATIO_RL

Comparison of some ratio moves
The table below shows how the RATIO_RL works compared to the RATIOCAM and
RATIOSLP functions. RATIO_RL relies on the distance calculations. RATIOCAM
and RATIOSLP rely on the velocity calculations (indicated by the dark boxes).

RATIO_RL
RATIOCAM RATIOSLP (Polynomial) (Trig)
S Slavedistance | S Slave distance S Slave distance S Slave distance
How M Master dis- M Master distance | M Master distance M Master distance
Defined tance K1 Start ratio K1 M coefficient LEN # of master counts in 1 radian
Ko Slope 2 . AMPL Amplitude
2 p Ko M# coefficient o Starting angle
K3 M3 coefficient
D = Klm D =K2m2+Klm D=3) D=
Distance |, _ S K1 =start ratio Kgm* + Kom® +Kim
Polynomi-| "1 ™ M _ Slope
al Ko = —%
2
ogm
MPLsing-= + 04— AMPLsings
Os
0 I
1 1
Distance D D | .
Plot ! !
D - 2 LEN——p
I
m m 'D :
1 1
! 1
m 0 T]
1 1
Vo= Kg Voo=Kam+Kp V = KgmZ+Kom + Kq
K. = S K1 = Start ratio K1= K1 of position
Velocity 17 wm K2 =Slope Ko= 2K of position
Polynomi- K3= 3K3 of position
a V= AMPL 0
COS — +
ELEN %
i
v /\
Velocity | v Y / /
Plot
m
m m

2-224 Chapter 2 Function/Function Block Description

READ

READ
Read lo/COMM

s Inputs: REQ (BOOL) - enables execution (One-shot)
HNDL (INT) - output from OPEN function block

{REQ DONE|—
DL FATLL CNT (INT) - number of bytesto read

I BUFR (MEMORY AREA) - areato read datainto
1BUFR_BUFR MEMORY AREA is a STRING, ARRAY, STRUC-
el TURE, ARRAY ELEMENT, or STRUCTURE MEM-
BER

Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR £ 0
FAIL (BOOL) - energized if ERR # 0
not energized if ERR=0
ACT (INT) - number of bytesread
BUFR (same variable as BUFR input)
ERR (INT) - O if datatransfer successful
0 if data transfer unsuccessful

See Appendix B in the software manual for ERR codes.

The READ function block reads data from the file or device at the User Port
specified by the value at HNDL and placesit in the variable at BUFR. The
number of bytesto read is specified by the variable at CNT. The number of
bytes actually read is placed into the variable at ACT. ACT will be less than
CNT when there are less bytesin the file than specified by CNT, or when there
isan error. Otherwisethe value of ACT will equal the value of CNT.

WARNING

If the input at BUFR does not have as many bytes as specified by
CNT, the "extra' data will overflow into the declared memory area
immediately after the memory area at BUFR.

IMPORTANT

See APPLICATION NOTE # 1 in the Application Note section (at
end of manual) for information about READing from and WRITing
to STRINGs.

Chapter 2 Function/Function Block Description 2-225

READFDBK

READ isused in conjunction with the CLOSE, CONFIG, OPEN, SEEK,
STATUS, and WRITE I/O function blocks.

READFDBK
Read Feedback lo/READEDBK
ool Inputs: EN (BOOL) - enables execution
{EN OKf RSCD (STRUCT) - a structure to identify rack, slot,

channel, and device

VARS (STRUCT) - a structure to contain variables
required for reading encoders or resolvers in back-
ground

Outputs: OK (BOOL) - set if no errorsin structure data

4RSCD
4 VARS

The READFDBK function allows an encoder or a resolver feedback deviceto
be read on a scan time basis (in background). Using this feature allows you to
place encoder and resolver modules in an expansion rack. It can be used with
the encoder, 12 channel resolver, block resolver, and block stepper/encoder/
DC in modules.

No information needsto be entered in the servo setup program. These are read
only feedback devices used in open loop control.

The function performs initialization, update, and reference tasks.

Datais stored and manipulated in two structures you declare in the software
declarations table. The members of these structures can be written to or read
from in the ladder.

Thefirst structure at the RSCD input identifies the rack, slot, channel, and
device (type of encoder). The second structure at the VARS input alows you
to read and write variables required for reading encoders in background.

The READFDBK function should be called by the ladder once each scan.
A separate READFDBK function must be used for each axis.

PROGRAMMING NOTE: If multiple axes will be read in the background
with READFDBK functions, you may want to create an array of structures for
the RSCD and the VARS structures. This eliminates the need to enter these
structures individually for each axis in the software declarations table.

It is necessary to declare the encoder or resolver module in the hardware
declarations table.

Explanations of the two structures required for the READFDBK function
follow.

2-226 Chapter 2 Function/Function Block Description

READFDBK

The RSCD input structure

The structure that must be used at the RSCD input of the READFDBK
functionisshown in Figure 2-22. It hasfour members; RACK, SLOT, CHAN,
and DEVICE.

IMPORTANT

The structure you enter in the software declarations table for the
RSCD input must have the members entered in the order shown in
Figure 2-22. The datatype for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.

Initial values are entered by you for the rack, slot, channel, and device
for the encoder axisat theRACK, SLOT, CHAN, and DEVICE mem-
bers of the structure.

PROGRAMMING NOTE: The RSCD structure name was shortened to "R."
Using one letter for the name of the structure allows the entire member nameto
appear wherever they are used in your ladder without exceeding the eight
character limit. Thus R.DEVICE appears instead of RSCD.DEV>.

Figure 2-22. The structure at the RSCD input

Structure

name _—||R STRUCT
Members .RACK USINT
of 2 JaINT
structure "DEVICE BYTE
END_STRUCT

RSCD structure members

RACK USINT (Write) The RACK member specifies the rack the encoder or
(rack number) RangeOto 8 resolver module resides in. (The master or CPU rack
Range = 100 for is#0. Expansion racks are numbered 1 - 7 (1 - 8 for
block modules some earlier versions of the CPU), where #1 is the
rack connected to the master, #2 is the rack connected
to #1, etc.)
For ablock module, RACK must be set to 100.

Chapter 2 Function/Function Block Description 2-227

READFDBK

SLOT USINT (Write) The SLOT member specifies the dlot in the rack the

(rack slot Range 3to 13 module resides in. Slots are numbered left to right

number) Range 1to77for ~ When facing the controller. Slot 1 and 2 are reserved
block modules for the CSM and CPU modul e respectively.

For ablock module, RACK must be set to 100.

CHAN USINT (Write) The CHAN member specifies the number of the chan-
(module chan- Range 1to 4 for nel on the module.

nel) encoder With an encoder if 3 and 4 are used, a four channel

Range 1 to 12 for encoder module must reside in the rack.
multi-channél

resolver

Range 1 to 2 for
block st/enc/DCin

Range 1to 6 for
block resolver

DEVICE BYTE (Write)
(type of
encoder) 76543210

I— 0 = Quadrature; 1 = Pulse Encoder
0 = Differential; 1 = Single-ended
0 = Encoder; 1 = Multi-Channel Resolver

AA1054-1292

The DEVICE member defines the type of feedback device.

Encoders

Bit O defineswhether it isquadrature or pulse encoder.

Bit 1 defineswhether it isdifferential or single-ended.

Resolvers

Bit 2 defines whether an encoder or aresolver module is being read.

If bit 2 issetto 1, theresolver is being read and bits 0 and 1 are ignored.
If bit 2 is0, the encoder is being read.

All remaining bits (3 - 7) should be set to zero.

2-228 Chapter 2 Function/Function Block Description

READFDBK

The VARS input structure

The structure that must be used at the VARS input of the READFDBK
function is shown in Figure 2-23. The members of this structure are; REFER
(reference), REFVAL (reference value), ROLPOS (rollover position),
STATUS, ERROR, FDBK (feedback), LATCH, POSITN (position),
REFSWT (reference switch), ADDRESS, SPAREL and SPARE2.

IMPORTANT

The structure you enter in the software declarations table for the
VARS input must have the members entered in the order shown in
Figure 2-23. The data type for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.

Y ou write values to REFER, REFV AL, and ROLPOS.

The structure you enter in the software declarations table for the
VARS input must have the members entered in the order shown in
Figure 2-23. The datatype for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.

The software assigns values to STATUS, ERROR, FDBK, LATCH,
POSITN, REFSWT, and ADDRESS*. Never enter any values for
them.

* See note for exceptions at the ADDRESS structure member that fol-
lows.

Figure 2-23. The structure at the VARS input

Structure

name "~y STRUCT
— || REFER BYTE
'REFVAL DINT
'ROLPOS DINT
'STATUS BYTE

Members . ERROR USINT
of | % JINT
structure "POSITN DINT
"REFSWT DINT
" ADDRESS WORD
'SPARET DINT
||| sParE2 DINT

END_STRUCT

Chapter 2 Function/Function Block Description 2-229

READFDBK

The VARS structure members

REFER
(reference)

BYTE (Write)

76 54 3210

Set if ladder arming for reference

Set if ladder reference input switch is on (bit 3 must be set)
0 =index, 1 = no index (Enc 0 =null, 1 =no null (Res)

0 =fast, 1 =ladder (Enc) (ignored for Res)

or
0 = DC input (Block Step/Enc/DC In) (ignored for Res)

The REFER member of the structure allows you to do a reference with the
READFDBK function. It requests a reference and defines the type of refer-
ence that will occur. (If no referenceisrequired, leave bit O set to 0.)

With an encoder, it is possible to do a reference based on afast input to the
encoder module or on aladder event. Either type can be used with or with-
out the index mark.

NOTE: With the fast input, the position is latched in hardware when the fast
input transitions.

With the block stepper/encoder/DCin module, it is possible to do areference
based on the DCin or on aladder event. Either type can be used with or with-
out the index mark.

NOTE: With the block DCin, the position is read in software when the DCin
transitions.

With aresolver, it isonly possible to do areference based on aladder event.

The chart below summarizes how the reference value entered in the
REFVAL member is assigned to the reference position.

All remaining bits (4 - 7) should be set to zero.
With index Without index

Fast input reference |Assignsthevaluein REFVAL tothe|Assigns the vaue in
(Encoder only) or next index mark after the fast infREFVAL to the position
DCin referencewith [occurred. where the fast in occurred.
the block st/enc/DCin
module

Ladder reference Assignsthevaluein REFVAL tothe|Assigns the value in
(Encoder or resolver) |next index mark (Enc) or null (Res) [REFVAL to the position

after the ladder reference switch|where the ladder reference
turns on (bit 1 of REFER). input switch turns on (bit 1 of
REFER).

2-230

Chapter 2 Function/Function Block Description

READFDBK

Before bit O is set requesting a reference, you must define the type of refer-
ence desired with bits 2 and 3. When a positive transition of bit O occurs, the
reference complete bit in the STATUS member (see below) is cleared. Bit O
of REFER may be cleared at any time after the transition occurs.

Once the function knows what type of reference will be performed and that a
request has been made, it will wait for the reference to be completed.

For afast input reference, it will wait for the fast in to occur.

For aladder reference, it will wait for a positive transition on bit 1. Use the
reference switch to set this bit in the ladder. Use the BOOL2BY T conver-
sion to set the bitsin the REFER member of the VARS structure as shown in
Figure 80.

NOTE: Any unconnected input (IN4 - IN7) places a zero in that bit of the
byte.

Figure 2-24. BOOL2BYT conversion for REFER

BOOL2BYT
EN 0Kt
REF_ARM
—| |——{INO OUT|-V.REFER
REF_SW
| | —IN1
WOINDEX
] | —IN2
LAD_REF
| |——INg
1IN4
1IN5
1IN6
1 IN7
AA1055-4191
REFVAL DINT (Write) The REFVAL member defines the reference
(reference Range - £536,870, 912 FU value you want to assign to the reference posi-
value) tion. Always be sure the number you enter is

within the range given since no limit checking
Is done by the software.

Chapter 2 Function/Function Block Description 2-231

READFDBK

value)

REFVAL DINT (Write)
(reference Range - 536,870, 912 FU

The REFVAL member defines the reference
value you want to assign to the reference posi-
tion. Always be sure the number you enter is
within the range given since no limit checking
is done by the software.

position) FU

ROLPOS DINT (Write)
(rollover on Range - 0 to 536,870, 912

The ROLPOS member defines the rollover
position you want . Entering a zero means no
rollover position isin effect.

Always be sure the number you enter iswithin
the range given since no limit checking is
done by the software.

STATUS BYTE (Read)
(status)

76 543 210

L

)
E

structure.

The STATUS member gives the status of the items shown above in bits 0 - 3.
The remaining bits are internal and not used by the ladder. Use the
BYT2BOOL conversion to check the bitsin the STATUS member of the VARS

Set if loss of feedback* (With differential encoder or multi-channel resolver)
Set if reference complete
Set for one update after fast input transitions (Enc only; always 0 for Res)**

Set if fast input is on (Enc only; always 0 for Res)***
Internal status bits (not used by the ladder)

*See note at ADDRESS structure member.

**|f using the block stepper/encoder/DC in module,
this will be set for the index mark of the encoder.

***|f using the block stepper/encoder/DC in module,
this will be set for the DC input.

2-232 Chapter 2 Function/Function Block Description

READFDBK

Figure 2-25. BYT2BOOL conversion for STATUS

BYT2BOOL
EN OKF
LOF
V.STATUS —IN OUTO EéD())F
W
O
0UT3 —(J—
OuT4 -
OUTS ¢
OUTG -
OuT7 -

ERROR USINT (Read) The ERROR member will contain one of the following values:

(error (0-5) 0 No error

number) 1 Invalid rack number

2 Invalid slot number

3 Invalid channel number

4 Module not found or not enough channels

5 Structure memory written to by something other than this

function
FDBK DINT (Read) The FDBK member gives the actual feedback value
(actual feed- from the module.
back value) Encoder - A 24 bit value.

Resolver - 0 - 3999

LATCH DINT (Read) The LATCH member gives the most recent fast input
latched value latched value. Itisa24 bit value.

(Encoder It is always the rising edge of the fast input unless the
only) reference cycle just completed used the fast input and

theindex. After the referenceis complete, the module
will once again respond to a rising edge of the fast
input.

If you are using a block stepper/encoder/DC in mod-
ule, the latch value is the index position of the
encoder.

Chapter 2 Function/Function Block Description 2-233

READFDBK

POSITN DINT (Read) The POSITN member gives the position of the axis

(axis posi- according to the reference, rollover position, and

tion) encoder activity since power on. This value will roll
over if it exceeds a four byte value in the positive or
negative direction.

REFSWT DINT (Read) For an encoder, the REFSWT member gives the dis-

(reference tance between the reference switch and the index

switch) mark.
For a resolver, the REFSWT member gives the value
at FDBK when the transition of the reference com-
plete bit occurs.
NOTE: REFSWT isonly valid if the reference com-
plete status bit is set.

ADDRESS WORD This address must be zero in order for the software to

(address) (No action*) initialize the READFDBK function. After initializa-
tion the software assigns an address to it.
*NOTE: Normally, no action isrequired on your part.
However, if it is ever necessary to reinitialize, you
must write a zero to ADDRESS and call the function.
Also, if aloss of feedback occurs, you must write a
zero to ADDRESS and call the function in order to
clear theloss of feedback. It isnot cleared when feed-
back is restored.

SPARE1 DINT

(reserved)

SPARE2 DINT

(reserved)

2-234 Chapter 2 Function/Function Block Description

READ_SV

READ_SV
Read Servo Motion/DATA
READ SV InPUtS: EN (BOOL) - enables execution
|- AXIS (USINT) = identifies axis (servo, digitizing, or
1AXIS RSLTH time)

VAR (SINT) = variable to be read
Outputs: OK (BOOL) - execution completed without error
RSLT (DINT) = servo data read

1 VAR

The read servo function allows the specified variable (VAR) to be read for the
specified axis. Theresults of theread are displayed at RSLT.

The variables that can be read using the function are listed in the table below.

The table also indicates which variables can be written with the WRITE_SV
function and what type of axis apply (servo, digitizing, or time).

The READ_SVF and WRIT_SVF functions alow you to read and write the
same variables listed below faster. However, the units are feedback units and
updates rather than ladder units and minutes. Thisis noted in the variable
description.

NOTE: When using read/write variables with the Stepper Axis Module, the
feedback units are stepper units. Ladder units may still be used.

Chapter 2 Function/Function Block Description 2-235

READ_SV

Variables available for the read/write servo functions
Key for the variable table (on the following page)

V# -identifies the variable number you enter in the read and/or write servo
functionsat VAR.

R column-indicates the variable can be used with the read servo function.
W column-indicates the variable can be used with the write servo function.

AnF (in XX) in the lower right corner of the Definition Box indicates you can
use the read servo Fast (READ_SVF) or write servo Fast (WRIT_SVF)
functions with that variable and the units (usually feedback units) used with
these functions.

S =servoaxis D =digitizingaxis T =timeaxis

V#

Definition R W

Actual position - Reads the actual position of the axes in ladder |S,D, T|T
units.
With atime axis, allows you to write the position.

(Range for a time axis is +2147483647 to -2147483648 |adder
units.)

FinFU
Move type - The active move type is indicated by a number: S
11 position move 18 ratiopro
12 distance move 20 ratiosyn or ratiogr
2 14velocity start 22 ratiocam

16fast reference or 23 ratioslp

ladder reference 24 ratioreal

F

Command position - Reads the commanded position in ladder|S, D
units.

FinFU

Position error - Represents the proportional error in ladder units. |S
NOTE: With SERCOS where the actual position error is in the
drive, internal calculations approximate the position error and bring
the approximation out to variable 4. This approximation may vary
by the distance moved in one or two updates from the actual posi-
tion error read from the drive via the service channel.

NOTE: Not available with the stepper axis module.
FinFU

Slow velocity filter error - Represents the error of the slow velocity | S
filter in ladder units.

FinFU

2-236

Chapter 2 Function/Function Block Description

READ_SV

V #

Definition (Continued)

Command velocity - Shows the velocity ramping up and down with
move in ladder units/minute for servo axes and ladder units/second
(counts/second) for time axes. (Range for atime axis is 2,000,000
ladder units/sec.)

*Do not write a command velocity when running s-curve velocity
profiles.

F in FU/update

T*

Position change - Reads the distance moved during one interrupt in
ladder units/minute for a servo axis and in ladder units/update for a
digitizing axis. To read the position change over several interrupts,
see variable 34.

F in FU/update

S D

Feedback last - Reads the latest feedback position directly from the
feedback module in feedback units.

Ranges for various feedback devices:

Encoder/resolver Counts from 0 to 16,777,215 FU and then rolls
over. The number returned will count according to the feedback
polarity specified in setup.

Anaoginput 0to 4095 unipolar; -2048 to 2047 bipolar

TTL (Depends on number of bits used for position
data)

FinFU

S D

Fast input position (hardware) - Reads the axis position when the
fast input occurs in feedback units. The module must have been set
up to respond to fast inputs through the FAST_QUE, FAST_REF,
REGIST, or MEASURE functions.

NOTE: Not available with the stepper axis module.

FinFU

S D

10

Registration/referencing position change - Reads the distance
position changed in ladder units due to registration or the last
machine reference. This number can be used to allow the ladder to
synchronize axes if adlave axis started before registration ever ran.

NOTE: Not available with the stepper axis module.
FinFU

S D

Chapter 2 Function/Function Block Description

2-237

READ_SV

11

Consecutive bad marks - Reads the number of consecutive bad
marks since the last good mark when using registration. You can
also write any positive number into variable 11 to set the number of
consecutive bad marks. Typically, 0 would be entered to initialize
the counter.

When a good mark occurs, this number will be reset to 0. If the
number of bad marks exceeds 2,147,483,647, the number returned
will “roll over” to -2,147,483,648 and start counting toward O.
NOTE: Not available with the stepper axis module.

F

S D

S D

12

Rollover on position- Reads the rollover position in ladder units.
Allows you to write a rollover position which overrides the one
entered in setup.

The range is 1 to 536,870,912 FU. Entering a O turns rollover on
position off. Negative values cannot be entered. The OK on the
WRITESV function will not be set.

NOTE: Without rollover on position when 2,147,483,647 is
reached, the next number will be -2,147,483,648. The count contin-
ues to zero and back up to 2,147,483,647, etc.

FinFU

SD,T

SD,T

2-238

Chapter 2 Function/Function Block Description

READ_SV

NOTE

Variables 13 through 16 deal with master/dave offsets. It is important to remember
that these offsets affect the master/slave relationship, not the individual axes. The mas-
ter axis is accessed through the slave axis. Offsets are calculated based on the slave
axis ladder units. The number of the dave axis is entered at the AXIS input of the

READ_SV and WRITE_SV functions.

V #

Definition (Continued)

w

13

Slave offset incremental - Reads the total remaining slave offset in
slave ladder units. Writes an incremental slave offset. The tota
incremental offset entered is applied each time the WRITE_SV
functionis called. The offset cannot be canceled.*

FinFU

14

Master offset incremental - Reads the total remaining master offset
in slave ladder units. Writes an incremental master offset. It is
applied each time the WRITE_SV function is called. The offset
cannot be canceled.*

FinFU

15

Slave offset absolute - Reads the absolute slave offset in dlave lad-
der units. Writes an absolute slave offset. Each time the
WRITE_SV function is called with an absolute offset an offset is
applied which is the difference between the last call and this call
will be applied. An absolute offset can be canceled by entering an
absolute offset of 0.*

FinFU

16

Master offset absolute - Reads the absolute master offset in slave
ladder units. Writes an absolute master offset. Each time the
WRITE_SV function is called with an absolute offset an offset is
applied which is the difference between the last call and this call
will be applied. An absolute offset can be canceled by entering an
absolute offset of 0.*

FinFU

*Variables 13, 14, 15, 16 - Incremental/absol ute example

If an incremental offset of 100 is requested, and then later another
incremental offset of 110 isrequested, the total offset applied will be
210.

If an absolute offset of 100 is requested, and then later another abso-
lute offset of 110 is requested, the total offset applied will be 110.

The examplesthat follow illustrate how offsets are incorporated into
moves. Remember that offsets can be entered in the ladder with vari-
ables 13 to 16 and offsets are added by the software from calcula-
tions doneif registration is being used.

Chapter 2 Function/Function Block Description

2-239

READ_SV

1. Master/dave move
No offsets

~
5

In the example on the left, the master is traveling 10
units and the dlave is traveling 50 units (shown by the
area under the curve). No offsets have been entered.

NOTE: The examples are showing just one segment
of aprofile.

In the example on the left, a lave offset of -2 has been
entered. The master travels 10 units and the dave
travels 48 units (shown by the area under the curve).

NOTE: This also represents what would occur if reg-
Istration was running on the slave axis and an offset of
-2 was calculated by the software. The distance the
master travels remains constant and the distance the
davetravelsvaries.*

In the example on the left, a slave offset of +2 has
been entered. The master travels 10 units and the slave
travels 52 units (shown by the area under the curve).

NOTE: This also represents what would occur if reg-
Istration was running on the slave axis and an offset of
+2 was calculated by the software. The distance the
master travels remains constant and the distance the
davetravels varies.*

~
. \
Slave distance
\
O N
Master distance 10
AA459-0391
2. Master/dave move
Negative slave offset
Y~
| -
Slave distance \
\
. -\
Master distance 10
AA460-0391
3. Master/dave move
Positive dave offset
Y~ 1
Slave distance \
\
. -\
Master distance 10
AA461-0391
4., Master/dlave move
Negative master offset
So— L
5 W
N\
Slave distance \
\
0 LN

Master distance

910

AA462-0391

In the example on the left, a master offset of -1 has
been entered. The master travels 9 units and the slave
travels 50 units (shown by the area under the curve).

NOTE: This also represents what would occur if reg-
Istration was running on the master axis and an offset
of -1 was calculated by the software. The distance
the master travels varies and the distance the Slave
travels remains constant.*

2-240

Chapter 2 Function/Function Block Description

READ_SV

5. Master/dave move In the example on the left, a master offset of +1 has
Positive master offset been entered. The master travels 11 units and the
dave travels 50 units (shown by the area under the

S curve).

— —1T N NOTE: This also represents what would occur if reg-
\ |istration was running on the master axis and an offset
of +1 was calculated by the software. The distance
vu_ [the master travels varies and the distance the dave
travels remains constant.*

*When using registration on either the master or slave
axis, it isawaysthe dave axis that makes the physical
adjustment when an offset is calcul ated.

Slave distance

Master distance

AA463-0391

V # Definition R W

Slave offset filter - Allows you to write arate in the range of +1 to S
+101 or -1 to -10001 as shown below. Thisrange represents the per-
centage the velocity will increase or decrease to apply the offset. At
17 |+101 or -10001, the offset is applied as a step function which in
effect is no filter. This is the default if nothing is entered in
WRITE_SV variable 17.

F

Master offset filter - Allowsyou to write arate in the range of +1 to S
+101 or -1 to -10001 as shown below. This range represents the per-
centage the velocity will increase or decrease to apply the offset. At
18 |+101 or -10001, the offset is applied as a step function which in
effect is no filter. This is the default if nothing is entered in
WRITE_SV variable 18.

=

See the figure on the next page for more information on master/slave offset filters.

Chapter 2 Function/Function Block Description 2-241

READ_SV

Figure 2-26.

Range of values for Slave/Master offset filter

+101

Coarse Filter
Acceptable range
for 1to 100% in
1% increments

+1

-1

Fine Filter
Acceptable range
for 1 to 100% in
.01% increments

-10001

DATA
Input of

WRITE_SV

— +101
+100
1
:
+50
1

(NOT VALID) 0
— -1

Percent
Filter

Step
100%
1
:
50%
1

1%

0.01%
0.02%

1.00%
1.91%

2.00%
1
1
1

50.00%

99.99%
100%
Step

AA1136-4092

2-242

Chapter 2 Function/Function Block Description

READ_SV

V #

Definition (Continued)

19

Fast input direction - By entering one of the following numbers,

the fast input will be written (W) as shown in the chart below.

0 - only on alow to high (rising) transition (default)

1 - only on ahigh to low (falling) transition

2 - dternating rising and falling beginning with alow to high transi-
tion

3 - dternating falling and rising beginning with a high to low transi-

L Ly

W W W
W W W W W W
W W W W W

NOTE: Not available with the stepper axis module.

w|N||o| #

F

20

Fast input distance - Reads the distance in ladder units between the
most recent fast input and the previous fast input. This allows the
ladder to measure the distance between two fast inputs.

When this variable is used with the MEASURE or REGISTRA-
TION functions, the function must be called first and then the vari-
ableread.

This distance can be one of four distances depending on how the
direction was defined in variable 19. Thisisillustrated in the exam-
ples that follow.

See also the STATUSSV function.

NOTE: Not available with the stepper axis module.

FinFU

S D

Chapter 2 Function/Function Block Description

2-243

READ_SV

If WRITE_ SV |Then Statussv’s fast input| And READ_SV variable 20 will give
variable19is. [rising bitis: the distance between rising edges:
0 (rising) 1 __I__
A
L Distance j

AA423-5290
If WRITE_ SV |Then Statussv’s fast input| And READ_SV variable 20 will give
variable19is; |rising bitis: the distance between falling edges:
1 (falling) 0 _,__,__

t Dista\nceA

AA424-5290
If WRITE_SV |And Statussv’sfast input ris- | Then READ_SV variable 20 will give
variable19is; |ingbitis: the distance from falling edge to rising

edge:
2 (both)* 1
44

AA426-5290
If WRITE_SV |And Statussv’sfast input ris-| Then READ_SV variable 20 will give
variable 19is. |ing bitis: the distance from rising edge to falling

edge:

2 (both)* 0

AA425-5290

*Note that when variable 19 is set to 2, the STATUSSV bit indicates which
distanceisin variable 20.

2-244

Chapter 2 Function/Function Block Description

READ_SV

V # Definition (Continued) R W

Reversal not allowed - Allowsthe feature of the slavefollowingthe| S S
master when the master reverses direction to be turned on or off for
the ratio_gr and ratiosyn functions. (NOTE: The ratiopro function
has an input for this feature.)

A "0" (the default) allows the slave to follow the master in the
reverse direction. A "1" does not allow the slave to follow the master
in the reverse direction.

Write_sv must always be called before the move function. The state
of reversal cannot be changed after the move has started.

An overflow Estop error will occur if the reversed distance exceeds
536,870,912 units in either the plus or minus direction.

21

F

Fast input position (software) - Reads the actual software position| S, D
of the axis in ladder units. This position value is determined by
things like the reference value and rollover on position.

The module must have been set up to respond to fast inputs through
22 |the FAST _QUE, FAST REF, REGIST, or MEASURE functions.
NOTE: Thisdiffers from the variable 9 fast input position which is
the hardware latch position.

FinFU

Position (software) of axis 1 with fast input on axis2 - Readsthe| S, D S, D
position in feedback units of axis 1 when afast input occurs on axis
2

Both the WRITE_SV and READ_SV functions are required to use
thisvariable.

The module must have been set up to respond to fast inputs through
the FAST_QUE, FAST_REF, REGIST, or MEASURE functions.

23 | Enter the number of the fast input axis (servo or digitizing axis) at
the AXIS input of both functions.

Enter the number of the axis (servo, digitizing, or time axis) whose
position you want to read in the DATA input of the WRITE_SV
function. The positionisread at the RSLT output of the READ_SV
function.

The position of a servo, digitizing, or time axis can be read.

FinFU

Chapter 2 Function/Function Block Description 2-245

READ_SV

= axis whose position WRITE SV
you want to read when
a fast input occurs on {EN OKi-
another axis.
s
2 {VAR
= fast input axis
f DATA
READ_SV
1EN 0K}

f AXIS RSLTL Position of

23 {VAR

AA1091-4791

V #

Definition (Continued)

24

Registration switch - Allows you to turn registration on or off for
the master or dave axis (bit 0, 1). Allows you to choose whether or
not the registration calculationswill change the axis position (bit 2).
Set bit O to turn off registration compensation for the slave axis.

Set bit 1 to turn off registration compensation for the master axis.
note (bit 0,1)

Bit 0 and bit 1 of variable 24 deal with master/dave compensation
due to registration. It isimportant to remember that this compensa-
tion affects the master/slave relationship, not the individual axes.
The master axis is accessed through the slave axis. The number of
the dlave axis is entered at the AXIS input of the READ_SV and
WRITE_SV functions.

Set bit 2 so that the registration calculations do not change the axis
position.

NOTE: This bit can be used with a servo axis or a digitizing only
axis. When used with a digitizing only axis, bit 0 and bit 1 must be
Set to zero.

Variable 10 can be read to see how much change there would have
been if bit 2 was not set.

Writing a zero to variable 24 returns the registration calculations to
normal.

Reads the registration flags.
NOTE: Not available with the stepper axis module.
FinFU

2-246

Chapter 2 Function/Function Block Description

READ_SV

V #

Definition (Continued)

25

Fast queuing - Entering a one turns fast queuing on. A move start,
abort move, or afast queue event will now start within one interrupt.
When it is set to zero, these activities can take up to eight interrupts
to begin. Fast queueing makes your axis more responsive, but there
is atrade-off in that the execution time is increased.
When one or more axisis slaved to amaster axisthat is starting and
stopping using distance moves (normally with the SCURVE func-
tion), you must also set Fast queuing for each slave axis. This
ensures that the slave distances will be reached before the master
axis stops.
When doing a synchronized slave start, see the note at variable 26.
FinFU

S

26

Synchronized slave start - Allows you to tell a master axis which
of its dave axes must be queued up before any of them begin their
move. Each slave axis you want to synchronize is identified by set-
ting abit in aDINT using the lower 16 bits where the LSB = axis 1
and the MSB = axis 16. When the last “set” axis has been queued,
all the dave axes will begin their move on the next interrupt.

WRITE_SV must be called before the move. It can be caled again
when you want to identify a different set of synchronized slave axes.
Change the bits only after the slave axes identified in the first
WRITE_SV have started to move.

Writing a zero to variable 26 clears all identified axes.

READ_SV reads the number of the slave axes being synchronized.
NOTE: Always use fast queing (variable 25) with this variable. This
ensures that the slave axes will be checking for the synchronized
dave start flag every interrupt, not just on the next interrupt.
Remember that the synchronized dlave start variable 26 is set on the
master axis and fast queing variable 25 is set on each slave axis.

=

SD,T

SD,T

Chapter 2 Function/Function Block Description

2-247

READ_SV

V #

Definition (Continued)

27

Backlash compensation - Writes a backlash compensation value.
Enter the value in ladder units. The amount is added or subtracted
from the command whenever the commanded direction is reversed.
The value written should equal the amount of mechanical backlash
in the gears between the servo motor and the desired motion.

NOTE: Because the backlash value is added or subtracted after the
commanded position is calculated, the distance moved will not be
reflected in variable 3 (commanded position). It will, however, be
reflected in variable 1 (actual position).

It is aso important at power on to ensure that the PiC will compen-
sate for backlash correctly. The PiC assumes that the most recent
moveisin the positive direction. Program a positive move to "wind
up" the backlash in a positive direction before writing to variable 27.
Once the initial positive direction has been established, the PiC will
compensate for backlash as described above whenever the com-
manded value changes direction.

READ_SV reads the backlash compensation value in ladder units.
(0 - 32767 feedback units) default =0
NOTE: Not available with the stepper axis module.

FinFU

28

TTL feedback - Reads the position of the feedback axis by return-
ing the state of 24 TTL inputs to the DINT at the RSLT output of
READ_SV. The 24 inputs are the low 24 hits.

Depending on the hardware, the 24th TTL input can be used as an
indicator of valid data. When it is used to indicate valid data, then
you must monitor awaiting flag at the MSB of the DINT at RSLT.
The waiting flag will be low until the hardware sends valid data to
the TTL inputs. Do not attempt to close the loop while the waiting
flag islow. The OK on the CLOSLOORP function will not be set if
the waiting flag islow. When valid datais received, the waiting flag
goes high and you can then successfully close the loop.

You can write to the eight TTL outputs using the eight L SBs of the
DINT at the DATA input on the WRITE_SV function.

NOTE: Not available with the stepper axis module.

S D

S D

2-248

Chapter 2 Function/Function Block Description

READ_SV

V #

Definition (Continued)

29

Reference switch position - With encoder feedback, the position
here represents the distance between the reference switch and the
index mark in feedback units.

With resolver feedback, the position here represents the absolute
position of switch closure in feedback units.

With analog input or TTL feedback, the position here represents the
absol ute position when referencing occurred.

NOTE: The number returned in variable 29 always counts in the
same direction regardless of the feedback polarity specified in setup.

This measurement could be in error up to the distance traveled in
eight updates. You can reduce that error to no more than the dis-
tance traveled in one update by setting variable 25 Fast Queuing
using the WRIT_SV function.

NOTE: Not available with the stepper axis module.

FinFU

S D

The next four variables (30 - 33) alow you to put a master deltafilter on a
dave axis. Variationsin the master delta can cause undesirable “jitter” in the

dave axis. Applying amaster deltafilter can correct this problem.

30

Filter time constant - Defines afirst order filter on the master axis
as viewed by each slave axis defined. In some applicationsit is nec-
essary to filter the master deltato control variations that can occur in
master axistravel. There are 10 approximate filter values:

2 64
4 128
8 256
16 512
32 1024

The time constant has a fine resolution at low values and a coarse
resolution at high values.

Identify the dave axis at the AXIS input of READ SV or
WRITE_SV.

Related master filter variables: 31, 32, 33
(0 - 1023, 0 disablesfilter)

S

S

Chapter 2 Function/Function Block Description

2-249

READ_SV

V #

Definition (Continued)

31

Filter error limit - Limits the amount of lag introduced by the filter.
When thislimit isreached, thefilter will no longer bein effect. This
allows you to implement alarge filter at low velocities when resolu-
tion problems are more pronounced and still limit the following
error effects at high velocities when filtering is not required. A pos-
itive number isentered using WRITE_SV. It appliesto both positive
and negative errors.

Identify the dave axis at the AXIS input of READ SV or
WRITE_SV.

Related master filter variables: 30, 32, 33
(1 - 32767 feedback units)
Fin FU

S

32

Velocity compensation flag - Entering aone turns the default veloc-
ity compensation feature off. Turning it off will result in the Slave
axis lagging the master axes by the amount traveled by the master
axis in one interrupt. NOTE: Velocity compensation works inde-
pendent of thefilter.

Identify the dave axis at the AXIS input of READ SV or
WRITE_SV.

Related master filter variables: 30, 31, 33

(0, 1)

S

33

Filter lag - Reads the filter following error.

Identify the slave axis at the AXIS input of READ_SV.
Related master filter variables: 30, 31, 32

(-32768 - 32767 feedback units)

FinFU

2-250

Chapter 2 Function/Function Block Description

READ_SV

NOTES ON FILTER LAG

Normally, the filter time constant and error limit will be established
prior to the move cal. If they are changed after the slave axis is

locked to the master axis, keep the following in mind:

If thefilter lag is already at thefilter error limit and the error is

increased, the new limit will be reached at the rate defined by the fil-

ter and master axis velocity.
If thefilter lag is already at the filter error limit and the error is

decreased, the excess will be dumped into the slave axis command in

one update.

If thefilter lag is aready at the filter error limit, changing the time

constant will have no effect.
If the filter time constant is set to zero, any lag will remain.

Chapter 2 Function/Function Block Description

2-251

READ_SV

V #

Definition (Continued)

34

Position change over several interrupts - Variable 7 reads the
change in position in asingle interrupt. However, it can be difficult
to get an accurate reading in one interrupt especialy if an axisis
moving slowly. Variable 34 allows the change in position to be read
over severa interrupts.

Write at the DATA input of WRITE_SV the number of interrupts (O
to 255) over which the change in position will be summed. Writing
azero to the DATA input turns the feature off.

Read with READ_SV the distance moved over several interruptsin
ladder units for a servo or digitizing axis. The value is not necessar-
ily changed every interrupt. It changes only after the number of
interrupts designated with WRITE_SV have occurred since the last
value was read. NOTE: A non-zero value must be written with
WRITE_SV before you call READ_SV or the READ_SV OK wiill
not be set.

An overflow can occur if the axis is moving fast and the number of
interrupts selected is large. If an overflow occurs, the OK of
READ_SV will not be set. Write to variable 34 to clear an overflow
error condition.

FinFU

S D

35

Part reference offset - Reads the part reference offset in ladder
units. The offset represents the distance that would have to be sub-
tracted from the current position to remove the part reference.

FinFU

S D

36

Software upper limit- read or write in ladder units the upper end-
limit for a servo axis. Exceeding the endlimit will generate a C-
stop.
The range is-536870912 to 536870911 FU.

FinFU

2-252

Chapter 2 Function/Function Block Description

READ_SV

V # Definition (Continued) R W
Software lower limit - read or write in ladder units the lower end-| S S
limit for a servo axis. Exceeding the endlimit will generate a C-

37 |Stop.

The range is-536870912 to 536870911 FU.
FinFU

Commanded position (before slow velocity filter) - reads the com-| S, D
manded position before the slow velocity filter is applied to a servo
38 |axis. If slow velocity filter is not in effect, it returns the same com-
manded position as variable 3 returns.

FinFU

Following error limit - read or write in ladder units the following|S S
error limit for a servo axis. This overrides the following error limit
39 |entered in servo setup.

The range is-536870912 to 536870911 FU.

FinFU

In-position band - read or write in ladder units the in-position for a| S S
servo axis. This overrides the in-position band entered in servo
40 |Setup.

The range is-536870912 to 536870911 FU.

FinFU

Variables 41, 42, and 43 work with the RATIOCAM, RATIOSLP, and RATIO_RL functions. They
do not work with the RATIOPRO function.

Current segment number - returns the segment number from the|S
ratio move currently being executed. The first segment is number 1.
This matches the array element number in the profile. If one of the
three above moves is not being executed, the OK of READ_SV will
be clear.

41

F

Slave distance into segment - returns the distance the slave axisis|S
into the segment identified in variable 41. If one of the three above
42 [moves is not being executed, the OK of READ_SV will be clear.
The units are feedback units.

FinFU

Master distance into segment - returns the distance the master axis|S
is into the segment identified in variable 41. If one of the three
43 |above moves is not being executed, the OK of READ_SV will be
clear. The unitsare in feedback units.

FinFU

Chapter 2 Function/Function Block Description 2-253

READ_SV

Background Information on Servo Control Variables 44 through 48

Variables 44, 45, 46, 47, and 48 are used to control the servo software. In
normal operation, the servo iteration command is determined by the movetype
(DISTANCE, VEL_STRT, RATIOCAM, etc.) The command is compared to
the feedback and the differenceis fed to the internal PID calculations. The
result isthe servo PID command which is written to the D/A.

Iteration

(2}
o
= —
>S5
& 5
5 N g
= 8
<
)
L o
@
Feedback

o
c
=
°
c
=3
)
=3
o
=
=
<

| 19540 1ndino bojeuy |

To D/A

These variables allow you to interrupt this normal servo operation at various
points asillustrated by the diagram below. They perform the following:

+ Read the result of the servo iteration command and write a user itera-
tion command before the next internal PID calculation (44 and 45).
» Read the result of the servo PID command and write auser PID com-

mand (46 and 47).

» Disablethe servo software (48) and allow the D/A command to come
from the ANLG_OUT function.
CAUTION: Fault conditions are ignored when the servo software is

disabled.
User Iteration
Command
WRITE T;
Variable 45 o
=
1
g
Iteration o
? ® =}
0 =
. <
Servo lteration| T
Command | =3
READ -
Variable 45 | o
|
Variable 44

— Yes @]
5 1 S
oy 2
z =
Q@ ® .
o 0 3
v f 0" | No | S’—J
5] ServoPID | | =
Command | | =
Feedback ~READ
Variable 47 | |
| 1
Variable 46 | _ oopP OPEN?

Note: If the loop is open, the
software outputs the D/A offset.

User PID
Command

WRITE
Variable 47

ANLG_OUT|
Function

To D/A

| 19s140 1Ind1nQ Bojeuy |

Variable 48

Disable Servo Software

Typicaly, these variables will be used within user servo tasks (refer to the
Software Manual).

2-254

Chapter 2 Function/Function Block Description

REA

D_SV

In certain cases when using these variables, it may be helpful to know the

seguence in which execution occurs.
On every interrupt, the following occursin the order given:

1. ThePID codeis executed.
If variable 44 = 0 read servo iteration command (the data servo iterati
code writes)
Else (variable 44 = 1) read user iteration command (the data variable
writes)
Compare to feedback
Perform internal PID calculations
Store result into servo PID command (the data variable 47 reads)

on

45

If variable 46 = 0 read servo PID command (the data PID calculations

write)

Else (variable 46 = 1) read user PID command (the data variable 47 writes)

Apply output polarity and analog output offset
If variable 48 = 0, then write value to D/A register

2. Theiteration codeisexecuted.
Calculate iteration from move type, store in servo iteration command

3. Theuser servo TASK codeisexecuted.
Read variable 45
Read servo iteration command
Write variable 45
Write user iteration command
Read variable 47
Read servo PID command
Write variable 47
Write user PID command

V#

Definition (Continued) R W

44

Set user iteration command -when set to one, allowsyou to usethe|S S
user iteration command before the slow velocity filter. The user iter-
ation command is written with variable 45. A valid value should be
written to variable 45 before variable 44 is set to one.

0 = use servo iteration command (default)
1 = use user iteration command before PID calculations

Chapter 2 Function/Function Block Description

2-255

READ_SV

V #

Definition (Continued)

45

User iteration command - allows you to read the result of the servo
iteration command and write the user iteration command to the
input of the next PID calculations when variable 44 is set to one.
The value read or written is the distance to travel per one update.

To zero the command, a zero must be written with variable 45. Oth-
erwise, the most recent write value will be in effect.

Therangeis-32768 to 32767 FU/update.
F in FU/update

46

Set user PID command - when set to one, alows you to use the
user PID command after the PID calculation and before the D/A
command. You can then write a user PID command with variable
47. A valid PID command should be written to variable 47 before
variable 46 is set to one.

0 = use servo PID command (default)

1 = use user PID command

NOTE: Not available with the stepper axis module.
F

47

User PID command - allows you to read the output of the servo
PID command that is to be sent to the D/A and write a user PID
command when variable 46 is set to one.

To zero the PID command, a zero must be written to variable 47.
Otherwise, the most recent write value will be in effect.

Units are D/A bits where one bit is.33 mv.
Therange is-32768 to 32767 D/A hits.
NOTE: Not available with the stepper axis module.
F in D/A bits

48

Disable servo softwar e - when set to one, the ANLG_OUT function
can be used to control the D/A command or, with a SERCOS sys-
tem, the SCS_CTRL and the SCA_WCY C functions can be used to
control the axisinstead of the servo software.

The most recent value from the servo software, from the
ANLG_OUT function, or the most recent position value from the
SCA_WCY C function, remainsin effect regardless of any E-Stop or
other fault conditions.

0 = use servo software(default)

1 = disable servo software [use ANLG_OUT function for D/A com-
mand; for SERCOS, use the SCS_CTRL function (to set the control
bits) and the SCA_WCY C function (to write the position) or the bat-
tery box (to control the velocity) of the axis.]

NOTE: Not available with the stepper axis module.

S

49

Reserved

2-256

Chapter 2 Function/Function Block Description

READ_SV

V # Definition (Continued) R W

Override endlimit check - allows you to disable endlimit checking|S S
whether referencing has occurred or not. It is used primarily when
you want to ignore endlimits even though referencing has occurred.

>0 |0 = endlimit check (default)
1 =ignore endlimit check even if reference has occurred
FinFU
The table below summarizes the programming features that effect whether or
not endlimits are checked.
Disable End Limit Check In Servo Setup In LDO Status of
Variable 50 Ignore limits until Ref? [REF_END Function Check Limits
0 Yes Not Occurred No Check
0 Yes Occurred Check
0 No NA Check
1 NA NA No Check
51 SERCOS command position - reads the SERCOS position. S
The valueisin feedback units. F
Queued move type - The queued move type isindicated by a num-|S
ber:
11 position move 18 ratiopro
55 12 distance move 20 ratiosyn or ratiogr
14 velocity start 22 ratiocam
16fast reference or 23 ratioslp
ladder reference 24 ratioreal
F

Chapter 2 Function/Function Block Description 2-257

READ_SVF

READ_SVF

Read Servo Fast Motion/DATA
READ SVF InpUtS: EN (BOOL) - enables execution
|- AXIS (USINT) = identifies axis (servo, digitizing, or
1AXIS RSLTH time)

VAR (SINT) = variable to be read
Outputs: OK (BOOL) - execution completed without error
RSLT (DINT) = servo data read

1 VAR

Theread servo fast function allows the specified variable (VAR) to beread for
the specified axis. Theresults of theread are displayed at RSLT. The
READ_SVF function performsthe read faster than the READ_SV function. It
consumes less CPU time in exchange for some features. Less verificationis
performed on the inputsto READ_SVF. All valuesthat involve velocity or
distanceareinfeedback unitsand updatesrather than ladder unitsand minutes.

The variables that can be read using the function are listed at the READ_SV
function.

2-258 Chapter 2 Function/Function Block Description

REAL2DW

REALZ2DI
Real to Double Integer Datatype/REALCONV
REAL2DI Inputs: EN (BOOL) - enables execution
lev okl IN (REAL) - value to convert
I ol Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - converted value
The REAL2DI function converts areal into adouble integer Theresultis
placed in avariable at OUT.
REAL2DW
Real to Double Word Datatype/REALCONV
REAL2DW Inputs: EN (BOOL) - enables execution
lev okl IN (REAL) - value to convert
I ol Outputs: OK (BOOL) -execution completed without error
OUT (DWORD) - converted value

The REAL2DW function converts areal into adouble word. Theresultis
placed in avariable at OUT.

Chapter 2 Function/Function Block Description 2-259

REAL2LR

REAL2LR

Real to Long Real Datatype/REALCONV

Inputs:. EN (BOOL) - enables execution
IN (REAL) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (LREAL) - converted value

REALOLR
{EN ok}
{IN - outh

The REALZ2LR function convertsareal intoalongreal. Theresultisplacedin
avariableat OUT.

REAL2UDI

Real to Unsigned Double Integer Datatype/REALCONV

Inputs: EN (BOOL) - enables execution
IN (REAL) - value to convert

Outputs: OK (BOOL) - execution completed without error
OUT (UDINT) - converted value

REALOUDI
{EN ok}
{IN outh

The REAL2UDI function converts areal into a unsigned double integer The
result isplaced in avariable at OUT.

2-260 Chapter 2 Function/Function Block Description

REF_DNE?

REF _DNE?
Reference Done? Motion/REF
REF DNE? Inputs: EN (BOOL) - enables execution
Iev okl AXIS (USINT) - identifies axis (servo or digitizing)

Lwis pnel Outputs: OK (BOOL) - execution completed without error
RDNE (BOOL) - indicatesif machinereferenceisdone

The reference done function asks the question “Is the machine reference cycle
complete?’ If RDNE is set, areference cycleisdone. If not, then the
reference cycleis not done.

RDNE is cleared when servo reinitialization takes place and whenever a
reference function is called.

NOTE: This function cannot be used with the stepper axis module.

Chapter 2 Function/Function Block Description 2-261

REF_END

REF_ END
Reference End Motion/REF
REF_END Inputs: EN (BOOL) - enables execution (Typically one-shot)
Ien : oKl AXIS (USINT) - identifies axis (servo or digitizing)
Iaxis Outputs: OK (BOOL) - execution completed without error

When the reference switch istripped in aladder machine reference, this
function is used to inform the software that the reference has occurred.

IMPORTANT

The REF_END function is always used when doing a ladder
(LAD_REF) machine reference.

Seeaso LAD_REF.
NOTE: This function cannot be used with the stepper axis module.

2-262 Chapter 2 Function/Function Block Description

REGIST

REGIST
Registration Motion/MOVE_SUP
m——— Inputs. EN (BOOL) - enables execution (Typically one-shot)
| AXIS (USINT) - identifies the axis registration will be
Lavs applied to. (gervo or digi-tizi ng) _
Lorsr NOTE: Fast input on axis feedback required.
DIST (UDINT) - distance between registration marks

(7o that identifies the second mark as a good mark. (Usu-
11aNR adly the same as LGTH.) Range of vaues is 0 to
1LGTH 536,870,912 FU. Enteredin LU.
10 TOLR (UDINT) - error allowed to exist between two

marks when compared to DIST. Range of valuesis 0 to
536,870,912 FU. Enteredin LU.

IGNR (UDINT) - distance after a mark in which any
mark will be ignored. Range of values is 0 to
536,870,912 FU. EnteredinLU.

LGTH (UDINT) - theoretical distance between good
registration marks. Used to calculate the compensation
needed, if any, in master/slave applications. Range of
values is 0 to 536,870,912 FU. Entering a zero turns
registration off. Enteredin LU.

DIM (DINT) - value axis position will take on when a
good registration mark occurs. Range of values is -
32,768 t0 32,767 FU. Enteredin LU.

Outputs: OK (BOOL) - execution completed without error
The OK will not be set if any of the following occur:
« Theaxisisnot found.
« Any input isout of range.
A reference move isin the active or next queue.

Theregistration function is used to set the axis position to a defined value
when afast input occurs. It can be used on a servo or digitizing axis with any
move type.

Registration is most frequently used in master/slave applications. When used
with master/slave moves, it has the additional ability of compensating for
errors that may occur. The end result is a system that remains synchronized
with no accumulated error. Repeatable accuracy throughout a process can be
maintai ned.

Chapter 2 Function/Function Block Description 2-263

REGIST

The axisidentified at AXIS may be amaster or aslave axis. Registration can
run on either one. But because the PiC may not be controlling the master axis,
any compensation for error is done on the slave axis.

The software cal culates how much compensation is required by the value
entered in LGTH. (NOTE: A zero entered in LGTH turns registration off.)
Thisisthe theoretical distance between good registration marks. Ina
packaging application, thisis often equivalent to the product length or the
cycle length.

When registration is used in combination with master-slave ratio moves, you
must ensure that registration and the ratio moves work together properly. In
most applications there is an integer relationship between the value entered at
LGTH and the associated distance traveled for both the master and dave. If
there is not an integer relationship, then the distances traveled by the axes

The next three inputs, DIST, TOLR, and IGNR, are used to determine whether
or not the registration mark is good.

For amark to be recognized as good, it must be the value entered in DIST from
the previous mark. A tolerance can be entered in TOLR which allows an error
between two marks when compared to DIST. A distance can be entered in
IGNR which allows any marks within that distance to beignored following the
last mark. NOTE: Thislast mark is not necessarily a good mark.

2-264

Chapter 2 Function/Function Block Description

REGIST

Thisisillustrated in Figure 2-27. The second registration mark is recognized
as agood mark because it is within the distance + tolerance range and it is not
in the ignore region.

NOTE on tolerance; If avalue of 10 unitsis entered at TOLR, then thereisa
range of +10 which make up the tolerance band.

Figure 2-27. What Determines a Good Mark
4——Distance —b‘
|
0| o]
“—>
Tolerance Band

Any registration mark not ignored Next registration mark
AAB27-0791

If all marks are to be recognized as good marks, enter a0 in DIST and a0 in
IGNR.

Whenever a good registration mark occurs, the axis position is reset to the
value entered in DIM.

Chapter 2 Function/Function Block Description 2-265

REGIST

PROGRAMMING NOTE

The REGIST function should be called only once when you are ready to begin
registration. Itisonly necessary to call it again if any of the inputs have
changed. When the REGIST function is called, any pending non-motion
reference is cleared.

NOTE: Any motion reference in the active or next queue will prevent the
registration function from executing.

Background on registration

In many closed-loop servo systems, it is often necessary to maintain
synchronization and accurate positioning repeatedly throughout a process.
This can be difficult when the product or processitself isinconsistent. Using
registration allows you to overcome this difficulty.

Many factors can contribute to inconsistency. Some examples of the numerous
possibilities are listed below.

« Working with non-rigid material which may stretch or shrink during pro-
cessing.

« Working with the mechanics of a system where the revolution of afeedback
device may give you 5975 counts on one revolution and 5974 on the next.

« Unevenly spaced products on a belt.

Typically, when using registration, sensors are used to detect the position of
the product. With non-rigid materials which may stretch or shrink, a photo eye
can detect registration marks on the material. With rigid products (or
processes), a proximity switch could detect material spacing.

With the PiC, registration capabilities are available on any axis with any move
type. Thefast input on the feedback module allows a position at aregistration
event to be captured. When this occurs, the system recal cul ates the numerical
representation of the axis position.

Thisisimportant in applications such as packaging or converting where the
process must be precisely coordinated and any non-rigid material cannot be
depended upon to retain dimensional relationships. These applications usually
involve master/slave moves. The fast input signals can be used as repeatable
references to which the master and all subsequent slaves continually
synchronize. This discussion uses a master/slave application.

2-266 Chapter 2 Function/Function Block Description

REGIST

Registration example

This example uses the RATIOPRO move which is based on a master/dave
algorithm. The move has a defined cycle length. Registration compensation,
when required, takes place within this cycle with the insertion of an offset

value calculated by the software. (There are also offsets that can be entered by
you with the WRITE_SV function.)

Looking at a packaging process (Figure 2-28.) where alabeled product coming
off aweb of non-rigid material (master axis) must be cut with arotary knife
(dave axis) to 5 inch lengths so that the label is aways in the center of the

product, you would want to compensate for any variation in product length
during each cycle.

Figure 2-28. One example for registration

Registration running

) Correction taking
on master axis

place on slave axis

Feedback » Pi Cc
Module 4 900
~
v

N
Feedback
Device Rotary Knlfe
Photo Slave Axis
Draw Rolls Eye %

. Geal Feedback
Master axis n @ Motor
l’ : \\
Stationary Machine cut product
Continuous Web

.] Shear Point 5" long with
; Registration .
of Material %/Ilarksl label in center.

AA408-2390

Chapter 2 Function/Function Block Description 2-267

REGIST

If you did not compensate, then the error would accumulate and the label
would no longer be centered. As an example, the product is being cut at arate
of 500 per minute. If the product becomes stretched so that the actual lengthis
5.001 inch, in one minute the label on the product would be off by 1/2 inch--in
two minutes, by 1 inch, etc.

By using a photo eye to detect registration marks on the product, any error in
product length will be detected. The rotary knife will adjust its position to
compensate for any error in product length so that the product is always cut at
the correct position. Because the stretching of the material is gradual, the
compensation will be minimal. If thereis no stretching of the product, no
compensation will occur.

Block diagrams of registration showing the interaction between the various
components of registration are shown in Figure 2-29. and in Figure 2-30.

Some of the bits and variables of the servo data functions (STATUSSV,
READ_SV, and WRITE_SV) are used in conjunction with registration.

With registration running on the master axis (Figure 2-28.), the actual axis
position is monitored by the PiC with the feedback device.

The photo eye is watching for registration marks and sending afast input
signal when it seesone. The “good mark detector” decidesif the mark is
recognized as good by the parameters you have defined in DIST, TOLR, and
IGNR. Information coming out of the good mark detector includes whether a
good or bad mark has been detected, if the distance plus tolerance has been
exceeded, and the number of consecutive bad marks.

When a good mark is detected, that information is sent to two places; the
registration calculation and the axis position calculation. In the registration
calculation, the LGTH value, the good mark, and the actual axis position areall
used to calculate an offset value for the master.

This offset value is sent to the master/slave profile (through the of fset filter if it
isturned on).

When a good mark occurs, the axis position is reset to the value entered in
DIM.

2-268 Chapter 2 Function/Function Block Description

REGIST

Figure 2-29. Block diagram of master registration

Good mark detecteced

STATUSSV function —|: Bad mark detected KEY

O Indicates an input to the
REGIST function
\V/ Indicates a variable for the

READ_SV or WRITE_SV
functions

Distance + tolerance exceeded
READ_SV function — Number of consecutive bad marks (V11)

il

»| Good mark Good
detector mark

Registration
on master axis

Photo
eye

J

I | I
\

Fast input

Registration
marks

Master axis

I:‘: Actual axis bosition Registration
t Ll .
calculation

Master offset

v

Master offset filter
(V18) (optional)

1
1
I
1
1
I
1
: @ Lock on
' v information v
1

. . - Master/slave
: Axis position) . Numerical - rofile
: » calculation Axis position N representation (Igatio .
! of the master Rai 9
' axis position Rat!osyn
, atiopro)
I
L o m e e e e e e m e e e e e e mm e e === = = - o4

AA4275290

When registration is running on the slave axis (Figure 2-30.), the block
diagram is very similar to the master registration one in Figure 2-29.

Chapter 2 Function/Function Block Description 2-269

REGIST

Figure 2-30. Block diagram of slave registration

Good mark detecteced
ood mark detectece KEY

TATUSSV function —| Bad mark detected
Distance + tolerance exceeded O Indicates an input to the
READ_SV function —— Number of consecutive bad marks (V11) REGIST function
Indicates a variable for the

Registration READ_SV or WRITE_SV

1
1
I
1
1
1
1
1
I
1
1
1
1
- |
o slay i , . functions
Photo ' ¢ !
eye ' !
Fast input !
D p! . > Gc?od mark | cood :
i U i X etector mark !
1
. |
Registration : I
marks | v '
| ! Slave offset
Actual axis position Registration :
‘ [} i | calculation i
Slave axis 1 | \ 4
! |
: 1 Slave offset filter
! 1 (V17) (optional)
1
I
. i
1 | Lock on
' ! information
1 A 1
1
\ Axis position ") Numerical Master/slave
: > calculation Axis position |- representation | |, (Sgﬁg'er
1 | of the slave Ratios;/a
I . .
, : axis position Ratiopro)
! |
! a
AAB39-1091

2-270 Chapter 2 Function/Function Block Description

REGIST

Two ways in which registration could be used are explained below. Every
mark isrecognized in Figure 2-31. This can be done by entering a0 in the

DIST and a0 inthe IGNR inputs. Now every mark will be recognized as
good.

Figure 2-31. Registration with all good marks

Registration marks

O\
[

Product length

AAB25-0791

This is acceptable when there is no chance for the photo eye to trigger off of
any other mark on the product.

Sometimes there are other marks occurring that you do not want to register off
of, such asthose shown in Figure 2-32. It is possible to skip unwanted marks.

Figure 2-32. Registration that recognizes some marks as good

Distance between rising
and falling edge of
registration mark

i

Registration marks

%%%%% uuﬁu\mun%

Product length

Chapter 2 Function/Function Block Description 2-271

RENAME

RENAME
Rename lo/COMM
r RE%E - Inputs. REQ (BOOL) - enables execution (One-shot)
lrea oonel NAMZ (STRING) - a string containing the complete
pathname
{NAMZ FAIL} _ o _
e eral NAMZ (STRING) - a string containing the new file-
name

Outputs: DONE (BOOL) - energized if ERR =0
not energized if ERR # 0

FAIL (BOOL) - energized if ERR # 0
not energized if ERR=0

ERR (INT) - O if data transferred successfully
0if datatransfer unsuccessful

See Appendix B in the software manual for error codes.

The RENAME function block allows you to rename an existing file on the
RAMDISK or in PiCPro. The complete pathnameis placed in thefirst NAMZ
and the new name is placed in the second NAMZ. The new name must not be
the name of an existing file.

At the first NAMZ input, enter the complete pathname to rename afilein
PiCPro:

With a subdirectory, Without a subdirectory,
PICPRO:c:\sub\filename.ext$00 O PICPRO:c:filename.ext$00

or the following to rename afile on the RAMDISK.

With a subdirectory, Without a subdirectory,
RAMDISK :sub\filename.ext$00 Of RAMDISK:filename.ext$00

At the second NAMZ input, enter the new filename in the format shown
below.

filename.ext$00

NOTE: The RENAME function block cannot be used with the FMSDISK.

2-272

Chapter 2 Function/Function Block Description

REPLACE

REPLACE
Replace String/REPLACE
— Inputs: EN (BOOL) - enables execution
v okl OUT (STRING) - output STRING
JouT-——ouT IN1 (STRING) - charactersto replace
InY IN2 (STRING) - characters which replace
{1N2 L (INT) - length
1L P (INT) - position
1P Outputs:OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The REPLACE function is used to replace one or more charactersin a
STRING with all characters from another STRING. All charactersin the
variable at IN2 replace charactersin the variable at IN1, starting at the position
specified by theinput at P. Theinput at L specifies how many charactersin the
variable at IN1 are being replaced. The variablesat IN1 and IN2 must be
unique from the variable at OUT.

An error occurs:

IfP=20

If P > 255

If P > length of IN1

If L > 255

IfIN1 = OUT

If IN2 = OUT

If length of IN1 - L + length of IN2 > length of OUT

Example of replace function

Var at IN1 Var at IN2 Value at L Value at P Var at OUT
stringLong? 1string 4 7 stringlstring2

Chapter 2 Function/Function Block Description 2-273

REP_END

REP_END
Repeat Profile End Motion/RATIOMOV
TEr D Inputs: EN (BOOL) - enables execution (One-shot)
v ol AXIS (USINT) - identifies axis (servo)
1ax1s Outputs: OK (BOOL) - execution completed without error

The repeat profile end function is required to stop repeating profiles that have
been started in the RATIOCAM, RATIOSLP, or RATIOPRO functions.

It will only stop repeating profilesif the function calling for repeating profiles
isin the active queue. It has no effect on movesthat are not in the active
queue.

A REP_END function was activated while a RATIOPRO move was in the
active queue at the point 1 shown in Figure 2-33. The profile will continue
executing until it reaches segment 5. (See point 2.) Then it will come to an
end instead of returning to segment 2 as it does when repeating.

Figure 2-33. Ending arepeating profile

Portion of profile that will be) . .
REP_END repeated when repeat Profile will be executed to this

function activated at point and then will not repeat
this point. but follow segment 5 to end.

profile is selected.

First Segment Last Seament

2-274 Chapter 2 Function/Function Block Description

RIGHT

RIGHT
Right String String/RIGHT

e Inputs. EN (BOOL) - enables execution
I okl OUT (STRING) - output STRING
JouT———out— IN (STRING) - STRING to extract from
11N L (INT) - length
in Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

The RIGHT function is used to extract characters from the right side of a
string. The number of characters specified by theinput at L are extracted from
the right side of the variable at IN and placed into the variable at OUT.

An error occurs:
IfL > OUT
IfL > 255

Example of right function

Var at IN1 Value at L Var at OUT
stringlstring2 7 string2

Chapter 2 Function/Function Block Description 2-275

ROL

ROL

Rotate Left Binary/ROL

Inputs. EN (BOOL) - enables execution
IN (BITWISE) - value to have bits rotated
N (USINT) - number of bitsto rotate

Outputs: OK (BOOL) - execution completed without error
OUT (sametype asIN) - rotated value

ROL
{EN 0K
{IN - ouT

The ROL function is similar to the shift left function. The bitsin the variable
or constant at IN are moved to the left the number of positions specified by N.
The bits on the left are not discarded, but are rotated, replacing the bits on the
right. Theresult isplaced inthevariable at OUT.

Rotate left, where N = 2:

Examples of rotate left:

ROL (3) 11110000 = 10000111
ROL (4) 01110011 = 00110111
ROL (6) 11000011 = 11110000

2-276 Chapter 2 Function/Function Block Description

ROR

ROR

Rotate Right Binary/ROR

s Inputs:. EN (BOOL) - enables execution
N okl IN (BITWISE) - value to have bits rotated
N ot N (USINT) - number of bitsto rotate
In Outputs: OK (BOOL) - execution completed without error

OUT (sametype asIN) - rotated value

The ROR function is similar to the shift right function. The bitsin the variable
or constant at IN are moved to the right the number of positions specified by N.
The bits on the right are not discarded, but are rotated, replacing the bits on the
left. Theresultisplacedinthevariable at OUT.

Rotate right, where N = 2:

4
<

<
<

1
ofo

Examples of rotate right

ROR (3) 11110000 = 00011110
ROR (4) 01110011 = 00110111
ROR (8) 11001101 = 11001101

Chapter 2 Function/Function Block Description 2-277

R_PERCEN

R_PERCEN
Rate Percent Motion/MOVE_SUP
R PERCEN Inputs: EN (BOOL) - enables execution
v ol AXIS (USINT) - identifies axis (servo)

Iaxis RPER (USINT) - percent to increase or decrease fee-
drate at for all moves for the specified axis. The range
is from 0 to 199% with 100% being the feedrate
entered at RATE for distance, position and velocity
MOVES.

NOTE: If 200 to 255% is entered, the software han-
diesit asif 199 was entered.

Outputs: OK (BOOL) - execution completed without error

1RPER

The rate percent function allows the feedrate for all moves connected with the
specified axis to be changed.

NOTE: Thisisatemporary change in feedrates lasting until the servos are
reinitialized. At that point, it defaultsto the feedrates entered in setup. The
velocity limit entered in setup will never be exceeded by what is entered in the
RPER input.

2-278 Chapter 2 Function/Function Block Description

SC_INIT

SC_INIT

SERCOS initialization Motion/SERC_SYS
—S(N:A%N— Inputs:. REQ (BOOL) - set to call (one-shot)
] REQ* DONE L OPTN (USINT) - must be zero
lopTy FarL L Outputs: DONE (BOOL) - set when initialization has completed

successfully
FAIL (BOOL) - Set if initialization error occurred
ERR (UINT) - 20 if initialization error occurred

The SC_INIT function block copiesthe initialization datainto all SERCOS
interface modules. It isused in conjunction with the user-defined function
block created in the SERCOS setup program. See the PiCPro Software
Manual for more information.

The REQ input should be one-shot at the beginning of the ladder after calling
the user-defined function block created in SERCOS setup. The SC_INIT
function block must be scanned every ladder scan. Never program ajump
around this function block.

The OPTN input isreserved for future use and must be set to zero.

The ERR output will be £0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

ERRF

Chapter 2 Function/Function Block Description 2-279

SCA_ACKR

SCA_ACKR
SERCOS axis acknowledge reference Motion/REF
NAME — Inputs. REQ (BOOL) - set to acknowledge the reference cycle
SCA_ACKR
REQ DONE (one-shot)
Ams wf AXIS (USINT) - identifies servo SERCOS axis
ernl Outputs: DONE (BOOL) - set when the write is complete
sernl FAIL (BOOL) - set if an error occurred

ERR (INT) #0if an error occurred

SERR (UINT) - slave error; 20 if ERR is 128

The SCA_ACKR function block is used with a servo SERCOS axis and
acknowledges the reference cycle. It sends IDN 148 with avalue of zero.

The drive will again be controlled by the SERCOS master (the PiC) after this
function block is called.

The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to acknowledge the
reference cycle are complete.

The FAIL output is set if an ERR occurs.

The ERR output will be #0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

The SERR output will be £0 if the ERR output is 128. See Table 2-12 on page
311 for alist of errors.

2-280

Chapter 2 Function/Function Block Description

SCA_CLOS

SCA_CLOS
SERCOS axis close Motion/ZINIT
*SMMELOSA Inputs: REQ (BOOL) - set to read the drive IDNS (one-shot)
] REOi DONE L AXIS (USINT) - identifies servo SERCOS axis
Iaxis Far L Outputs: DONE (BOOL) - set when the write is complete
ERRL FAIL (BOOL) - st if an error occurred
SERR L ERR (INT) - #0 if aread error occurred

SERR (UINT) - dlave error; 20 if ERR is 128

The SCA_CLOS function block is used to close a servo SERCOS position
loop. It performs the following:

 read drive IDN 76 and determine if the drive modulo (rollover) is set

« read IDN 103 if modulois set

 read IDN 47 to determine current drive position

« update the servo data with the new position

« send the value as commanded position

« set the control bitsto cause the drive to close the feedback loop.

The REQ input is set to read the drive IDN. This can take several scans.
The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to close the loop are set.
The FAIL output is set if an ERR occurs.

The ERR output will be #0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

The SERR output will be 20 if the ERR output is 128. See Table 2-12 on page
311 for alist of errors.

NOTE: Rollover on position in the PiC is the same concept as modulo in the
drive. They areindependent of each other. Their values can be the same or
different and one or the other or both can be turned on or off.

Chapter 2 Function/Function Block Description 2-281

SCA_CTRL

SCA CTRL
SERCOS axis control Motion/DATA
SCh CTAL Inputs. EN (BOOL) - set to call function
Ten B okl AXIS (USINT) - identifies SERCOS axis
1ax1S ERRL IN1 (BOOL) - used to set the appropriate control word
i bit
I IN2 (BOOL) - used to set the appropriate control word
bit
1IN3
OPTN IN3 (BOOL) - used to set the appropriate control word
| bit

OPTN (USINT) - defines which control word bits are
affected by IN1-3

Outputs: OK (BOOL) - set if writeisallowed
ERR (INT) - #0if error occurred

When the SERCOS dlave is being controlled by the functionsin Motion.lib,
the SCA_CTRL function is used to control bits6 - 9 and 11 of the MDT
control word. Refer to the SERCOS specification for the definitions of the
MDT control word.

Bits 8, 9, and 11 define the operation mode. They are normally set to zero
which is the default.

Bits 6 and 7 define the real time control bits. The SERCOS specification and
your drive manual define the purpose of these bits. Typically, bits6and 7 are
left at zero.

2-282 Chapter 2 Function/Function Block Description

SCA_CTRL

The table below illustrates how the IN and OPTN inputs are used.

If_the OPT_N Then COII’ISU‘Ol Description
Inputis : word bit
0 (Not used for SCA_CTRL)
IN1 8 The chart below summarizes the mode options for IN1,
1 IN2 9 IN2, and IN3 when OPTN 1 is chosen. Typically, pri-
IN3 11 |mary operation is used.
Bits
11 | 9 | 8 |Description
O [O O [Primary operation mode (IDN 32)
O [0| 1 [Secondary operation mode 1 (IDN 33)
O | 1| O [Secondary operation mode 2 (IDN 34)
O | 1| 1 [Secondary operation mode 3 (IDN 35)
1 | 0| O |Secondary operation mode 4 (IDN 284)
1 | 0| 1 |Secondary operation mode 5 (IDN 285)
1 | 1| O |Secondary operation mode 6 (IDN 286)
1 | 1| 1 |Secondary operation mode 7 (IDN 287)
IN1 6 Real time control bit 1
2 IN2 not used
IN3 not used
IN1 7 Real time control bit 2
3 IN2 not used
IN3 not used

NOTE: All bits default to zero.

The ERR output will be £0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

Application Note

When the SERCOS slave is controlled by Motion. lib, you follow the steps
summarized below.

1. Initialize the SERCOS axis.

2. Initialize the servo axis.

3. Usethe SCA_CTRL function to set the operation mode and the realtime bits 1 and
2. NOTE: The primary operation mode is the default mode and typically used for
most applications.

4, Control bits 13, 14, and 15 for the drive loop closure with Motion.lib logic
NOTE: If the loop closure bits must be controlled by the ladder, WRITE_SV vari-
able 48 must be set to 1 and the bits controlled by SCS CTRL.

Chapter 2 Function/Function Block Description 2-283

SCA_ERST

SCA _ERST
SERCOS axis error reset Motion/ERRORS
&%MER ST Inputs. REQ (BOOL) - set to reset internal E-errors (one-shot)
Irea ponel AXIS (USINT) - identifies servo SERCOS axis
Iaxis Far L Outputs: DONE (BOOL) - set when errors are reset
ERRL FAIL (BOOL) - st if an error occurred
SERR L ERR (INT) #0if an error occurred

SERR (UINT) - dlave error; 20 if ERR is 128

The SCA_ERST function block is used to reset internal E-errors and can close
the loop on a servo SERCOS axis.

The REQ input is set to reset internal E-errors.
The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditionsto reset the E-errors are
complete.

The FAIL output is set if an ERR occurs.

The ERR output will be 0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

SERR output will be #0 if the ERR output is 128. See Table 2-12 on page 311
for alist of errors.

2-284 Chapter 2 Function/Function Block Description

SCA_RCYC

SCA RCYC
SERCOS axis read cyclic Motion/DATA
SCA RCTC Inputs. EN (BOOL) - set to call function
lev okl AXIS (USINT) - identifies the servo SERCOS axis
1ax1S ERRL TASK (STRUCT) - structure that accesses data ele-
{1ask ments within a servo task
IvaIn MAIN (STRUCT) - structure that accesses data ele-
ments in the main ladder

Outputs: OK (BOOL) - set if read is alowed
ERR (INT) - #0if error occurred

The SCA_RCY C function allows you to read cyclic data between the |adder
and the SERCOS hardware. It can be called either in aservo task or inthemain
ladder, but never in both. When used in a servo task, the function needs to be
called once.When used in the main ladder, the function needs to be called
continuously.

The STRUCT input at TASK and at MAIN must match the order and size of
thelist of IDNs selected for the AT in IDN16. (In SERCOS setup, it ispossible
to copy the IDN list to the clipboard from within the Define Cyclic Datadialog
box and then paste it into the software declarations table.) Thefirst IDN in the
AT must be IDN 51. The structure is labeled ILISTR and would have the
following format:

ILISTR STRUCT

IDN51 DINT
IDN... (varies)
IDN... (varies)
i o I

SIZE USINT

The SIZE member of the structure indicates the number of bytesin the AT
cyclic data as well as the number of bytesin the structure less the SIZE byte.
The SIZE will be compared with the size indicated on the SERCOS module
and an error will be generated if they are not equal. This preservesthe integrity
of the data.

NOTE: Regardless of wherethisfunctionisused (in aservo task or inthe main
ladder), you must enter the above structure at both the TASK input and the
MAIN input. The structure name must be different for each one, but the
members must be the same. Or you can make an array of structures entering a
different array on each input.

Chapter 2 Function/Function Block Description 2-285

SCA_RCYC

When the function isinitially called, the address of TASK is stored in servo
data memory. During each servo update, the TASK structure is copied from
the SERCOS module to data memory.

Every time the function is called, the information in the TASK structureis
copied to the MAIN structure. There are internal checks that ensure the entire
group of IDNs came from the same interrupt.

The ERR output will be 20 if an error occurred.See Table 2-11 on page 309 for
alist of errors.

2-286

Chapter 2 Function/Function Block Description

SCA_RECV

SCA _RECV
SERCOS axis receive Motion/DATA
*SCNAHECVA Inputs. REQ (BOOL) - request for receiving data (one-shot)
Irea Dol AXIS (USINT) - identifies the servo SERCOS axis
1ax1s FAILL DATA (STRUC) - structure that sets up the format for
loaTA ERRL the data received
sernl Outputs: DONE (BOOL) - set when the datais received

FAIL (BOOL) - set if error occurred
ERR (INT) - #0 if receive error occurred
SERR (UINT) - slave error; 20 if ERR is 128

The SCA_RECYV function block is used to receive information from the
service channel section of the SERCOS communication.
The AXI1S input identifies the servo SERCOS axis.
The DATA input is a structure with the following members:
Member Type |Description
IDN UINT IDN value
IDTYPE [BYTE |0=(System 1 = (P)roduct
ELEM USINT |1 = Read procedure command status (SIZE = 1)
2 =Name string (SIZE = 3)
3 =Attribute (SIZE = 2)
4 = Units string (SIZE = 3)
5= Minimum value (SIZE=1or 2)
6 = Maximum value (SIZE =1 or 2)
7 = Operation data (SIZE =1, 2, 3, or 4)
NOTE: When the SIZE is 3 or 4, a string must be provided
at the STRARR member and the string size must be entered
at the AVAIL member.
If a 3 (attribute) is entered, the value will be put into the
LDATA member DINT since the attribute is always a 4-byte
value.
If a5 (minimum value) or 6 (maximum value) is entered, the
data size must be the same as the operation data size above.
SIZE UINT 1=twobytes 2=four bytes 3=String 4=Array
AVAIL UINT Quantity of bytes available in the array
ACTUAL |[UINT Quantity of bytes actually in the array
SDATA |UINT Datareceived if 1isenteredin SIZE
LDATA |DINT Datareceived if 2 isentered in SIZE
STRARR |STRING/|(Optional - only required if a3 or 4 isentered in SIZE)
ARRAY [(Datareceivedisastringif 3isenteredin SIZE or
datareceived isan array if 4 isentered in SIZE
The DONE output is set after the internal conditionsto recelve are set.

Chapter 2 Function/Function Block Description 2-287

SCA_REF

The FAIL output is set if an ERR occurs.

The ERR output will be £0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

SERR output will be 20 if the ERR output is 128. See Table 2-12 on page 311
for alist of errors.

SCA_REF
SERCOS axis reference Motion/REF
r SMMEEF Inputs:. REQ (BOOL) - request for reference cycle (one-shot)
IREQ DONEL AXIS (USINT) - identifies the servo SERCOS axis
1ax1s FATLL DIM (DINT) - the value to assign to the index mark
lomm Emml (feedback marker pulse) or the switch position
11147 serpl 1147 (WORD) - bitsfor IDN147
10PTN STATL _OPTN (WORD) - 0if IDN 147 isnot sent; 1 if IDN 147
asLTL IS sent.
Outputs: DONE (BOOL) - set when the reference cycle is com-
plete

FAIL (BOOL) - set if an error occurred

ERR (INT) - O if no error occurred; #0 if a read error
occurred

SERR (UINT) - dlave error; 20 if ERR is 128

STAT (INT) - indicates which IDN is being sent or
received

RSLT (DINT) - the commanded position after the refer-
enceiscomplete NOTE: Thisvaue must be sent to the
slave before the SCA_ACKR function block is called.

The SCA_REF function block is used to run areference cycle on the servo
SERCOS dave axis identified at the AXIS input.

The DIM input is the value assigned to the index mark or the reference switch
position.

The 1147 input holdsthe bitsfor IDN 147. Refer to the SERCOS specification
for more information. Typicaly, bits 2, 3, and 4 are 101 respectively. The
other bits depend on the application and the features offered by the drive.

The OPTN input determines whether IDN147 is sent during the reference
cycle. For somedrives, IDN 147 must be sent during phase 2. Set bit O of the
option word to 1 if you are sending IDN 147 during the reference cycle. Set bit
0 of the option word to O if you are not sending IDN 147 during the reference
cycle.

2-288

Chapter 2 Function/Function Block Description

SCA_REF

The DONE output is set when the reference cycle is complete. The
SCA_ACKR function must be called after the reference cycle is complete.

The FAIL output is set if thereis an error.

The ERR output will be £0 if an error occurred. See Table 2-11 on page 309
for alist of errors.

SERR output will be #0 if the ERR output is 128. See Table 2-12 on page 311
for alist of errors.

The STAT output indicates which IDN is being sent or received. Itisused
only for troubleshooting failure conditions. See the chart below.

STAT# |IDN

1 |Sending IDN 147 - option bits
Sending IDN 52 - reference position
Sending IDN 148 - start reference
Receiving IDN 148 - reference started?
Receiving IDN 403 - reference done?
Receiving IDN 47 - position?
Reference complete

olo|l ol Bl WD

The RSLT output gives the commanded position for your information after the
reference is complete.

Chapter 2 Function/Function Block Description 2-289

SCA_SEND

SCA_SEND
SERCOS axis send Motion/DATA
*SCNAPSENDA Inputs. REQ (BOOL) - request to send data (one-shot)
Irea Dol AXIS (USINT) - identifies the servo SERCOS axis
1ax1s FAILL DATA (STRUC) - structure that sets up the format for
loaTA ERRL the data sent
sernl Outputs: DONE (BOOL) - set when the send is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) - O if no error occurred; #0 if a send error
occurred

SERR (UINT) - dlave error; 20 if ERR is 128

The SCA_SEND function block is used to send information to the service
channel section of the SERCOS communication.
The AXIS input identifies the servo SERCOS axis.
The DATA input is a structure with the following members:
Member Type |Description
IDN UINT IDN value
IDTYPE [BYTE |0=(S)ystem 1 = (P)roduct
ELEM USINT